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Graphical Abstract

A complex network of cellular and molecular mechanisms underpins the pathobiology of calcific aortic valve disease. According to the current concept, disrup-
ture of the endothelial layer covering the fibrosa promotes the uptake of oxidatively modified lipids (along with the protein-cargo they carry), red blood cells,
and immune-cells, thereby promoting an inflammation-calcification feedback loop that results in fibro-calcific remodelling, leaflet stiffening and ultimately nar-
rowing of the left ventricular outflow tract, with its dreadful clinical sequelae such as aortic stenosis, heart failure and premature death. Beyond LDL-C lowering
by statins, other previously identified molecules, including PCSK9/Lp(a), mineral-binding matrix Gla protein, soluble guanylate cyclase, dipeptidyl peptidase-4 as
well as candidates involved in regulating valvular angiotensin II synthesis and phosphocalcium metabolism, have been targeted pharmacologically in randomized
controlled trials. While in some of these studies an attenuation of calcification burden could be observed, effects of target modulation on haemodynamic dis-
ease progression, a clinically much more relevant surrogate of disease burden, are uncertain and need to be rigorously assessed in future trials.
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Calcific aortic valve disease (CAVD) is a highly prevalent condition that comprises a disease continuum, ranging from microscopic changes
to profound fibro-calcific leaflet remodelling, culminating in aortic stenosis, heart failure, and ultimately premature death. Traditional risk
factors, such as hypercholesterolaemia and (systolic) hypertension, are shared among atherosclerotic cardiovascular disease and CAVD,
yet the molecular and cellular mechanisms differ markedly. Statin-induced low-density lipoprotein cholesterol lowering, a remedy highly ef-
fective for secondary prevention of atherosclerotic cardiovascular disease, consistently failed to impact CAVD progression or to improve
patient outcomes. However, recently completed phase II trials provide hope that pharmaceutical tactics directed at other targets impli-
cated in CAVD pathogenesis offer an avenue to alter the course of the disease non-invasively. Herein, we delineate key players of CAVD
pathobiology, outline mechanisms that entail compromised endothelial barrier function, and promote lipid homing, immune-cell infiltration,
and deranged phospho-calcium metabolism that collectively perpetuate a pro-inflammatory/pro-osteogenic milieu in which valvular inter-
stitial cells increasingly adopt myofibro-/osteoblast-like properties, thereby fostering fibro-calcific leaflet remodelling and eventually result-
ing in left ventricular outflow obstruction. We provide a glimpse into the most promising targets on the horizon, including lipoprotein(a),
mineral-binding matrix Gla protein, soluble guanylate cyclase, dipeptidyl peptidase-4 as well as candidates involved in regulating phospho-
calcium metabolism and valvular angiotensin II synthesis and ultimately discuss their potential for a future therapy of this insidious disease.
...................................................................................................................................................................................................
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Introduction

Calcific aortic valve disease (CAVD) is the most common valvular
heart disease in high-income countries, encompassing a disease spec-
trum ranging from aortic valve (AV) sclerosis (i.e. fibro-calcific leaflet
remodelling without significant impairment in leaflet motion and aor-
tic orifice narrowing) to severe left ventricular (LV) outflow obstruc-
tion by calcific AV stenosis (AS). AV sclerosis precedes AS with
roughly 9% of sclerosis cases transitioning to AS within a 5-year
period,1 despite marked interindividual differences (Figure 1).2,3 The
prevalence of CAVD sharply surges with advancing age, with >25%
of people being affected >65 years, and >50% of individuals aged
>_85 years.4,5 In its preclinical stage, LV outflow is largely unaffected,
yet already associated with high risk of adverse events, including
stroke, coronary events, and premature death,5 likely mediated by
the frequent co-existence of coronary atherosclerosis.6

Despite a decline in mortality,7 due to an increased use of trans-
catheter AV implantation (TAVI) in high-risk patients,8,9 the global
disease burden remains substantial with estimated numbers of
patients requiring surgical AV replacement (SAVR) or TAVI growing
at least two-fold by 2050 in both the USA and Europe.10–15

Currently, the indication for interventional therapy is driven by AS-
related symptoms and a severely reduced AV area, while in asymp-
tomatic patients at low surgical risk SAVR/TAVI can be justified only
if profound LV dysfunction (LV ejection fraction <50%) is present.8,9

Thus, the majority of patients undergo valve replacement when myo-
cardial remodelling and symptoms such as angina, shortness of
breath, and impaired exercise performance have already developed.
In fact, up to 80% of patients recruited in the prospective, multi-
national IMPULSE registry had symptomatic disease at baseline, of
which >50% already reported severe heart failure symptoms (defined
as New York Heart Association class III or IV) at a time when a diag-
nosis of AS was first established.16

Indeed, as CAVD progresses, the elevated LV pressure imposed
by the narrowed aortic orifice induces an adaptive response to nor-
malize LV wall stress and to temporarily compensate increased after-
load at the price of marked structural changes, ranging from
concentric hypertrophy and remodelling to eccentric hypertrophy,

the pattern and degree of which is determined by sex, age, comorbid-
ities and hemodynamic disease severity.17–21 Maladaptive remodelling
and LV hypertrophy gradually impair coronary flow reserve (which in
turn can induce angina pectoris despite angiographically lesion-free
coronary arteries)22–24 through which subendocardial ischaemia, car-
diomyocyte loss, and fibrosis is promoted,25,26 leading to reduced LV
longitudinal strain.27 LV ejection fraction is generally well preserved
in the majority of patients presenting with AS, and hypertrophic
changes tend to regress following interventional therapy.
Nevertheless, the fibrotic burden within the myocardium remains,
putting patients at heightened risk for adverse outcomes, even late
after valve replacement therapy.28,29

The growing disease burden in the elderly coupled with marked
global inequity in access to interventional therapies necessitates ef-
fective pharmacological strategies to delay or even cease CAVD pro-
gression (Graphical Abstract).8,9,15,30 High levels of low-density
lipoprotein cholesterol (LDL-C) and (systolic) hypertension are trad-
itional risk factors that are shared among CAVD and coronary ath-
erosclerosis (affecting 25–50% of CAVD patients),31 yet aggressive
LDL-C lowering consistently failed to impact hemodynamic disease
progression or clinical outcomes in well-designed randomized con-
trolled trials (RCTs), implying differential pathogenesis (Table 1).32–35

Similarly, although experimental and observational data support a
link between pathways involved in bone metabolism and CAVD
pathogenesis,36,37 neither the receptor activator of nuclear jB ligand
(RANKL) inhibitor denosumab nor the bisphosphonate alendronic
acid proved effective to blunt the natural course of the disease
(Table 2).38

Multifaceted mechanisms are
intricately linked to calcific aortic
valve disease pathogenesis

The native AV is an avascular tissue, characterized by a trileaflet archi-
tecture, whereby each leaflet comprises three layers, the fibrosa (fac-
ing the aorta), the ventricularis (facing the LV outflow tract), and the
glycosamino- and proteoglycan-rich spongiosa (residing in-between

S. Kraler et al.684
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.the former two). The ventricularis is abundant in radial elastin, and
the fibrosa is rich in circumferentially aligned type-I collagen fibres,
which provides leaflet structural integrity. In non-diseased AVs, all
three layers are populated by valvular interstitial cells (VICs),53 a het-
erogeneous cell pool comprising at least five phenotypes,54 with the
majority representing quiescent fibroblast-like cells.55 VICs residing
within the AV largely originate from cells of the endocardial cushion
that undergo endocardial-to-mesenchymal transition during valvulo-
genesis, a version of which is reactivated as CAVD evolves (reviewed
by Ma et al.56). During disease initiation and progression, VICs under-
go myofibroblastic and osteogenic differentiation, thereby evoking
extracellular matrix (ECM) remodelling, collagen deposition, nucle-
ation loci formation (via apoptotic bodies or extracellular vesicles)
and eventually osteoblastic VIC-mediated bone formation.57 The os-
seous metaplasia is rare and found only in 10–13% of surgically

removed AVs.58 By harnessing single-cell RNA sequencing on normal
vs. CAVD tissues, Xu et al.59 identified 14 different cell subtypes pop-
ulating AV tissues, with resident VICs comprising at least 3 subpopu-
lations. The intricacy of VIC differentiation and possible crosstalks of
myofibro- and osteogenesis are further highlighted by the study of
Hjortnaes et al.60, showing that the osteoblastic differentiation of
VICs loaded into three-dimensional (3D) hydrogel constructs is pre-
ceded by and, at least in part, depends on their myofibroblastic activa-
tion. This is in line with a recent -omics-based study, showing that the
fibrotic stage represents an intermediate gene expression profile be-
tween non-diseased and calcific tissues.61

Circumferentially aligned valvular endothelial cells (VECs) sit on
the surface of the AV, where they form a physical barrier, sense en-
vironmental changes, and through their paracrine actions, maintain
tissue homeostasis, which involves nitric oxide (NO) signalling,

Figure 1 Risk factors, structural changes and sequelae of calcific aortic valve disease at different disease stages. A variety of risk factors, including a
bicuspid phenotype, dyslipidaemia, hypertension, diabetes, and increased body mass index enhance the risk to develop calcific aortic valve disease.
Endothelial disruption, lipid accumulation, immune-cell infiltration and collagen fibre disorganization occur early in the disease process, with fine-
stippled mineralisations being a hallmark of early disease stages. Of note, patients without left ventricular outflow obstruction but sclerotic changes
of the aortic valve are at increased risk for major adverse cardiovascular events, likely mediated by the frequent co-existence of coronary atheroscler-
osis. While the rate of transition from aortic sclerosis to symptomatic aortic valve stenosis varies considerably between patients, findings from the
population-based Cardiovascular Health Study1 suggest that 1–2% of patients with aortic sclerosis progress to aortic stenosis annually, of which
three-quarter develop heart failure, undergo valve replacement or die within 2 to 5 years of follow-up.

CAVD – from mechanisms to therapy 685
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among others.62 Although our understanding of their involvement in
disease initiation is ambiguous, it is a well-accepted concept that in-
jurious insults on the endothelial layer abet the uptake of lipids along
with the protein cargo they carry, immune cells and red blood cells
(RBCs), which coincides with the nucleation of calcium and phos-
phorus within the AV, collectively perpetuating a pro-inflammatory
milieu during which VICs become progressively activated, culminating
in fibro-calcific leaflet remodelling and eventually LV outflow obstruc-
tion (Figure 2).63–66 While early phases of CAVD are characterized by
lipid and collagen depositions (typically accompanied by stippled
microcalcifications that originate within the base of the fibrosa), mac-
rocalcifications predominate more advanced disease stages, with
prominent sex-specific differences in the burden of AV calcifications,
reflecting in lower Agatston unit thresholds in women compared to
men for a diagnosis of severe AS.8,9,17,67–70 Indeed, artificial intelli-
gence based models applied on the transcriptomic data of AV tissues
obtained from propensity score matched AS patients of both sexes
revealed a marked enrichment of fibrotic pathways in calcified vs.
non-diseased AV tissues in females, indicating that the transcriptomic
signature of CAVD is strongly determined by sex, which may under-
pin differential disease phenotypes.71 While multifaceted aspects cer-
tainly contribute to sex-specific dissimilarities in fibro-calcific leaflet
remodelling, including differences across pro-inflammatory, pro-
apoptotic, pro-angiogenic and pro-fibrotic pathways,71–73 it is
thought-provoking that female AV leaflets exhibit accentuated base-
line expression of the ECM-embedded endogenous calcification in-
hibitor mineral-binding matrix Gla protein (MGP).73 Presently,
mechanistic insight into and potential therapeutic implications of sex-
specific aspects of human CAVD is scant, yet the hitherto available
studies unequivocally suggest that differences among both pro-
fibrotic and anti-calcific mechanisms account for the observed dissim-
ilarities in CAVD pathobiology (reviewed in detail by Summerhill
et al.74).

Alterations in paracrine nitric oxide
signalling occur early in the disease
process
Endothelium-dependent vasomotion is profoundly impaired in early-
stage CAVD,75 and altered NO signalling is implicated in accelerated
disease progression.2 In non-diseased AVs, endothelial nitric oxide
synthase (eNOS) protein abundance is almost five times lower on
the aortic compared with the ventricular side,76 possibly owing to
shear stress that corresponds to�20–30% of the magnitude encoun-
tered by the ventricular surface,77 coinciding with increased propen-
sity of VICs to undergo myofibro-/osteogenesis.62,78–81 Endothelial
NO deficiency is further aggravated by eNOS uncoupling (i.e. switch
from its classical NO synthesis function to superoxide production
due to tetrahydrobiopterin depletion),82 which contributes to
enhanced valvular reactive oxygen species (ROS) formation
(reviewed in detail by Greenberg et al.83), as it is typically observed in
pericalcific regions in human CAVD tissues.84,85 Consequently, VEC-
derived NO has emerged as an important mediator to maintain
valvular homeostasis by modulating the behaviour of VICs in a para-
crine fashion, as previously reported.62,76,81,86

For instance, Gould et al.81 showed that the myofibroblastic poten-
tial of porcine VICs seeded on polyethylene glycol (PEG) hydrogels

with varying degrees of elasticity was diminished if co-cultured with
VECs, and that these effects were reversible upon L-NAME expos-
ure. Notably, blockage of soluble guanylyl cyclase activity, the main
downstream effector of NO promoting GTP transformation to cyclic
GMP (cGMP), or pharmacological ROCK stimulation abolished the
protective effects conferred by VECs, implying ROCK-dependent
mechanisms. Mice null for eNOS [�25–45% of which present bicus-
pid aortic valve (BAV) pathology]62,78 elicit profound AV fibrosis, ir-
respective of valvular phenotype, with accelerated AV calcification
being confined to BAVs, suggesting that disturbed flow represents an
important trigger for valvular calcifications.79 Bosse et al.62 were the
first to establish a link between NO and NOTCH1 signalling, a tran-
scriptional regulator utterly essential for proper AV development,
with NOTCH1 mutations enhancing the susceptibility for CAVD in
humans.87 Indeed, endothelial-derived NO inhibits RUNX2 depend-
ent calcification,76 at least in part by NOTCH1 activation and subse-
quent Hey1 down-regulation.88 Recently, Majumdar et al.86

deepened mechanistic insight by showing that VEC-derived NO
inhibits VIC-driven calcification through S-nitrosylation of USP9X,
stabilization of MIB1, activation of NOTCH1, and in turn diminished
activation of RUNX2. Importantly, AV tissues obtained from patients
undergoing SAVR displayed blunted S-nitrosylation of USP9X, dimin-
ished MIB1 levels, and increased nuclear localization of the NOTCH1
intracellular domain (NICD), while the amount of S-nitrosylated
USP9X inversely correlated with CAVD severity, providing insights
into new pathways during human CAVD pathogenesis.86

Beyond the downstream mechanism outlined above, Choi et al.89

recently reported that endothelial dysfunction evoked by NO deple-
tion enhances dipeptidyl peptidase-4 [DPP-4; a multifunctional pro-
tein whose stability is regulated by dual-specificity phosphatase 26
(DUSP26)]90 expression in VICs, in turn limiting autocrine insulin-like
growth factor-1 (IGF-1) signalling, and thus accelerating CAVD pro-
gression. These findings were recapitulated in vivo using eNOS-defi-
cient mice and a rabbit model, in which a CAVD-like phenotype was
established by high cholesterol diet coupled with daily vitamin D2
supplementation. Taken together, these studies indicate that deple-
tion of VEC-derived NO, as it occurs already early in the disease pro-
cess, fuels several pro-fibrotic and pro-calcific processes involving, at
least in part, ROCK-, NOTCH1-, and IGF-1-dependent mechanisms.
Considering that NO homeostasis is perturbed already early in the
disease process, coupled with the evolving availability of pharmaceut-
ical approaches to specifically interfere with downstream acteurs of
the NO signalling pathway (e.g. HMR1766; Table 2), an increased
understanding of its role in CAVD pathogenesis is crucial for the ap-
propriate design of future RCTs (see section ‘Pharmacotherapies:
moving from past to contemporary clinical trials’).

Mechanical stress disrupts endothelial
structure and function
Seminal histological studies on early-diseased AV tissues revealed
that leaflet thickening and the formation of microcalcifications prefer-
entially affect the aortic side, with the endothelium covering the le-
sion being disrupted, and the underlying elastic lamina displaced.91

Subendothelial lipid deposits superimposed by immune cells tend to
align parallel to the valvular endothelium,91,92 and subjacent microcal-
cifications predominantly evolve in regions where disturbed flow

S. Kraler et al.686
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..occurs,93–95 collectively suggesting endothelial injury as a prime
driver of CAVD. For instance, individuals with a BAV, a congenital
condition with incomplete cusp separation during embryogenesis,96

are at accentuated risk to develop CAVD prematurely, and despite a
low prevalence of 0.5–1.5%, account for up to 50% of patients under-
going SAVR.97 Although mechanisms beyond hemodynamics likely
contribute to the high prevalence and exacerbated disease progres-
sion, it is interesting to note that shear stress abnormalities are most
pronounced near the base of the fused cusps,94 where calcifications
most frequently occur.98

The laminar shear stress encountered by the surface of the ven-
tricular side reaches up to 64–91 dyne/cm2,77 whilst shear stress on
the aortic side shows both anterograde and retrograde components
(i.e. oscillatory) and peaks already at 19 dyne/cm2 (Figure 3),93 known

to induce endothelial dysfunction, hamper barrier function, and to
shape the expression of key mediators governing the transition of
VICs into a myofibro- and osteoblastic phenotype, respectively.99–101

Indeed, by employing a physiologically relevant bioreactor system,
Mahler et al.102 provided compelling evidence that decreasing shear
stress magnitudes upregulates ICAM-1 and nuclear factor jB (NFjB)
expression in porcine VECs, with low-magnitude oscillatory shear
stress promoting their invasion and transdifferentiation into myofi-
broblastic VICs, a process termed endothelial-to-mesenchymal tran-
sition (EndMT). The genetic lineage tracing study of Gee et al.103

proposed that induction of EndMT mainly relies on NFjB activation
and might be activated in the postnatal stage solely during diseased
conditions, despite former studies ascribing EndMT a physiological
function.104,105 The findings of Fernandez Esmerats et al.99 further

Figure 2 Molecular and cellular mechanisms involved in calcific aortic valve disease pathogenesis. The injured endothelium covering the fibrosa fos-
ters the uptake of immune-cells, red blood cells as well as low-density lipoprotein-like particles and their protein cargo, such as autotaxin and lipopro-
tein-associated phospholipase A2. Reactive oxygen species formation, enhanced by nitric oxide synthase uncoupling, aggravates the oxidative
modification of lipids, promotes endothelial immune-cell trafficking and induces valvular interstitial cell apoptosis—yielding apoptotic bodies which
may form additional nidi for the deposition of calcium and phosphorus crystals. While lipoprotein-associated phospholipase A2 hydrolyses the ester
bond of oxidized phospholipids, autotaxin—which is secreted by valvular interstitial cells—catalyzes lysophosphatidic acid synthesis by choline group
removal. Importantly, apoC-III colocalizes with calcific regions, promotes mitochondrial stress and increases interleukin-6 and bone morphogenetic
protein-2 expression in human valvular interstitial cells. Matrix metalloproteinase/tissue inhibitors of matrix metalloproteinases imbalances disrupt
extracellular matrix homeostasis and promote leaflet stiffening, while bone morphogenetic protein-2 drives osteogenic transition of valvular intersti-
tial cells through increased expression of pro-osteogenic transcription factors, such as RUNX2. Infiltrated mast cells release chymase which facilitates
angiotensin II synthesis, thereby promoting valvular interstitial cell-mediated collagen production and thus stiffening of aortic valve leaflets—a potent
promoter of osteogenic valvular interstitial cell differentiation. Neovascularization, fuelled by vascular endothelial growth factor secretion, exacer-
bates immune-cell recruitment and cytokine secretion, which in turn boosts the fibro-calcific response.

CAVD – from mechanisms to therapy 691
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implicated miR-483 and in turn ubiquitin E2 ligase C (UBE2C) in this
process, and highlighted the importance of endothelial inflammation,
as disturbed flow regulated EndMT via enhanced UBE2C-mediated
activation of the pro-inflammatory hypoxia-inducible factor 1a
(HIF1a) pathway. Other inflammatory mediators, such as tumour ne-
crosis factor-a (TNF-a) and interleukin-6 (IL-6), have also been
shown to accelerate EndMT, likely acting through the Akt/NFjB
pathway.104 Increased rates of EndMT, triggered by the mechanisms
outlined above, can perturb endothelial structure and thus hamper
its barrier function, thereby allowing blood-derived cargo to invade
the valvular interstitium.106

In contrast to the ventricular side, the endothelium covering the
disease-susceptible fibrosa shows areas of denudation,63,107 which
fosters the intraleaflet accumulation of RBCs during early phases of
CAVD, while neovessel formation may act as an additional source of
intraleaflet RBCs at more advanced disease stages.63 Impairments in
endothelial barrier function coupled with the enhanced expression of
endothelial scavenger receptors (SR) also promotes the uptake of lip-
oproteins. For instance, the SR-A1 and the lectin-like oxidized low-
density lipoprotein receptor-1 (LOX-1) are abundantly expressed in
CAVD tissues, with LOX-1 showing high affinity to oxidatively modi-
fied LDL-like particles.108,109 Both LDL-C and lipoprotein(a) [Lp(a)]
emerged as important risk factors for CAVD, with the latter also
spurring disease progression.1,110–113 Structurally, Lp(a) consists of
an LDL-like moiety covalently bound to apolipoprotein(a), with
strong fibrin and lysine binding sites, likely facilitating its valvular inter-
action upon endothelial injury (Figure 4).114–117 These apolipoprotein
B100-containing lipoproteins bind oxidized phospholipids (oxPLs),
autotaxin (ectonucleotide pyrophosphatase/phosphodiesterase 2),
angiotensin-converting enzyme (ACE), apoC-III, and lipoprotein-
associated phospholipase A2 (Lp-PLA2), all of which are mechanistic-
ally implicated in CAVD pathogenesis.66,110,118–122 The importance
of mechanical stress in CAVD pathogenesis is further underscored
by the independent association of elevated systolic blood pressure
(SBP) and accelerated AV calcification,123 and by a recent
population-based Mendelian randomization (MR) study showing an
up to three-fold increased risk for incident AS per 20-mmHg
increase in SBP.124 While the mechanisms linking heightened SBP and
CAVD warrant further study, it is tempting to speculate that ampli-
fied tensile stress experienced by the fibrosa coupled with changes
in quality and magnitude of shear stress may contribute to this
phenomenon.

Inflammation drives fibro-calcific leaflet
remodelling
Impaired endothelial structure and function evoked by the mecha-
nisms outlined above promotes the uptake of numerous blood-
derived components (including lipoproteins, the protein cargo they
carry and RBCs), which, coupled with alterations in paracrine signal-
ling, perpetuates an inflammation-calcification feedback loop that cul-
minates in LV outflow obstruction by fibro-calcific leaflet
remodelling. Chronic inflammation causes valvular calcifications in
hyperlipidaemic mice,125,126 a phenomenon also well established in
humans by fluorodeoxyglucose (FDG) imaging and histology.65,127

Indeed, years before symptoms manifest, the human AV already

harbours a variety of immune cells in the subendothelium of the
fibrosa, including macrophages, mast cells, and CD8þ T cells, with
microcalcifications being largely confined to the lesion’s base, suggest-
ing their transendothelial recruitement.91,128,129

Infiltrated macrophages, predominantly from the M1 subtype,130

secrete pro-inflammatory cytokines, including TNF-a and IL-6, which
contribute to ECM remodelling, ignite EndMT, and drive the evolu-
tion of micro- and eventually macrocalcifications.131 Indeed, IL-6 ex-
pression correlates with CAVD severity in humans, and exposures of
human VICs to recombinant IL-6 induces their osteoblastic activa-
tion, while its knockdown alleviates VIC-driven calcification.36,132

Recently, Schlotter et al.66 explored the CAVD-specific apolipopro-
teome and found that apoC-III, an apolipoprotein known to interact
with Lp(a),120 is abundantly expressed in the disease-prone fibrosa
and accelerates VIC-driven calcification in vitro, likely also via
increased IL-6 production. Of note, a recent genome-wide associ-
ation study using data of four European cohorts identified IL6 as a
novel risk loci for incident AS.133 Activity of Lp-PLA2 is enhanced dur-
ing such pro-inflammatory states,134 and its expression is increased in
CAVD tissues,122 implying accentuated enzymatic activity.
Mechanistically, Lp-PLA2 transforms oxPL, a highly atherogenic mol-
ecule bound to Lp(a), into lysophosphatidylcholine, upon which it
undergoes autotaxin-mediated conversion to lysophosphatidic acid.
Lysophosphatidic acid is a strong promotor of osteoblastic transition
of VICs and, thus, AV calcification, with its degrading enzymes (i.e.
phospholipid phosphatases) being increasingly acknowledged as piv-
otal drivers of its activity.110,118,135,136 Furthermore, activated macro-
phages release extracellular vesicles (providing a scaffold for
nucleation of calcium-phosphate crystals)137–139 and express matrix
metalloproteinase (MMP)-1, -2, -3, -9, and -10,140–142 able to modu-
late ECM elasticity, which in turn determines VIC activation in re-
sponse to biochemical cues.143 Activated VICs (along with invaded
mast cells) are an important source of pro-angiogenic factors such as
VEGF-A,144,145 thereby stimulating neovessel formation and thus fur-
ther accelerating the uptake of blood-derived components, such as
lipoproteins and immune cells. In support of this notion, deprivation
of the antiangiogenic chondromodulin-I elicits high Vegf-A expression,
lipid deposition, immune-cell invasion, and AV calcification in aged
mice.146

The infiltration of both macrophages and mast cells, along with
LDL- and VIC-derived ACE,147,148 also accelerates local angiotensin II
synthesis. In fact, ACE-, chymase, and cathepsin G are highly
expressed in calcific vs. normal AV tissues, thereby promoting
enhanced angiotensin II production.121,149 Notably, exposure of rat
VICs to angiotensin II increases type I collagen synthesis, likely via
binding to the angiotensin II type 1 receptor (AT-1R).147 Accordingly,
high-dose angiotensin II administration to Apoe�/�mice induces myo-
fibroblastic activation of VICs and subsequent AV thickening, effects
that can be suppressed by concomitant olmesartan but not by hydra-
lazine administration, suggesting that angiotensin II exerts pro-fibrotic
effects via AT-1R independent of blood-pressure lowering,150 find-
ings corroborated in hypercholesterolaemic rabbits.151 Côté et al.
found that preoperative plasma levels of angiotensin II correlate
strongly with the tissue expression of TNF-a and IL-6 in excised
CAVD tissues,152 and showed in a follow-up study that the use of
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Figure 3 Hemodynamic flow across the aortic valve and myocardial alterations occurring with advanced calcific aortic valve disease. (A) The hemo-
dynamic forces aortic leaflets are exposed to are shown. Note that disturbed hemodynamic flow can perturb tissue homeostasis by acting on pro-in-
flammatory and pro-fibrotic signalling, thereby promoting calcific aortic valve disease progression and eventually the development of aortic stenosis.
(B) As calcific aortic valve disease progresses and impediments in left ventricular outflow occur, left ventricular hypertrophy and myocardial fibrosis
evolves leading to reduced left ventricular longitudinal function, although left ventricular ejection fraction typically remains unchanged in the majority
of patients. If left untreated, the left atrium enlarges, enhancing the susceptibility to atrial fibrillation. Due to left ventricular hypertrophy and the
reduced diastolic pressure gradient, coronary flow reserve can substantially decrease leading to cardiomyocyte loss further perpetuating processes
underlying myocardial fibrosis. At late disease stages, secondary pulmonary hypertension and right-ventricular dysfunction evolves.
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angiotensin receptor blockers (ARBs) associates with lower IL-6 ex-
pression and fibrotic remodelling.36 Although the valvular renin–
angiotensin system (RAS) and its implications in CAVD pathogenesis
warrants further study, it is interesting to note that a very recent re-
port highlighted a link between the activity of the angiotensin II-
degrading enzyme ACE2 and the degree of AV calcification but failed
to establish an association with hemodynamic disease severity,153

opening an exciting avenue for future research on the role of the
valvular RAS in CAVD pathogenesis beyond its effects on blood pres-
sure regulation. Given the so-far contradictory results obtained
across different clinical studies (see section ‘Pharmacotherapies:
moving from past to contemporary clinical trials’),154–158 we must
deepen our mechanistic understanding of the valvular RAS in human
CAVD. This may provide the basis for the right timing and proper se-
lection of both the study population as well as type of intervention in

future RCTs to eventually convincingly assess the impact of RAS
modulation on CAVD progression.

Dysregulated calcium-phosphate metab-
olism promotes aortic valve
mineralization
Besides pathogenic processes directed by the mechanisms outlined
above, dysregulation in systemic phospho-calcium metabolism/
homeostasis, as it occurs during chronic kidney disease (CKD) or
osteoporosis,159 is also implicated in CAVD. This pathway acts
through distinct mechanisms (reviewed in detail by Bäck and
Michel160) but exhibits multiple points of crosstalk that may operate
simultaneously within the same AV.53 CAVD is a common comorbid-
ity of CKD, hallmarked by premature manifestation and accelerated

Figure 4 Structure of lipoprotein(a) and its pro-osteogenic effects on valvular interstitial cells. (A) Lipoprotein(a) is characterized by a low-density
lipoprotein-like particle (note the single apoB100 molecule) that is covalently linked to the unique apolipoprotein(a) glycoprotein which is encoded
by the LPA gene. While its lipid core consists mainly of cholesteryl esters and (some) triglycerides, its outer shell is mainly composed of phospholipids
and free cholesterol. Although the majority of oxidized phospholipid is bound to apolipoprotein(a), lipids can also be covalently linked to apoB100 or
even found freely in the lipid-shell. Twelve domains form apolipoprotein(a), with 10 (i.e. KIV1–KIV10) being homologous to plasminogen kringle-IV
and one representing a kringle-V-like domain (i.e. KV) which is followed by an inactive protease-like domain. Different functions have been ascribed
to each, with KIV10 being characterized by a strong lysine-binding site crucial for oxidized phospholipid binding. (B) Lipoprotein-associated phospho-
lipase A2 and autotaxin can transform oxidized phospholipid to lysophosphatidylcholine and lysophosphatidic acid, respectively, thereby promoting
endogenous interleukin-6 and autotaxin production through NF-jB activation. Interleukin-6 can induce increased bone morphogenetic protein-2 ex-
pression in a paracrine manner resulting in osteogenic transition of adjacent valvular interstitial cells and eventually aortic valve calcification.

S. Kraler et al.694



..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.
disease progression, with alterations in systemic calcium-phosphate
metabolism being implicated in its pathogenesis. Similarly, osteopor-
osis and enhanced bone resorption activity have been consistently
linked to CAVD,37,161 suggesting that deranged calcium-phosphate
homeostasis is involved in its pathogenesis.

Phosphates represent essential structural (nucleic acids, phospholi-
pids) and functional (purinergic system and pyrophosphate metabol-
ism) building blocks for proper cell function, involving its inorganic (Pi)
and biologically active (organic) form. As metabolic alterations occur,
such as CKD or osteoporosis,161–163 phosphates are shifted from their
organic to inorganic form, loose their intracellular predominance, and
can initiate the mineralization process within the valvular ECM.160 A
variety of sources contribute to their extracellular abundance, includ-
ing plasma Pi, phospholipids (derived from lipoproteins, cell- or
exosome-derived membranes), and nucleotides,160 with the former
two playing a predominant role in CKD-associated CAVD.159,164

Calcium typically precipitates on exposed phosphates when its prod-
uct (Ca� Pi) approximates its saturation point. Therefore, hyperphos-
phataemia, for instance due to CKD, may enhance the propensity for
hydroxyapatite deposition within valvular and vascular tissues, yet en-
dogenous inhibitors that act on systemic (fetuin-A, Klotho) or local lev-
els (MGP, osteopontin) may oppose calcium-phosphate precipitation.

For instance, liver-derived fetuin-A limits calcium-phosphate precipi-
tation by forming colloidal calciprotein particles, and interferes with
Wnt/b-catenin signalling.165 Since fetuin-A deprivation elicits more pro-
found calcifications in hyperphosphataemic mice,166–168 it might well be
that fetuin-A exerts protective effects only when calcium-phosphate
metabolism is disturbed,169 which may explain the conflicting results
obtained across different observational studies.170,171 In contrast,
Klotho—a fibroblast growth factor-23 (FGF-23) co-receptor—regu-
lates Pi by diminishing renal phosphate reabsorption, and its loss evokes
high valvular RUNX2 expression in vivo, indicating the osteoblastic acti-
vation of VICs.172 At the valvular level, VICs synthesize MGP that, fol-
lowing vitamin K-dependent post-translational c-carboxylation of its
glutamic acids, is incorporated in the valvular ECM.173 Carboxylated
MGP limits calcium-phosphate precipitation mainly by calcium bind-
ing174 but may also suppress bone morphogenetic protein (BMP)-2 and
BMP-4 expression.175,176 Loss of murine MGP leads to severe arterial
calcifications,177 and its expression is upregulated in human calcified
AVs—concomitantly with osteocalcin and Gla-rich protein, suggesting a
pivotal role in CAVD.178

Beyond these mechanisms, CKD patients accumulate endogenous
toxins, such as indoxyl sulphate, and have heightened Lp(a) as well as
oxLDL levels,179 highlighting important crosstalks to phosphate-
independent mechanisms. In addition, other aspects that contribute to
the almost tripled prevalence of CAVD among CKD patients may in-
clude frequently observed (systolic) hypertension, chronic volume over-
load, and accentuated mechanical stress across the AV due to the
presence of an arteriovenous fistula/graft and regular hemodialysis.164,180

Pharmacotherapies: moving from
past to contemporary clinical trials

Low-density lipoprotein cholesterol
Despite the wealth of data supporting a causal role for LDL-C in
CAVD,181–183 aggressive LDL-C lowering has consistently failed to

blunt disease progression in well-designed RCTs (Table 1).32–35

Indeed, in the SALTIRE study enrolling 155 patients with AS (defined
as AV calcification on echocardiography and aortic-jet velocity
>_2.5 m/s) atorvastatin reduced LDL-C by 53% over a median follow-
up of 25 months, but failed to impact disease progression.33 Similarly,
in the large-scale SEAS study, in which 1873 patients with mild-to-
moderate AS were randomized to receive simvastatin (40 mg od)
plus ezetimibe (10 mg od) or placebo, no effect on the primary out-
come was observed during a median follow-up of 52.2 months, des-
pite a mean reduction in LDL-C of 53.8%.34 Also, in the smaller
ASTRONOMER trial, rosuvastatin-mediated LDL-C lowering of
54.5% in relatively young patients with similar AS severity had no ef-
fect on disease progression over a median follow-up of 3.5 years.32

Likely, the insufficient macrophage-driven lipid removal mechanism in
CAVD, a well-documented pathophysiologic process in atherogen-
esis, contributes to these findings.66,184 Also, off-target effects of sta-
tins, ranging from perturbed glucose homeostasis185,186 and
increased Lp(a) levels187 to pro-osteogenic properties,188,189 could
counterbalance their LDL-C lowering effects. Finally, and in stark
contrast to Lp(a), LDL-C does not associate with hemodynamic dis-
ease progression in observational studies,1,110,190,191 questioning the
effectiveness of pharmaceutical strategies directed at this target
when AS has already evolved.

Lipoprotein(a)
Landmark MR studies imply a causal role for Lp(a) in
CAVD,111,192,193 with preclinical studies providing mechanistic
insights into its role as a carrier of culprits involved in VIC-driven cal-
cification, including autotaxin and oxPLs.119,135,194 A post hoc analysis
of the FOURIER trial195 suggests that proprotein convertase subtili-
sin/kexin type 9 (PCSK9) inhibitors may exert protective effects, like-
ly because they not only lower LDL-C but also reduce Lp(a) by up to
25–30% and interfere with pathways directly involved in valvular
remodelling.196–201 Yet, based on estimates to lower the risk and im-
prove outcomes of coronary artery disease, a greater Lp(a) reduction
might be required to achieve benefit.202,203 In this context, novel anti-
sense oligonucleotides targeting hepatic LPA mRNA might represent
promising tools for aggressive Lp(a) lowering,204 as interventions cur-
rently applied in ongoing RCTs (Table 2), such as niacin, only modest-
ly lower Lp(a) by up to 30%. On the other hand, overreliance on
Lp(a)-directed pharmacotherapies should be avoided, as current evi-
dence highlights that high Lp(a) (exceeding 175 nmol/L) only
accounts for up to 7% of AS cases,205 thus likely benefitting only a mi-
nority of patients afflicted by CAVD.

Mineral-binding matrix gla protein
Considering the largely non-vascularized architecture of the native
AV, boosting the activity of ECM-embedded calcification inhibitors,
such as MGP (which is intriguingly highly expressed in fibrotic areas
of CAVD tissues61), could represent a promising avenue for future
drug development. In support of this theory, loss of MGP evokes pro-
found valvular calcification in mice,177 whereas liver-derived fetuin(a)
deficiency necessitates a hyperphosphataemic mileu.168 In line with
previous reports,206–208 a retrospective substudy of the population-
based DANCAVAS trial209 with 15 048 participants revealed that
vitamin-K antagonist (VKA) use confers heightened propensity for
AV calcification, with an increase in computed tomography (CT)-
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detected AV calcium by 6%/year on VKA. However, the retrospect-
ive character and unavailability of surrogates of MGP carboxylation
status (e.g. plasma-derived as used in previous studies)210 are strong
limitations and thus warrant further study. A small prospective proof-
of-concept study found that daily vitamin K supplementation slightly
blunted the progression of AV calcification during 12 months of
follow-up (10.0% in patients undergoing treatment vs. 22.0% in the
placebo arm)52 but unfortunately lacked power to assess effects on
more clinically relevant parameters of disease progression. The
DECAV-K2 trial45, designed to assess the effects of vitamin K supple-
mentation on hemodynamic disease progression with a sample size
1.5 times larger than the afore-mentioned trial, started recruiting
patients in 2017, with results likely available by 2022/2023.

Renin–angiotensin system
Angiotensin II is abundantly expressed in CAVD tissues and induces
the myofibroblastic activation and collagen deposition of VICs
in vitro,147 while contributing to valvular ECM remodelling and even-
tually leaflet thickening in vivo.150 Independent of its effects on blood
pressure, AT-1R blockage attenuated myofibroblastic VIC activation
and AV thickening in two independent preclinical models,150,151 sug-
gesting that AT-1R inhibition exerts anti-fibrotic effects. In their
retrospective study, Côté et al. reported that preoperative ARB use
associated with diminished AV remodelling,154 while in another
study, ARBs slowed hemodynamic disease progression, whereas
ACE inhibitors have failed.155 This is in line with the initial report of
Rosenhek et al.156 showing neutral effects of ACE inhibition on
hemodynamic disease progression. Yet, O’Brian et al.157 reported
that the use of ACE inhibitors is associated with diminished increase
in CT-detected AV calcium load,157 while in the prospective RIAS
trial158 only a trend toward slower hemodynamic disease progres-
sion could be established. In aggregate, these studies suggest that
ARBs may diminish valvular remodelling, while ACE inhibition has
thus far yielded conflicting results across different reports. Likely, the
abundance of mast cell- or macrophage-derived chymase/cathepsin
G necessitates targeted downstream inhibition to provide benefit.
Prospectively designed studies, such as the currently running ALFA
trial39, are urgently warranted to convincingly assess the efficacy of
RAS-modulating agents to impact CAVD progression.

Targets involved in nitric oxide and IGF-1
signalling
Minute amounts of endothelial-derived NO activate soluble guany-
late cyclase (sGC) via its prosthetic haem moiety (whose reduced
form binds NO), thereby inducing the conversion of GTP to cGMP, a
key player of VIC quiescence and maintenance of valvular homeosta-
sis.81 Non-sGC sources of AV cGMP, e.g. via the particulate guanylate
cyclase Npr2, also contribute to valvular homeostasis, embryonic de-
velopment, and inhibition of fibrosis/calcification in mice—pointing
towards a broader importance of valvular cGMP levels in maintaining
AV health.211 Early-stage CAVD is associated with systemic endothe-
lial dysfunction,75 and derangements in paracrine NO signalling drives
pro-fibrotic and pro-calcific processes that underpin CAVD patho-
genesis.62,81,86 HMR-1766, an sGC activator that acts independently
of NO and preferably interacts with oxidized sGC,212 was shown to
exert anti-fibrotic effects in a rat model of myocardial infarction,213

while a preliminary report also implies a role in valvular BMP-2 signal-
ling.214 The CAVS42 trial, in which patients with AS were randomized
to receiving 200 mg HMR-1766 daily or matching placebo, is under-
going analysis currently. VEC-derived NO depletion, as it occurs dur-
ing CAVD progression, enhances DPP-4 expression, and induces the
osteoblastic activation of VICs via accelerated IGF-1 degradation.89

The DIP-CAVD trial46 will test whether selective DPP-4 inhibition
by orally administered evogliptin (DA-1229) once daily can alter
the progression of AV calcification over 96 weeks, with first
study results likely being available by 2024. These RCTs open an
exciting avenue for future research to study drugs to reinstate
paracrine VEC/VIC homeostasis, a process likely deranged early
in the disease process.

Phosphate/calcium-metabolism-
associated targets
Epidemiological and preclinical evidence linking CAVD with dysregu-
lated phosphocalcium metabolism has stimulated RCTs to assess the
effectiveness of pharmaceutical strategies directed at targets interfer-
ing with hydroxyapatite crystal formation (SNF472), the RANKL/
RANK/osteoprotegerin axis (denosumab), or osteoclastic activity
(bisphosphonates). As noted earlier, the almost tripled preva-
lence of CAVD in CKD patients is secondary to a combination of
factors, with a predominant role of deranged mineral metabol-
ism.160 The landmark CaLIPSO trial44 showed that 52-week treat-
ment with SNF472, a myo-inositol hexaphosphate that selectively
inhibits hydroxyapatite formation,215 significantly attenuated AV
calcium volume score progression in CKD patients on long-term
haemodialysis and adjunct therapies (57% of which had AV calcifi-
cations at baseline), equalling a progression of 98% with placebo
vs. 14% with active treatment. Although further studies are
needed to study the effects on hard cardiovascular endpoints,
including hemodynamic disease progression, the clinical implica-
tions could be huge, particularly in patients with high propensity
for CAVD, yet at high risk for adverse outcomes following inter-
ventional valve replacement therapies.164

The RANKL/RANK/osteoprotegerin axis regulates bone turnover
and is mechanistically implicated in osteoporosis pathogenesis, a con-
dition linked to high CAVD prevalence. RANKL is upregulated in cal-
cific lesions of the AV,216 and promotes matrix calcification and
osteoblastic activation of VICs,217 while its inhibition by osteoprote-
gerin attenuates CAVD in Ldlr-/- ApoB100/100 mice.218

Observationally, bisphosphonate use is associated with reduced
hemodynamic AS progression and lower prevalence of AV calcifica-
tions,37,219 while bone density correlates inversely with incident
AS.161 In the recently published SALTIRE II trial,38 150 AS patients
with a mean peak aortic jet velocity of 3.36 m/s were randomized to
receiving denosumab, placebo injection, alendronic acid, or placebo
capsule and were subjected to serial echocardiography, CT AV cal-
cium scoring, and 18F-NaF positron emission tomography (PET)/CT
during 24-month follow-up. A decline in serum C-terminal telopep-
tide by >50% confirmed efficacy of both active drugs, yet neither a
change in AV calcium load/activity nor peak aortic jet velocity could
be established, highlighting the need for the identification of novel
therapeutic targets beyond the RANKL/RANK/osteoprotegerin axis.
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Conclusions

Several mediators, including Lp(a) (mainly via bound oxPLs), NO,
RAS, DPP-4/IGF-1, MGP, autotaxin (via enhanced lysophosphatidic
acid), and IL-6, have emerged as pivotal drivers of CAVD, some of
which are already being therapeutically targeted in ongoing trials
(Table 2). Despite the progress made, our understanding of the
mechanisms operative in valvular tissues in response to hemodynam-
ic and biochemical cues is still incomplete, with well-designed
randomized controlled trials targeting LDL-C or key players of bone
metabolism showing disappointing results.32–35 However, phase II
studies harnessing interventions of MGP carboxylation (by oral vita-
min K supplementation) or hydroxyapatite crystal formation inhib-
ition (by intravenous myo-inositol hexaphosphate administration)
have yielded promising results in specific patient populations.
Whether these interventions impact hemodynamic disease progres-
sion and, in turn, the necessity for interventional therapy, in both
male and female patients, needs to be shown in larger RCTs, some of
which are currently ongoing (e.g. AVADEC,40 BASIK2,41 and
DECAV-K245). Lastly, there is a pressing need to design tailored
RCTs investigating the effects of aggressive Lp(a) lowering on CAVD
progression, as such an approach might represent a promising rem-
edy for patients with elevated Lp(a).220

In parallel, preclinical efforts aimed at characterizing the pathobiol-
ogy of different CAVD stages should be continued incessantly. For
the discovery of novel mediators and final common pathways of
CAVD initiation and progression, the application of spatiotemporally
resolved omics studies coupled with the rigorous validation of prom-
ising therapeutic targets in ex vivo/in vivo models merit consider-
ation.221–224 Finally, the identification of patients best suited for
medical therapy intertwined with the development of more sensitive
screening modalities for the detection of early fibro-calcific changes,
which markedly differ between sexes, will be key if interventional tri-
als are to be efficiently conducted and novel drugs shown to be ef-
fective are to be broadly applied. As indicated, the disease-causing
mechanisms may change as CAVD evolves, with women typically
showing a more fibrotic phenotype compared to men.17,67,68

Therefore, novel composite endpoints—depending on the study
population recruited and disease stage targeted—need to be estab-
lished, as emerging surrogates of inflammation and fibro-calcific
remodelling (e.g. assessed by PET/CT with 18F-NaF/18F-FDG) can
provide incremental information on top of echocardiography, and
likely represent more accurate measures of disease activity.
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