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Abstract

Background: In the medical imaging domain, deep learning based methods have yet to see 

widespread clinical adoption, in part due to limited generalization performance across different 

imaging devices and acquisition protocols. The deviation between estimated brain age and 

biological age is an established biomarker of brain health and such models may benefit from 

increased cross-site generalizability.

Purpose: To develop and evaluate a deep learning based image harmonization method to 

improve cross-site generalizability of deep learning age prediction.

Study Type: Retrospective

Population: 8876 subjects from 6 sites. Harmonization models were trained using all subjects. 

Age prediction models were trained using 2739 subjects from a single site and tested using the 

remaining 6137 subjects from various other sites.

Field Strength/Sequence: Brain imaging with magnetization prepared rapid acquisition with 

gradient echo (MPRAGE) or spoiled gradient echo sequences (SPGR) at 1.5 and 3T

Assessment: StarGAN v2, was used to perform a canonical mapping from diverse datasets 

to a reference domain to reduce site-based variation while preserving semantic information. 

Generalization performance of deep learning age prediction was evaluated using harmonized, 

histogram matched, and unharmonized data.

Statistical Tests: Mean absolute error and Pearson correlation between estimated age and 

biological age quantified the performance of the age prediction model.

Results: Our results indicated a substantial improvement in age prediction in out-of-sample data, 

with the overall mean absolute error improving from 15.81 (±0.21) years to 11.86 (±0.11) with 

histogram matching to 7.21 (±0.22) years with GAN-based harmonization. In the multisite case, 

across the 5 out of sample sites, mean absolute error improved from 9.78 (±6.69) years to 7.74 

(±3.03) years with histogram normalization to 5.32 (±4.07) years with GAN-based harmonization.

Data Conclusion: While further research is needed, GAN-based medical image harmonization 

appears to be a promising tool for improving cross-site deep learning generalization.
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INTRODUCTION

Deep learning models can produce useful results on a variety of prediction tasks in medical 

imaging, including segmentation [1], precision diagnostics [2] and prediction of clinical 

outcome [3]. However, they often perform inconsistently when applied to data obtained 

under different conditions such as different imaging devices, acquisition protocols, and 

patient populations [4]. This imaging heterogeneity can diminish the generalizability of 

prediction models as they also reflect irrelevant or confounding features. In the medical 

imaging domain, poor generalization presents a major limitation to the widespread clinical 

adoption of deep learning-based predictors [5, 6].

Restrictions in generalizability are a common characteristic of modeling high dimensional 

data with many degrees of freedom, which can be overcome partially if sufficiently large and 

diverse training sets are available [7]. While there has been progress recently arising from 

efforts to collect very large and diverse training sets through pooling data across multiple 

studies [8], it is often the case that the desired labeled data (ie. clinical or genomic variables) 

are available only for a subset of the studies. Importantly, even if a sufficiently large and 

diverse labelled dataset can be brought together to support extensive training of a machine 

learning model, continuous advances in imaging protocols as well as in biomarker and 

clinical measurements will change the characteristics of future data, thereby raising the need 

for re-acquiring a new training dataset. Therefore, to date, machine learning-based methods 

have seen limited applicability in the clinic relative to their potential.

Recently, advances in the computer vision community have shown how generative 

adversarial networks (GANs) [9] can be used to train deep learning models that are robust 

to adversarial perturbations [10]. For example, in the case of modeling natural variation, 

Robey et al. [11] used learnable models of variation, to train robust deep learning for 

factors such as weather conditions in street sign recognition and background color in 

digit recognition. In the medical imaging community, there have also been encouraging 

results using the GAN-based approach to model site-based variation in medical images. In 

particular, CycleGAN [12] has been used to perform unpaired image to image translation 

by learning a bijective mapping of scans between imaging sites. In this approach, scans 

retain their original semantic information through enforcement of an identity mapping back 

to the original data. Examples include studies by Gao et al. [13], who used a CycleGAN 

based approach for intensity normalization on multi-site T2-FLAIR MRI data, Modanwal et 

al. [14], who developed a CycleGAN based image harmonization approach for dynamic 

contrast-enhanced breast MRI scans from two scanners, and Nguyen et al. [15], who 

investigated the use of CycleGAN to remove scanner effects at the image level between two 

sites. Nguyen et al. [16] subsequently investigated the use of the StarGAN v2 architecture 

for multi-site harmonization of neuroimaging data using a single generator discriminator 

pair. StarGAN v2 [17] (herein referred to as StarGAN) is an emerging method for unpaired 

image to image translation that has shown promising results, particularly when jointly 

learning mappings between multiple sites. In addition to these methods, Dewey et al. [18] 

and Zuo et al. [19] proposed an alternate harmonization approach using T1 and T2 image 

pairs to disentangle imaging content from imaging “style”. Additionally, some other deep 

learning based approaches to site harmonization have been proposed, but their usefulness 
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has been limited by factors such as requiring training data to include paired subjects who 

have been imaged at both sites [20–22], a condition which is very difficult to meet in 

practice with sufficiently large and continuously updated training samples. To the best of our 

knowledge, prior work has not demonstrated the effectiveness of GAN-based harmonization 

in downstream prediction tasks. An example of such a task is brain age estimation from 

MRI data. Brain age is an established biomarker of overall brain health and the accuracy 

of estimation is dependent on neuroanatomical patterns that can be obfuscated by imaging 

variation across sites.

Thus the aim of this study was to use a StarGAN style model, to perform inter-site mapping 

of MRI brain neuroimaging data and to show: (1) that StarGAN was able to model domain 

level variation from unpaired data, while preserving semantic information within the data 

[17], and (2) that StarGAN harmonization improved the accuracy of brain age prediction 

models.

METHODS

Datasets

This retrospective study represents a pooled set of imaging studies. These studies received 

oversight and approval from their respective ethics comities as well as a waiver for 

written informed consent. All subjects included in this work were determined to be healthy 

according to criteria established by each individual study. Five of the studies were performed 

using magnetization prepared rapid acquisition with gradient echo (MPRAGE) sequences 

and one study was performed with the spoiled gradient echo (SPGR) sequence. Three of the 

studies were performed using 3T scanners and three used 1.5T scanners. See Table 1 for 

more details.

For age prediction with a single out of sample site, we used two large datasets of T1-

weighted brain MRI scans that covered a wide range of ages, Dataset1 (n = 2739, mean age 

= 52.55, std = 9.27) and Dataset2 (n =952, mean age = 67.04, std = 14.29). Dataset1 was 

used as the canonical reference domain and training dataset for the age prediction model. 

See Table 1 for more details.

For multisite age prediction, we used six datasets. Five (n = 6137) were used for the out 

of sample evaluation and Dataset1 was used as the canonical reference domain and training 

dataset for the age prediction model. See Table 1 for more details.

Preprocessing

The scans were skull-stripped using an automated multi-atlas label fusion method [23], 

then affinely registered to a common atlas using FMRIB’s Linear Image Registration Tool 

FLIRT [24]. Finally, the scans underwent a quality control procedure using automatic 

outlier detection to flag cases for manual verification (cases reviewed by G. E. – 11 years 

experience).
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Histogram Normalization

For an additional baseline, we compare the StarGAN harmonization method to traditional 

histogram matching that is commonly used for cross-site image normalization. In our 

experiments, we replicate our age prediction methodology with scans that have been 

histogram matched using the Nyúl and Udupa method [25, 26] as implemented in this 

python package [27].

Image Harmonization to a Reference Domain

StarGAN consists of a style encoder, content encoder, generator, and discriminator. Both 

the style encoder and the content encoder are convolutional neural networks that map a 

single axial slice from a T1-weight scan to some lower dimensional representation. In the 

case of the style encoder, the network learns a mapping of slices to an 8 dimensional 

vector representing the site-based variation of that slice. In the case of the content encoder, 

the network learns a mapping of slices to a lower dimensional set of convolutional filters 

representing the anatomical information of the slice. The generator, a generative adversarial 

network, then takes in both the style and content encodings and produces a harmonized 

image with the respective style and content of the input encodings [17]. In this way, a 

harmonized scan is produced that matches the site-based variation of a reference scan while 

retaining its original anatomical information. The discriminator network is used during 

optimization to facilitate adversarial training. This network attempts to discriminate which 

site a sample originates from and if the sample originates from a real scan or is a synthetic 

image produced by the generator network. The predictions of this network are then used to 

optimize the generator to produce more realistic results in order to “fool” the discriminator. 

In order to ensure that the site-based variation is appropriately encoded into the synthetic 

image, the distance between the style encodings of the original reference image and the 

synthetic image is minimized. See supplemental 1 for more details.

For our experiments, we use StarGAN to learn the mapping between unpaired axial slices 

of scans in our reference domain and out-of-sample sites. As opposed to the age prediction 

experiments, where only slices from the reference domain were used for training, the 

StarGAN training uses scans from all sites. Slices were used in training if they contained 

above 1% of non-zero pixels after processing. Slices during training were randomly sampled 

to avoid a single scan populating all of the slices in a minibatch. We then apply this mapping 

to harmonize scans from our new site to the reference domain by using the style encoding of 

a scan in the reference domain and the content encoding of the scan we aim to harmonize. 

This harmonized data can then be used in our prediction model (Figure 1). For the purposes 

of this paper and after qualitative assessment, the style encoding was limited to a vector of 

length 8. See Supplemental Table 1 for more information.

Pytorch [28] was used to perform all the deep learning experiments in this paper. Models 

were trained on 2 P100 GPUs with 12GB of vRAM each. Training for the multisite 

harmonization model took ~20 hours and the multisite age prediction model took 4 hours.
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Age Prediction

Age prediction was used to determine the improvement in cross-site prediction 

generalizability across unharmonized, histogram matched, and GAN harmonized scans. In 

each of these experiments the prediction model is only trained on Dataset 1 and evaluated 

on the remaining datasets. In the case of harmonized experiments, the prediction model was 

trained only on Dataset 1 and evaluated on the histogram or GAN-based transformation of 

the testing site or sites.

Brain age prediction was modeled after the methodology used in [29]. See Supplementary 

Figure 1 for a visual depiction of the age prediction methods. Age prediction was performed 

using a 10-layer ResNet model, which has been shown to perform well on a variety of 

imaging tasks [30]. Our model used a combination of convolutional and max pooling layers 

to incrementally reduce the dimensionality of images. After the final max pooling layer, we 

flattened the output and passed it through a fully connected layer of size 512 with 50% 

dropout and RELU activation. We attached a single output node with a linear activation, 

whereby the network could be optimized using mean squared loss. Models were optimized 

using the Adam optimizer [31] with a learning rate of 3e-4. This learning rate was decreased 

by a factor of 10 when the training loss remained constant for 5 consecutive epochs. The 

network was considered to have converged when the training loss was constant for 10 

epochs or when the validation loss increased for 5 consecutive epochs. Image augmentation 

was performed during training with random horizontal flips of images and intensity variation 

(+/− 5%).

The network was trained using the middle 80 axial slices of each MRI scan in Dataset1, 

where each slice was treated as an independent training sample. During training, all slices 

in the training set were randomly shuffled to avoid a single scan populating all the slices 

in a minibatch. For testing, the median prediction of a scan was used. A baseline in-sample 

model was trained and evaluated on Dataset1 with 5-fold cross-validation in which training, 

validation, and testing sets were split at the subject level, such that all slices from a single 

subject would only be contained in a single set per fold. In the cross-validated experiments, 

60% of the total subjects were selected in each fold to be used as the training data to the 

network. A non-overlapping, 20% of the total subjects are used as the validation set. The 

mean absolute error and loss on the validation set was evaluated at each epoch in training. 

These metrics were used to determine when training has been completed and to prevent 

overfitting. The remaining 20% of subjects are used in the testing set to evaluate the final 

performance of the fold. This is repeated 5 times until all subjects have been predicted from 

the test set.

Statistical Analysis

Mean absolute error, Pearson correlation, and Lin’s Concordance Correlation [32] between 

estimated age and actual biological age were used to quantify the performance of the 

age prediction models, as biological age was used as the target value during training. All 

evaluation and statistical analysis was performed using Python.
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RESULTS

Capturing Confounding Inter-scanner Variations via StarGAN

Visually, image characteristics became markedly more uniform in terms of grey/white matter 

contrast, overall and regional intensity, and noise patterns, after canonical mapping via 

StarGAN. Figure 2 shows that, characterized by the intensity distributions of tissue types, 

the regional intensities of the mapped image aligned more closely with that of the image 

from the reference domain than the unmapped image. Additionally, Figure 2 shows that 

the mean intensity and the standard deviation maps of the mapped image are more similar 

to the reference domain than those of the unmapped image. Visual characteristics were 

assessed by 3 neuroradiologists with 13-50 years of experience. See Supplemental Figure 3 

for difference maps between harmonized and unharmonized slices from each site.

Age Prediction

The baseline model (training predictor on Dataset 1 and testing on Dataset 2) resulted in 

poor generalization ability (Mean Absolute Error (MAE) = 15.81 years, Pearson correlation 

coefficient = 0.299). We see some improvement using histogram matched scans (MAE = 

11.86 years, Pearson correlation coefficient = 0.341).

Using the harmonized data in the single site setting, where Dataset 2 was mapped to 

the reference domain (Dataset 1, n=2739) and the predictor was trained on the reference 

dataset (Dataset 1), there was a large improvement in the generalization performance of our 

predictor (MAE = 7.21 years, Pearson correlation coefficient = 0.779). The results presented 

in Table 2 are the average of five experiments. For reference, the 5-fold cross-validated 

accuracy of the age prediction model on Dataset1 was, MAE = 5.24 years and Person 

correlation coefficient = 0.866.

In the multi-site setting, where 5 datasets were mapped to the reference domain and the 

predictor was trained on the reference dataset (Dataset 1, n=2739), there was consistent 

improvement in age prediction performance across all sites in terms of MAE and Pearson 

correlation (Table 3). With an overall improvement in terms of mean absolute error from 

9.78 (±6.69) years to 7.74 (±3.03) years with histogram normalization to 5.32 (±4.07) years 

with GAN harmonization. The Pearson correlation improved from 0.252 (±0.044) to 0.600 

(±0.032) with histogram normalization to 0.870(±0.033) with GAN harmonization. The 

results are the average of five experiments. See Supplemental Figure 2 for Bland Altman 

plots of age prediction results broken down by site. See Supplemental Table 2 for an analysis 

on the proportion of unacceptable predictions (>20% of actual age).

DISCUSSION

In this study, we employed a paradigm whereby confounding variation may be removed 

via canonical mapping across scans acquired at different sites, thereby enabling smaller less 

diverse datasets to be useful for model construction and to be robust to subsequent variations 

of image characteristics. Critically, the canonical mapping model derived from unlabeled 

datasets can continue to evolve, as image acquisition itself evolves, hence allowing for new 

types of data to be canonically mapped, and therefore retaining the value of classification 
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models derived from relatively limited labeled scans. Such a method has the potential to 

enable the widespread adoption and standardization of deep learning-based methods, both 

because it avoids the need for specialized and sophisticated processing of the images, but 

also because of the good generalization properties achieved via canonical mapping.

StarGAN Harmonization

We examined an image-level harmonization method capable of learning a robust canonical 

mapping to a reference domain. Our harmonization schema attempted to identify the 

complex and non-linear imaging variation occurring due to confounding factors, such 

as scanners, acquisition protocols, and cohorts, while maintaining inter-subject variation 

related to classification labels. Through harmonization, we observed improvements in 

image consistency with the reference domain, specifically in terms of grey/white matter 

contrast, overall intensity, and noise patterns. We found that the use of StarGAN versus 

prior methods offered benefits in the modeling of multisite data. Instead of modeling pair-

wise transformations between sites, StarGAN allowed a joint modeling of site variation, 

reusing model weights learned across all site transformations. We note that there are various 

hyperparameters that need to be specified within the harmonization network, in particular, 

the dimensionality of the style and content encoding. The dimensionality of the style 

encoding is potentially useful in limiting the amount of variation that can be captured in 

the harmonization process.

While prior work has shown that GAN-based methods can be powerful for image-level 

domain adaptation [12], in the medical imaging context the preservation of fine anatomical 

structure and predictive information is critical, and the downstream effect of harmonization 

needs to be carefully evaluated. While there is certainly a risk of overfitting and removing 

non-site variation when using highly non-linear methods, we demonstrated the preservation 

of this predictive information in neuroimaging data through our experiments on brain age 

estimation.

Age Prediction

Brain age estimation has become an established biomarker of overall brain, exhibiting 

overlapping neuroanatomical patterns with a variety of other pathologic processes [29, 33]. 

Accurate brain age estimation is dependent on fine neuroanatomical patterns that can be 

obfuscated by imaging variation across sites [34]. Therefore, it is a prime candidate to 

assess harmonization performance. We demonstrated substantially improved age prediction 

generalization in five separate sites, following their mapping to the reference domain, in 

which the predictor was trained. The brain age prediction model was able to perform 

reasonably well on the out of sample data, indicating that GAN-based harmonization may be 

a useful tool in multi-site image level harmonization tasks. We note that the generalization 

performance to the out of sample data is still short of the cross-validated performance on 

Dataset1, indicating potential for improvements in the harmonization methodology.

We recognize that the age prediction performance, particularly in the harmonized case, can 

certainly be improved with more specialized prediction networks, optimization techniques, 

hyperparameter selection, and larger sample sizes. However, our aim was to simply 
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demonstrate improvements with harmonized data with a non-optimized, commonly used 

network and a reasonable sample size, in view of the scarcity of large, labeled training 

datasets. We anticipate that future work will incorporate harmonization to a reference 

domain with finely tuned networks to potentially construct powerful and generalizable 

imaging predictors. Particularly, in the case of brain age prediction, we also note that the 

“tightest” fitting model may not be the best at identifying signals of accelerated aging. 

Highly fit models are incentivized to select features that show consistent aging pattern even 

in the presence of accelerated aging and may ignore the more general patterns of aging that 

we are interested in [29].

Limitations

While we have demonstrated a substantial improvement in downstream prediction 

performance with our particular prediction model, further work will certainly be needed 

to examine if other prediction methods and tasks will similarly benefit. In addition, while 

the predictive signal needed for accurate age prediction may be well preserved in the 

harmonization process, further evaluation on additional prediction tasks is needed to fully 

evaluate the merits of this harmonization method. Additionally, further work is required 

to investigate how image level harmonization techniques such as this behave when the 

reference domain and out of sample domains differ sharply across covariates (such as age, 

ethnicity, pathology). Some recent work investigating this phenomenon has shown that 

GAN-based methods can “hallucinate” features in these instances [35]. As it currently 

stands, it is important to consider group level differences between domains and how 

that might affect harmonization. Future directions of this work could involve the explicit 

modeling of such covariates directly within the network.

Conclusion

This work demonstrates the potential for StarGAN based harmonization in multisite T1-

weighted MRI brain scans. We show that we can concurrently model and correct for the site 

effects of multiple scanners while retaining predictive information within scans. While there 

are certainly limitations in its current formulation, we show a substantial improvement in 

out-of-sample age prediction performance when using GAN harmonized images.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Description of harmonization and prediction workflow. A multimodal mapping is learned 

between the reference domain and the out-of-sample domains. The harmonized data is 

obtained using the style encoding from the reference domain and the content encoding of the 

original image. The age prediction model, trained on data in the reference domain, can then 

be used on the harmonized data for improved generalization ability.
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Figure 2: 
Top: Representation of mapping of axial slices of an example participant from Dataset2 to 

the reference domain (Dataset 1). Bottom left: Comparison of regional histograms before 

and after mapping to reference domain. Bottom right: Mean and standard deviation maps 

across all scans.
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Table 1:

Description of the data used for age prediction

TOTAL SUBJECTS = 
8876

Dataset1 
(REFERENCE 

SITE)
Dataset2 Dataset3 Dataset4 Dataset5 Dataset6

TOTAL 2739 952 446 90 247 4402

ACQUISITION 
PROTOCOL – FIELD 

STRENGTH
MPRAGE – 1.5T MPRAGE – 

3T
MPRAGE – 

1.5T SPGR – 1.5T MPRAGE – 3T MPRAGE – 3T

SCANNER Siemens Magnetom 
Avanto Philips Siemens 

Avanto GE Signa Siemens Tim 
Trio

Siemens Skyra 
(VD13)

STUDY SHIP BLSA AIBL BLSA PAC UK Biobank

MEAN AGE (AGE 
RANGE) 52.55 (21 - 91) 67.04 (22 - 96) 72.77 (60 - 92) 72.77 (56 - 

86) 61.19 (42 - 77) 63.20 (45 - 80)

RESOLUTION (PER 
AXIAL SLICE) 256x256 256x256 240x256 256x256 256x256 256x256

CITATION [36] [37] [38] [37] [39] [40]
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Table 2:

Age prediction results with model trained on Dataset1 and tested on Dataset2

HARMONIZED MAE PEARSON CORRELATION CONCORDANCE CORRELATION [32]

No 15.81 (±0.21) 0.299 (±0.018) 0.169 (±0.024)

Histogram Matched 11.86 (± 0.11) 0.341 (±0.009) 0.298 (±0.011)

GAN 7.21 (±0.22) 0.779 (±0.017) 0.701 (±0.030)
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Table 3:

Multisite age prediction results with unharmonized, histogram matched, and GAN harmonized data. The 

prediction model was only trained with scans from the reference domain (Dataset1). Mean and standard 

deviation of mean absolute error (MAE), Pearson correlation coefficient (between predicted and actual age), 

and Lin’s Concordance Correlation (between predicted and actual age) from five runs is shown.

SITE HARMONIZED MAE PEARSON CORRELATION CONCORDANCE CORRELATION

DATASET2

No 14.43 (±8.77) 0.206 (±0.067) 0.187 (±0.032)

Histogram Matched 11.52 (±2.62) 0. 649 (±0.017) 0.452 (±0.009)

GAN 7.46 (±5.17) 0.864 (±0.016) 0.728 (±0.021)

DATASET3

No 14.77 (±6.39) 0.222 (±0.063) 0.069 (±0.045)

Histogram Matched 8.74 (±5.34) 0.493 (±0.043) 0.258 (±0.021)

GAN 6.74 (±4.35) 0.646 (±0.028) 0.455 (±0.024)

DATASET4

No 14.71 (±6.94) 0.472 (±0.049) 0.112 (±0.033)

Histogram Matched 11.29 (±3.35) 0.695 (±0.41) 0.219 (±0.018)

GAN 7.42 (±5.07) 0.666 (±0.042) 0.516 (±0.032)

DATASET5

No 7.94 (±5.16) 0.334 (±0.092) 0.174 (±0.057)

Histogram Matched 6.48 (±1.53) 0.573 (±0.010) 0.452(±0.008)

GAN 5.29 (±3.55) 0.752 (±0.059) 0.624 (±0.045)

DATASET6

No 8.27 (±5.39) 0.256 (±0.052) 0.148 (±0.055)

Histogram Matched 6.60 (±1.46) 0.541 (±0.009) 0.381 (±0.008)

GAN 4.67 (±5.54) 0.756 (±0.037) 0.627 (±0.036)

ALL

No 9.78 (±6.69) 0.252 (±0.044) 0.149 (±0.032)

Histogram Matched 7.74 (±3.03) 0.600 (±0.032) 0.403 (±0.018)

GAN 5.32 (±4.07) 0.870 (±0.033) 0.698 (±0.031)
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