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Abstract
Aging is associated with dramatic changes to DNA methylation (DNAm), although the 
causes and consequences of such alterations are unknown. Our ability to experimen-
tally uncover mechanisms of epigenetic aging will be greatly enhanced by our ability 
to study and manipulate these changes using in vitro models. However, it remains 
unclear whether the changes elicited by cells in culture can serve as a model of what 
is observed in aging tissues in vivo. To test this, we serially passaged mouse embryonic 
fibroblasts (MEFs) and assessed changes in DNAm at each time point via reduced rep-
resentation bisulfite sequencing. By developing a measure that tracked cellular aging 
in vitro, we tested whether it tracked physiological aging in various mouse tissues 
and whether anti-aging interventions modulate this measure. Our measure, termed 
CultureAGE, was shown to strongly increase with age when examined in multiple 
tissues (liver, lung, kidney, blood, and adipose). As a control, we confirmed that the 
measure was not a marker of cellular senescence, suggesting that it reflects a distinct 
yet progressive cellular aging phenomena that can be induced in vitro. Furthermore, 
we demonstrated slower epigenetic aging in animals undergoing caloric restriction 
and a resetting of our measure in lung and kidney fibroblasts when re-programmed to 
iPSCs. Enrichment and clustering analysis implicated EED and Polycomb group (PcG) 
factors as potentially important chromatin regulators in translational culture aging 
phenotypes. Overall, this study supports the concept that physiologically relevant 
aging changes can be induced in vitro and used to uncover mechanistic insights into 
epigenetic aging.
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1  |  INTRODUC TION

Aging is characterized by a progressive decline in cell, tissue, and 
organ integrity that manifests as age-related diseases and ultimately 
death (Campisi et al., 2019). Telomere attrition, cellular senescence, 
DNA damage, stem cell exhaustion, and epigenetic modifications 
represent just a few molecular and cellular features of the aging 
process (Blasco, 2007; Oh et al., 2014; Tchkonia et al., 2010). While 
these hallmarks have been extensively investigated, their interac-
tions, causes, and the resulting emergence that leads to the failure 
of the organism is not well characterized. Epigenetic alterations in 
aging—specifically alterations in DNA methylation (DNAm)—is a 
clear example of a hallmark which has been widely studied but lacks 
a conceptual mechanistic framework linking its causes and conse-
quences to other hallmarks or physiological manifestations with 
aging.

DNA methylation refers to the addition of a methyl group (CH3) 
to a CpG dinucleotide (5’—C—phosphate—G—3’). In most cases, 
DNAm is associated with transcriptional repression via its effect on 
chromatin accessibility and is thought to control a number of cellu-
lar properties, including differentiation, replication, X-inactivation, 
stress response, and genomic imprinting (Ferry et al., 2017; Izzo 
et al., 2020; Li et al., 1993; Riggs, 1975). Initially, de novo methyl-
transferases establish methylation patterns that are necessary for 
organismal development (Hata et al., 2002). These patterns are then 
modulated by maintenance methyltransferases over the course of 
the lifespan (Fuks et al., 2000). Subtle changes in DNAm can dra-
matically alter promoter function and distal regulatory elements 
(Aran et al., 2013). Changes in DNAm with aging were first reported 
more than three decades ago and now occupy a major field in aging 
research (Mays-Hoopes, 1989). These changes paint a picture char-
acterized by a gain of DNAm at gene promotors and loss of global 
DNAm, representing trends toward hypomethylation in intergenic 
regions associated with dispersed retrotransposons, heterochro-
matic DNA repeats, and endogenous retroviral elements. Given 
the predictability of these age-related changes, researchers began 
applying machine learning techniques to develop age predictors 
from DNAm that could serve as biomarkers of aging. To date, these 
“epigenetic clocks” have been applied in a plethora of tissues across 
diverse mammalian species and are predictive of lifespan and health 
span above and beyond chronological age (Hannum et al., 2013; 
Horvath, 2013; Levine et al., 2018). However, the mechanistic un-
derpinnings and drivers of epigenetic clocks are relatively unknown, 
limiting the conclusions that can be drawn.

Our lack of mechanistic understanding of epigenetic clocks likely 
stems from the fact that these models have been almost exclusively 
applied to in vivo and ex vivo blood and tissue samples in humans 
(and more recently in other mammals) for which experimental inves-
tigation is limited. Thus, we hypothesize that use of culture models 
coupled with physiologically relevant tissue samples may facilitate 
mechanistic discovery.

Culture aging has been extensively examined within the con-
text of cellular biology, presenting a model to study mechanisms 

of epigenetic aging (Itahana et al., 2004). Since Hayflick proposed 
the theory now known as the Hayflick limit (Hayflick, 1965), many 
studies have contributed to characterizing exhaustive passaging, 
providing robust and well-characterized culture models that can 
be used to determine the extent culture aging recapitulates phys-
iological aging (Bork et al., 2010; Parrinello et al., 2003). However, 
none have applied systems-level measures to directly demonstrate 
whether changes that can be induced in culture mimic what hap-
pens with aging in the organism. Thus, the aims of this paper were 
as follows: (i) to better characterize the culture aging phenomena by 
generating a clock based on DNA methylation changes in vitro, (ii) 
test whether such culture models of aging capture a physiologically 
relevant signal, and (iii) use this data as a first step toward elucidat-
ing mechanisms of aging. Overall, the results from this study set the 
foundation for using culture aging epigenetic models as a transla-
tional bridge to in vivo biomarker studies.

2  |  RESULTS

2.1  |  Developing a measure of culture aging using 
DNAm

To explore culture aging, understand its association with the methy-
lome and determine the extent to which culture phenotypes reca-
pitulate physiological aging, we derived a primary mouse embryonic 
fibroblast culture system that was exhaustively passaged to produce 
longitudinal DNAm samples (Figure 1a, Figure S1a–d). We selected 
mouse embryonic fibroblasts (MEFs) as our model, given their ac-
celerated aging phenotype after relatively few passages (5–7) under 
normoxic (20%) conditions (Parrinello et al., 2003). This acceler-
ated aging is hypothesized to occur from extrinsic factors, like oxy-
gen toxicity, rather than intrinsic factors like telomere shortening 
(Itahana et al., 2004). It is also a distinct phenotype in contrast to 
MEFs grown under physiological conditions of 3% oxygen, which se-
nesce at a much later passage. Given that genotoxic stress is known 
to modulate the methylome (Basenko et al., 2015; Colman et al., 
2000; Liu et al., 1996), we reasoned that this model could enable us 
to capture the known murine sensitivity to oxidative damage using 
DNAm from serially passaged MEFs under normoxia.

DNA methylation was assessed at each passage in three biologi-
cal replicates via reduced representation bisulfite sequencing (RRBS) 
with the goal of utilizing machine learning techniques to reduce the 
highly dimensional DNAm data into a single meaningful measure 
that increases as a function of time in culture (Figure 1b). The pri-
mary data used to train the culture measure, termed CultureAGE, 
were obtained from passages 1–6 of the culture MEF system. Of the 
three MEF cell lines, two were used in training (MEF 1 and 2) and 
the third (MEF3) was used for validation. In both cases, passages 5 
and 6 were combined during sequencing (due to low individual DNA 
content) and designated as passage 5.5. Thus, our training data in-
cluded samples at passage 1 (N = 2), passage 2 (N = 1), passage 3 
(N = 2), passage 4 (N = 2), and passage 5.5 (N = 2). Initial principal 
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component analysis (PCA) of training (N = 9) and validation (N = 6) 
MEFs revealed passage-based trajectories in all replicates, suggest-
ing the methylome is modulated as a function of time in culture 
(Figure S1e,f).

Prior to training CultureAGE, we sub-selected common CpGs 
between our MEF data, Petkovich et al., 2017, and Thompson et al., 
2018 to generate a list of 28,323 common CpG sites (Figure S2a). 
This was done so that our measure could be calculated in these ex-
ternal datasets to undergo a robust in vivo validation. Next, we con-
ducted principal component analysis (PCA) on the 28k sub-selected 
CpGs in our MEF data frame (N  =  48). The initial PCA-included 
some samples that were not explicitly analyzed, but reported pas-
sage number, so they were included to increase sample size. We 
previously found that combining PCA with elastic net yields more 
robust and reliable epigenetic age measures (Higgins-Chen et al., 
2021; Levine et al., 2020), and thus, we applied a similar strategy 
here. Elastic net penalized regression was used to generate a predic-
tor of passage number, but rather than feeding in CpGs as has been 
traditionally done in epigenetic clock development, we used PCs as 

predictors in our model. The lambda penalty was chosen via 10-fold 
cross-validation and resulted in a model that included six PCs (PC2, 
PC4, PC6, PC8, PC9, and PC29) (Figure S2b–e). Overall, this measure 
is based on data from all 28,323 CpG sites, but is able to identify and 
combine the important patterns in genome-wide DNAm to generate 
a single score, CultureAGE.

Our results showed that CultureAGE was highly correlated 
with passage number in both the training data (r = 0.97), and in 
our independent validation samples (r  =  0.83), suggesting the 
marker is in fact progressively tracking with passage or time in 
culture (Figure 1c). In our training samples, we find that the mea-
sure shows a general linear increase. However, in the validation, 
there is a slight attenuation of the effect at the last passage. Given 
that we only have data on one sample at that passage, we cannot 
determine whether the non-linearity is real, and follow-up studies 
should increase power. One potential biological explanation is that 
there may be a deceleration at later cellular stages due to slow-
ing in the growth rate from oxidative damage as cells approach or 
enter senescence.

F I G U R E  1 Development of a DNAm 
culture aging measure (CultureAGE) 
in mouse embryonic fibroblasts. (a) 
Schematic displaying exhaustive culturing 
of mouse embryonic fibroblasts under 
normoxia (20% O2) produces terminally 
arrested cellular states with progressively 
reduced replicative capacity. (b) Workflow 
demonstrating supervised machine 
learning computation approach (elastic 
net penalized regression) successfully 
produced a measure of culture aging from 
longitudinal reduced represented bisulfide 
sequencing (RRBS) DNA methylation 
data, where it was then was tested for 
physiological relevance in an aged in vivo 
cohort. (c) Training (MEF1 and MEF2) 
and validation (MEF3) cell lines used 
to develop CultureAGE. Red = MEF1, 
Blue = MEF2 and Turquoise = MEF3 
replicates. Passage correlations and 
statistical significance were determined 
using Pearson correlations
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2.2  |  Distinguishing senescence from 
epigenetic aging

Replicative exhaustion in murine cells under normoxic (20% O2) 
conditions is a robust inducer of cellular senescence and we con-
firm in our study that MEFs arrest after 6 passages (Figure S1b–
d). Based on this, we tested whether our epigenetic measure was 
as follows: (i) linked to senescence induction, likely as a result of 
chronic activity of a tumor repressor response to genotoxic stress, 
or (ii) reflects aging changes that are independent of senescence 
state, which may be overcome by immortalization (Figure 2). To test 
these questions, we induced senescence in a passage-independent 
fashion using damaging dosages of irradiation (10 gy), doxorubicin 
(1 µM), and etoposide (12.5 µM). We show that each of these induc-
ers elicits increased activity of SA-β-gal similar to levels exhibited 
in replicative senescence cells (Figure S3a–d); however, SA-β-gal 
levels are not related to CultureAGE (r = 0.062, p = 0.81). To further 
clarify if CultureAGE was capturing passage-independent states, 
we transformed young MEFs with the known mouse immortaliza-
tion agent, Large T antigen (LT) K1 mutant (LTK1) (Lin et al., 2011), 
and expanded the cells for 5 passages. Under the reduced p53 
activity, the immortalized cells maintained high replicative states 

and demonstrated reduced SA-β-gal levels compared to passaged 
match controls (Figure S3e). Further, we found that immortal-
ized cells showed acceleration in CultureAGE, suggesting that the 
DNAm changes captured progress or “tick” as a result of replica-
tive events, not senescence status or other stress driven programs 
alone (p = 0.0056) (Figure 2).

2.2.1  |  CultureAGE tracks and is correlated with 
multi-tissue physiological aging programs

We tested whether these in vitro changes captured by CultureAGE 
mirror what is observed in aging tissues and cells in vivo, to de-
termine whether CultureAGE is a valid aging biomarker. We ap-
plied our measure to in vivo multi-tissue mouse DNAm data at 
three time points (ages 2, 10, and 20  months) from C57BL/6J 
mice from Thompson et al., 2018. CultureAGE significantly in-
creases with age in five of the six tissues: liver (r = 0.59, p = 7.0e-
7), lung (r  =  0.44, p  =  0.00062), kidney (r  =  0.41, p  =  0.0023), 
blood (r = 0.43, p = 0.014), and adipose tissue (r = 0.27, p = 0.044) 
(Figure 3a–f). A moderate-to-low age increase was observed in 
skeletal muscle, although it was not significant (r = 0.15, p = 0.25) 
(Figure 3f).

2.2.2  |  CultureAGE shares common epigenetic 
programs with ex vivo trained blood age 
estimator, BloodAGE

To further explore the physiological link of our culture aging theory, 
we compared the measure against a traditional ex vivo trained epi-
genetic clock measure, BloodAGE. Because RRBS data are sparse 
and few CpGs are consistently captured across experiments, we 
were unable to utilize previously developed mouse epigenetic 
clocks. Thus, we developed a novel BloodAGE clock using the 
same selected 28k CpGs used throughout the study. We trained 
the blood age predictor in a large blood dataset (age 20–1050 day 
C57BL/6J mice) from Petkovich et al., 2017 (cor = 0.98, p = 1.4e-
110) (Figure 3g), which we then validated in the blood dataset 
from Thompson et al., 2018 (cor =  0.67, p  =  2.7e-5) (Figure 3h), 
and confirmed it tracks with passage in the MEF data (cor = 0.79, 
p  =  0.00046) (Figure 3i). Finally, we tested the overlap in signal 
(after residualizing for chronological age) between BloodAGE and 
CultureAGE in the blood aging data, which revealed a significant 
correlation (cor  =  0.25, p  =  0.0016), confirming CultureAGE is 
capturing similar signals to classically trained clocks (Figure 3j). 
Furthermore, CultureAGE demonstrates a strong positive asso-
ciation with age in the BloodAGE training data (r = 0.69, p = 1.6e-
23) (Figure 3k), and interestingly, some older mice demonstrated 
very high CultureAGE. Given that lymphoma is a common cause of 
death in aging mice, it is possible that CultureAGE reflects a predis-
position to cancer (Haines et al., 2001).

F I G U R E  2 CultureAGE phenotype is independent of cellular 
senescence phenotype and requires replicative expansion. 
Boxplot displaying varying CultureAGE scores in young (untreated 
and DMSO, passage 1 or 2), passage-independent (passage 2) 
senescence induction doxorubicin (1 µM), etoposide (12.5 µM), 
irradiation (10 gy), old (passage 3–5.5), and LTK1 immortalized 
cells (passage 5). Passaged label denotes cells were mitotically 
expanded, where β-gal label establishes a binary senescence cutoff 
based on flow cytometry data in Figure S3. Statistical significance 
calculations were determined via one-way ANOVA and multiple 
group comparisons
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2.3  |  Investigation into anti-aging therapies 
confirms CultureAGE is modulated via caloric 
restriction and reprogramming

Using the Petkovich et al., 2017 data, we also found that 
CultureAGE was responsive to dietary intervention, such that 
calorically restricted (CR) mice exhibited significantly lower 
CultureAGE scores relative to controls (p  =  0.00259), perhaps 
highlighting improved cellular maintenance and health from di-
etary intervention (Figure 4a). Finally, using the same dataset we 
showed that CultureAGE exhibits a decrease or resetting in lung 
(Figure 4b) and kidney fibroblasts (Figure 4c) upon reprogramming 
to induced pluripotent stem cells (iPSCs) (p = 0.0001). Specifically, 
the re-programmed cells were reset to more youthful origins than 
even the passage 1 MEFs (p < 0.0001), suggesting culture aging 
established epigenetic networks are possible to completely reset 
upon reprogramming (Figure 4d).

2.4  |  Clustering analysis confirms culture aging 
exists in physiological context and highlights 
Polycomb group (PcG) factors as important culture 
aging regulators

Given that CultureAGE is a composite measure stemming from mul-
tiple aspects or domains of DNAm changes, we hypothesized that 
some of the signal it encompasses may be physiologically relevant, 
while others may be culture artifacts or MEF-specific phenotypes. 
For instance, we reasoned that supervised machine learning ap-
proaches, like elastic net, will prioritize strong signals in our culture 
models, despite whether they are physiologically relevant, limiting 
our ability to isolate important biological mechanisms. To address 
this, we applied consensus weighted gene correlation network 
analysis (WGCNA) to identify clusters (or modules) of highly co-
methylated sites that are conserved across both in vivo (Petkovich 
et al., 2017; Thompson et al., 2018) and in vitro data (Figure 5a, 

F I G U R E  3 Multi-tissue physiological 
aging is modeled by CultureAGE measure. 
CultureAGE score determined in liver 
(a), lung (b), kidney (c), blood (d), adipose 
(e), and muscle (f) tissue at 2, 10, and 
20 months in aged C57BL/6J mice from 
Thompson et al., 2018. (g) BloodAGE 
epigenetic clock age association in blood 
training data from Petkovich et al., 2017. 
BloodAGE was trained in Petkovich 
et al., 2017 as a mouse age predictor 
using classical elastic net methodology, 
but with PCs as input variables, similar 
to CultureAGE. The final BloodAGE 
measure was constructed with 52 PCs 
and is validated using blood data from 
Thompson et al., 2018 in (h). (i) BloodAGE 
culture aging association in all MEF 
replicates used in CultureAGE training 
and validation. Red = MEF1, Blue = MEF2, 
and Turquoise = MEF3 replicates. (j) 
CultureAGE variance is associated with 
BloodAGE when residualizing by age in 
Petkovich blood data (age range, 20–
1050 days). (k) CultureAGE measure in 
Petkovich blood data. Age correlations 
and statistical significance were 
determined using Pearson correlations
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Figure S4a). We used 27,035 CpGs as the input, which excluded 
beta values of 0 from the original 28,323 overlapped CpGs. We 
identified 12 CpG modules, ranging in size from 105 to 678 CpGs. 
Most modules showed bimodal distribution in relation to distance 
from transcription start sites (TSS), with many showing peaks at 
±100–1000 bp (Figure 5b).

Next, we estimated module eigengenes that capture the main 
signal from each module and tested their associations with passage 
number (in vitro MEF data) and age (in vivo tissue data). Eigengenes 
were calculated as PC1 estimated from the in vitro data and then 
applied as validation to the in vivo data (Figure 5c). Using these 
values, we observed several modules that appear to be artifacts 
of in vitro aging (turquoise/yellow/red/pink/purple), such that 
they showed progression with passage number in MEFs, but did 
not track with age in tissues. However, two modules (brown and 
greenyellow) stood out as being shared between culture and tis-
sue aging. For instance, the brown module was strongly correlated 
with passage number (r = 0.88), as well as age in liver (r = 0.87), 
lung (r = 0.80), blood (r = 0.78), and adipose (r = 0.75). It was also 
moderately correlated with age in kidney (r  =  0.47) and weakly 
correlated with age in skeletal muscle (r = 0.22). The greenyellow 
module exhibited strong correlations with both passage number 
in vitro (r = 0.90) and age in blood (r = 0.88), while showing mod-
erate age correlations with lung (r  =  0.60), liver (r  =  0.55), adi-
pose (r = 0.42), and kidney (r = 0.33), and a weak correlation with 
age in skeletal muscle (r = 0.19). As a comparison, we applied the 
CultureAGE PCloadings and coefficients to the module CpGs to 
determine the relative CpG contributions by module based on 
the initial selection criteria established by CultureAGE (Figure 
S5a). We confirm our hypothesis that certain artifactual drivers 
are present in CultureAGE (turquoise/red), but also highlight that 
major physiological signals do indeed exist, with the brown module 
comprising nearly 17% of the normalized CultureAGE score, com-
pared to the average of 8.3%. Additionally, the average CpG con-
tribution across all PCs demonstrates the majority of the brown 
module CpGs are enriched when compared to random chance or 
artifactual modules like red and pink, and poorly correlating mod-
ules like black (Figure S5b).

Finally, to garner more biological insight into potential mech-
anisms at work in conserved modules, we assessed genome 

F I G U R E  4 CultureAGE predicts naïve culture states in caloric 
restricted mice and re-programmed fibroblasts. (a) Scatterplot 
demonstrating deceleration of culture aging in calorie-restricted 
C57BL/6J mice from Petkovich et al., 2017, when comparing normal 
chow (20–1050 days) from calorie restriction (300–810 days) 
cohorts. Red samples represent normal chow diet and green 
samples calorically restricted diet. Calorie-restricted mice began 
treatment at 14 weeks of age. Linear modeling demonstrates 
statistically significant deceleration in culture aging in CR samples 
(p = 0.02479) as well as significant modulation in CR-treated 
mice compared to normal chow controls (p = 0.00259), when 
corrected by age. iPSC reprogramming in lung (b) and kidney (c) 
fibroblasts from Petkovich et al., 2017 demonstrates resetting of 
culture signature. (d) CultureAGE assessment of pooled lung and 
kidney re-programmed iPSCs from (b and c) compared to MEF 
data, demonstrating reprogramming re-sets and erases cellular 
states further than passage 1 MEFs (p < 0.0001). Red = MEF1, 
Blue = MEF2, and Turquoise = MEF3 replicates. Reprogramming 
and iPSC statistical significance calculations were determined via 
un-paired two-tailed t test
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F I G U R E  5 Clustering analysis confirms culture aging exists in physiological context and highlights Polycomb group (PcG) factors as 
important culture aging regulators. (a) Schematic outlining method of using longitudinal aging data (tissue + culturing) from Thompson et al., 
2018 and the MEF1/MEF2 training data to cluster CpGs with WGCNA into distinct modules or ageotypes, which were then compared to 
in vitro passaging data and all tissues via principal component analysis and used to determine enriched genes using the Cistrome database. 
(b) Module distribution as determined by distance (per base pair) to transcription start site (TSS), generated using LolaWeb. Raw module 
CpGs were used to determine principal component correlations in (c), where kME selected CpGs were used to normalize enriched domains 
in (d), as further explained in Figure S4b. (c) PC1 correlations of longitudinal tissue and MEF passaging data by module. (d) Module genome 
enrichment analysis using Cistrome database from 100 CpG input selected by kME. Enriched genes were further normalized by randomly 
selecting 100 CpGs from the background 27,035 CpGs used to create the modules and correcting each enriched GSM_IDs Giggle score. 
Note, the enrichment analysis is displaying the average normalized enriched gene Giggle score (Top 10 displayed). Enriched genes are 
sorted by decreasing module frequency. Giggle score represents a rank of significance between genomic loci shared between query file 
and thousands of genome files from databases like ENCODE. Red genes = PRC2 complex or mediator, Orange genes = PRC1 complex or 
mediator, and Black genes = non-Polycomb-related genes
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enrichment of transcription factor (TF) binding motifs and chromatin 
regulators using the Cistrome database. This was done by compar-
ing each module by TF and chromatin regulator enrichment score 
(Giggle score). The Giggle score represents a rank of significance 
between genomic loci shared between query file and thousands of 
genome files from databases like ENCODE. Given that scores tend 
to increase for lists with a greater number of input genomic loca-
tions (and thus would be biased by module size), we normalized each 
module prior to determining the enrichment score so that only 100 
CpG locations were being assessed for each module. For instance, 
we selected the top 100 CpGs with the highest kME values in a given 
module. kME is estimated as the correlation between CpG values 
and the module eigengene and can be used to infer connectivity or 
identify “hubs” of a module. For the background CpGs, we selected 
100 CpGs from the 27,035 CpG background at random and used 
the background Giggle score to blank any hit overlap from the mod-
ules. The Giggle score threshold was the actual value below which 
scores were blanked. The final 100 input CpGs for each module are 
reported by genomic partition distribution (Figure S4b) and scat-
terplots of each raw Cistrome distribution are reported by module 
(Figure S4c). We compared the average normalized enriched gene 
Giggle score from each module to determine the most enriched gene 
regulators.

The Cistrome analysis (Figure 5d) reveals that Polycomb re-
pressive complex 1 and 2 (PRC1 and PRC2) networks are highly 
enriched in translational modules (brown and greenyellow), high-
lighting Polycomb group proteins (PcGs) as key epigenetic regula-
tors in both culture and physiological aging. Nearly all of the top 
hits for greenyellow (9/10) occurred in PcGs, the highest Giggle en-
richment score occurred in EED (PRC2 components) for the brown 
module, and the only shared hit between greenyellow and brown 
was PHF19, a PRC2 recruitment zinc-finger domain. Finally, we con-
ducted Cistrome analysis on the top module CpG contributors to 
CultureAGE and found that 8/10 of the hits were PcG components, 
including EED and PHF19 (Figure S5c). Altogether, our data suggest 
PcGs regulate physiologically relevant culture aging phenotypes.

3  |  DISCUSSION

Given that well-characterized culture systems exist (Parrinello et al., 
2003), we aimed to classify potential epigenetic drivers of culture 
aging and determine if such changes model physiological aging in 
various tissues and biofluids. We rationalized that with the wide-
spread use of culture models throughout biology and medicine, 
many fields would greatly benefit from clarifying the underlying 
epigenetic phenotypes that exist in culture and whether relevant 
markers of cellular dysfunction can be trained for use in accelerating 
mechanistic and drug development discoveries.

By exhaustively passaging primary MEFs under normoxic con-
ditions (20% O2), we trained a DNAm predictor of passage number 
(time in culture), called CultureAGE, and demonstrate that it not 
only accurately tracks passage number (Figure 1c) but also strongly 

correlates with age in multiple tissues (liver, lung, kidney, blood, and 
adipose) in vivo (Figure 3a–f), captures similar signals to a blood 
trained epigenetic clock (BloodAGE) (Figure 3g–j), is modifiable by 
dietary intervention (Figure 4a), and exhibits resetting upon re-
programming to pluripotency (Figure 4b–d). Interestingly, skeletal 
muscle was the only tissue examined where CultureAGE did not 
correlate with age (Figure 3b), which may reflect that skeletal mus-
cle remains mostly postmitotic in adulthood or that muscle cells are 
multinucleated. The link between proliferation and CultureAGE was 
also observed when comparing the other tissue types. For example, 
we observed differences in both age correlation/slope, and in the 
absolute scores when comparing tissues. Overall, samples from liver 
and blood appeared to exhibit the highest values (Figure 3a,d), which 
may reflect the higher proliferative capacity of cells in these sam-
ples or the renewable nature of both hepatocytes and blood cells, 
perhaps suggesting that lifetime damage is somehow cataloged by 
the methylome. This is also substantiated by the observations that 
epigenetic aging is not linear with time (Levine et al., 2018). For in-
stance, previous epigenetic clocks have been shown to increase rap-
idly during development and then decelerate after full maturity. We 
were able to observe this same trend in our data. We found that 
CultureAGE exhibited a sigmoidal function with age, characterized 
by accelerated aging during development, a slower and more linear 
increase after about 150 days, and exponential increases at late life 
(Figure 3k).

Despite the evidence of a relationship between replication and 
epigenetic aging, our data suggests that this is independent of se-
nescence accumulation. For instance, we showed that drug and 
irradiation-induced senescence in MEFs was not associated with 
changes in CultureAGE (Figure 2, Figure S3a–c). Further, our results 
demonstrate CultureAGE does not predict cellular senescence when 
compared by senescence status (assessed via Beta-galactosidase 
activity) for pooled passage-independent senescence (irradiation 
and drug induced) and replicative senescence samples (cor = 0.062, 
p = 0.81) (Figure S3d). Follow-up studies should explore senescence-
associated secretory phenotypes (SASP) in the context of acute cul-
ture stress, in order to build upon our conclusions using β-gal as a 
marker of cellular senescence. To fully conclude CultureAGE was 
not driven by senescence states, we tested cells immortalized with 
LTK1 and still found acceleration in the rate of CultureAGE, despite 
suppressed senescence signal (Figure 2, Figure S3e). Cells immor-
talized via LTK1 have inactive p53, leading to reduced senescence 
accumulation compared to passage-matched controls (Figure S3e). 
Importantly, p53 and/or Rb inactivation are sufficient for murine 
fibroblast immortalization (Lin et al., 2011). The maintained cellu-
lar progression captured by CultureAGE in old immortalized (non-
senescent) samples may be attributed to the underlying tumor 
suppression inactivation occurring from LTK1 transformation, allow-
ing continued mitotic progression and damage accumulation without 
cell cycle arrest and senescence perturbations.

The potential links between epigenetic aging, replication, and 
genotoxic stress may also explain the age-related increase in can-
cer susceptibility, particularly among highly proliferative tissues and 
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cells. For instance, we and others have previously reported that epi-
genetic age changes are observed at increasing rates in tumors and/
or the normal (or non-afflicted) tissues of individuals with cancer. 
We reason that the epigenetic changes captured by measures like 
CultureAGE may underlie susceptibility to spontaneous transfor-
mation or oncogenicity (Levine et al., 2019). Cells that eventually 
evade senescence from mutational events may promote oncogenic 
states, allowing continued mitotic events and increased damage 
accumulation, as a function of cell turnover. In moving forward, it 
will be critical to utilize future in vitro experiments to determine 
the mechanisms driving epigenetic changes as a function of either 
mitotic rate (replication “ticking”) and/or prolonged exposure to 
genotoxic stress. Our laboratory has already extended these mouse 
culture aging results to human culture models, where we recently 
showed exhaustively passaged astrocytes capture epigenetic aging 
trajectories when modeled using established clocks (Higgins-Chen 
et al., 2021).

While substantial work has gone into developing biomarkers 
than enable researchers to track aging changes in vivo and in vitro, 
the ultimate goal is to develop measures that are also modifiable 
to intervention. Using DNAm assessed in blood, we reported the 
effects of two promising interventions in aging—caloric restric-
tion (CR) and cellular reprogramming. Our results suggested that 
CultureAGE showed strong response to CR when assessed in blood 
(Figure 4a). Multiple studies suggest that CR acts by reducing DNA 
damage accumulation and mutations that progress with age (Heydari 
et al., 2007), where others show CR downregulates key growth hubs 
like the insulin/IGF1 pathway (Li et al., 2011). Importantly, IGF1 is 
a growth factor that stimulates cell proliferation and can promote 
cancer via inhibition of apoptosis (Kari et al., 1999). Interestingly, 
CR, without malnutrition, has also been shown to reduce cancer 
incidence and progression in mice (Chaix et al., 2014). Our results 
suggest that CR could be acting via the epigenome to regulate DNA 
damage maintenance by slowing cellular turnover and thus dam-
aged states, or perhaps from enhanced DNA repair. Additionally, 
our results showed that the longer mice underwent CR, the more 
they diverged from normal controls on the basis of CultureAGE. This 
could suggest that prolonged CR does not simply reverse, or retard 
epigenetic aging momentarily, but actually decelerates the rate of 
change with age.

We also report renewal in lung and kidney fibroblasts indic-
ative of naïve culture states following reprogramming to iPSCs, 
supporting the conclusion that CultureAGE cannot only be slowed, 
but actually reversed (Figure 4b–d). For instance, both lung and 
kidney fibroblasts derived from 10-week-old mice and broadly 
passaged were predicted to be equivalent to passage 3–4 cells, 
while all iPSC derivatives were reset to more youthful origins than 
the passage 1 MEF data (p  <  0.0001) (Figure 4d). This suggests 
that the major epigenetic changes acquired during culturing and/
or tissue aging (Sturm et al., 2019) can be reset to some extent. 
It is unlikely DNA damage and the resulting genome instability is 
reversible, thus we propose that CultureAGE may be capturing 

transient epigenetic programs that control survival, proliferation, 
and cellular maintenance.

In the current study, we also tested whether we could dis-
tinguish different “types” of DNAm changes in our data, using a 
network-based clustering approach. Our results clearly demon-
strate that in vitro DNAm changes captured some modules that 
were not physiologically relevant, suggesting that they may be 
reflective of culturing or MEF-specific artifacts. In contrast, CpGs 
in two modules (brown and greenyellow) appear to capture a 
common epigenetic aging phenotype that is established in both 
physiological and culture aging context (Figure 5a–c). We found 
evidence that PcG factors, including both PRC1 and PRC2, are 
key factors in physiologically relevant culture aging (Figure 5d). 
Additionally, upon applying the PCloading conditions to the mod-
ules, we confirm major physiological signals do in fact exist in 
CultureAGE (Figure S5a,b), and that the top CpG contributors are 
also enriched in PcG factors (Figure S5c). It is well established 
that the tri-methylated histone H3 at lysine 27 (H3K27me3) mark 
denotes transcriptional silencing with PRC2 involved in early de-
velopment and PRC1 later during aging as the more active main-
tenance factor (Cao et al., 2002). The catalytic subunit of PRC2, 
EZH2, is routinely overexpressed in oncogenesis (Kim & Roberts, 
2016), promoting uncontrolled cell growth, as many repressed 
downstream genes of H3K27me3 are tumor suppressors (Bracken 
et al., 2007), but the role of PRC2 and its domains are conflicted 
in aging. In certain species and cell types, EZH2 mutations reduce 
H3K27me3 and confer longevity (Ma et al., 2018), although in oth-
ers reduction of H3K27me3 is associated with aging (Maures et al., 
2011). The relationship between the catalytic subunit (EZH2) and 
its co-factors SUZ12, EED, RbAp48, and AEBP2, which are highly 
involved with allosteric recognition and binding of substrates like 
S-Adenosyl methionine (SAM), is multi-factorial, with many oppor-
tunities for perturbations. As an example, multiple studies demon-
strate EZH2, SUZ12, and EED are essential components for proper 
functioning, but RbAp48 and AEBP2 are not (Cao & Zhang, 2004). 
Our reported translational modules (brown/greenyellow) further 
support the notion that PcGs are important aging factors, and our 
culture aging system may be useful for testing hypotheses about 
PcG roles in aging.

In conclusion, we report a novel mouse epigenetic measure of 
culture aging, termed CultureAGE, that is able to model epigen-
etic changes observed in multiple in vivo tissues. CultureAGE is 
independent of senescent state, and instead appears to capture 
progressive cellular changes that may confer susceptibility to se-
nescence and/or tumorigenesis. We also provide evidence for po-
tential modifiability in the form of deceleration as a function of CR 
or reprogramming. Finally, DNAm changes may be functionally re-
lated to Polycomb group (PcG) factors like EED. Overall, this study 
demonstrates that physiologically relevant DNAm changes can be 
modeled in vitro, which in the future can be used to interrogate 
mechanisms involved in epigenetic aging and/or facilitate in vivo 
aging discoveries.
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4  |  METHODS

4.1  |  Experimental

4.1.1  | Mouse embryonic fibroblast extraction

Mouse embryonic fibroblasts were harvested at day 12.5 of gesta-
tion. Two females were used. From the first female, nine embryos 
were sacrificed and split into three cell lines, MEF1–3 from the sec-
ond female, 10 embryos were sacrificed and split into three cell lines, 
MEF4–6.

Extraction was achieved by separating embryos into separate 
wells in a 6-well dish using PBS, removing inner embryo and using 
forceps to carefully remove limbs, head, and internal organs from 
dorsal region. The dorsal region was then cut and trypsinized for 
10 min at 37°C. To quench reaction cells were transferred to a 15 ml 
falcon tube and spun for 3 min at 300g, then supernatant was aspi-
rated and resuspended with 10 ml DMEM. P0 cells were split once 
to expand cell number prior to freezing. Approximately 2 ml of cells 
were incubated overnight with 8 ml DMEM and following growth 
were trypsinized and either passaged for experiments or stored at 
−80°C in DMEM/DMSO (90:10).

4.1.2  |  Replicative passaging and cell culture

Cells were split/passaged six times, where flow cytometry/confocal 
microscopy and RRBS sequencing were conducted at each passage.

Cells were split according to the following seeding density—p100 
– 0.5 × 106 cells, p60 – 0.25 × 106 cells, and six well – 0.125 × 106 
cells—and were counted using an Invitrogen countess and cell count-
ing chamber slide with trypan blue. For media, we used DMEM +10% 
FBS +1% PENSTREP. Note, later passaged cells had a lower plating 
efficiency when inspected visually 24 h after seeding, thus we used 
a cell scraper prior to transfer otherwise senescent cells remained 
attached to the dish. Cells were split at approximately 95% conflu-
ence which occurred around 3–4 days in P1–3 and 5–8 days in P4–6.

4.1.3  |  Plasmid transfection

LTK1 (Immortalization) and empty vector (pBABE) plasmids were 
described previously (Lin et al., 2011). Briefly, Phoenix Amphotropic 
cells were used to grow virus as described previously (Pear et al., 
1993) and puromycin (0.5 µg/µl) and blasticidin (2 µg/µl) were used 
for selection.

4.1.4  |  Beta-galactosidase flow cytometry and 
confocal microscopy

To conduct beta-galactosidase flow cytometry, approximately 
0.25  ×  106 cells were seeded into p60 dishes and pre-treatment 

was conducted approximately 16  h after seeding. Cells were first 
pre-treated with Bafilomycin A1 (Selleckchem: S1413, 622.83 g/mol, 
100 µM stock). Existing DMEM was aspirated, then cells were washed 
with PBS and replaced with treated Bafilomycin A1 DMEM for 
30 min at a final concentration of 100 nM. Following Bafilomycin A1 
pre-treatment to normalize lysosome activity, C12FDG (Invitrogen: 
D2893, 853.92 g/mol, 10 mM stock) was added directly to the exist-
ing media for 90 min at a final concentration of 20 µM. Note, due 
to light sensitivity, exchange was conducted in a dark environment.

For determining beta-galactosidase activity via flow cytometry, 
treated cells were trypsinized (1 ml-p60) for 5 min at 37°C and then 
quenched using 3 ml DMEM. Note, cells were completely detached 
using a cell scraper prior to transfer otherwise senescent cells re-
mained attached to the dish. After thorough resuspension, cells 
were transferred directly to a filter top tube and spun for 3 min at 
1200 rpm. Supernatant was aspirated, and cells were resuspended 
in 100 µl PBS and immediately assayed using a 488 nM laser on a 
StratedigmS1000 benchtop flow cytometer. Fluorescence intensity 
was normalized and baselined using an unstained sample. FlowJo 
(10.6.1) was used to analyze data. Beta-galactosidase activity/senes-
cence activity was determined as LogFITC treated geometric mean/
control geometric mean after normalizing to untreated control.

For determining beta-galactosidase activity via confocal micros-
copy, cells were split into 12 well dishes with a glass cover slide at 
the bottom of each well. Following Bafilomycin A1 and C12FDG 
treatment, media was aspirated, and cells were washed with PSB 3×, 
fixed with 4% PFA/PBS (10 min), followed by 2× PSB washes and 
then counter stained with DAPI and mounted onto coverslips. Fixed 
cells were immediately imaged at 4×, 10×, and 40× resolution using 
a Keyence confocal cytometer.

4.1.5  |  Senescence induction

We induced senescence using previously established conditions 
(Tchkonia et al., 2010). In brief, MEFs were thawed and allow to 
expand for one passage, then split to a normalized seeding density 
of 0.25 × 106 cell/p60 and 0.125 × 106 cells/6-well and treatment 
was conducted for 5 days. Note, senescence induction experiments 
were conducted at passage 2. Doxorubicin (Sigma: D1515, 1 µM), 
Paclitaxel (Sigma: T7402, 50  nM), and Etoposide (Sigma: E1383, 
12.5 µM) were all dosed into DMEM when the cells were split and 
media was not replaced for the duration of the 5-day treatment. We 
irradiated cells (10 Gy) using cesium irradiation and collected these 
cells after 5 days as well.

4.1.6  |  DNA preparation and quantification

DNA was extracted from selected samples prior to RRBS sequenc-
ing using a Qiagen DNeasy Blood and Tissue extraction kit (69504). 
Note, samples were treated with proteinase K and RNAse A and 
eluted with 200 µl elution buffer. Following final elution, DNA was 



    |  11 of 14MINTEER et al.

verified using nanodrop (Thermo Scientific). Spin concentration was 
used as necessary with low DNA content samples. Prior to library 
preparation, we used a qubit fluorometer (Thermo Scientific) to 
quantify the extracted genomic DNA. All samples were assigned a 
single-blinded code and randomized for library preparation and se-
quencing to control for any batch errors.

4.1.7  |  Library preparation and reduced 
representation bisulfide sequencing

Library preparation was conducted using EZ DNA Methylation RRBS 
Library Prep Kit (Zymo: D5461), according to manufacturer's recom-
mendations. Randomized and pooled samples were sequenced on 
four Illumina NovaSeq6000 SP lanes (100 bases single-end mode). 
Note, each lane produced more than 400 M reads.

4.2  |  Statistical analysis

4.2.1  |  Data preprocessing

FastQC (v0.11.8) was used to assess the quality of the raw reads and 
adapter-trimmed reads (cutadapt, version 2.5). Reads were mapped 
to the GRCm38 RRBS genome using BSBolt v0.1.2 (https://github.
com/Nutty​Logic/​BSBolt) (Farrell et al., 2021). Methylation was 
called and the CpG methylation matrix was assembled for CpG sites 
common to all samples and covered by more than 10 reads. The final 
matrix consisted of 466,359 CpG sites.

4.2.2  |  Training and validation of DNAmCULTURE

R was the primary platform used for statistical analysis (Version 
3.6.2). After selecting overlapped CpGs between training (in vitro) 
and all validation studies (in vivo), PCA (without scaling) was con-
ducted in the training sample. The initial PCA was conducted on 
N = 48 MEF samples, all with reported passage number between 1 
and 6. Note, some samples were not analyzed in this report. Briefly, 
N  =  9 passaged (Passage 1–6) samples were used as the culture 
training samples for the elastic net regression selection of PCs. The 
outcome was 6 PCs, each with a PCloading for all 28,323 CpGs, then 
a specific coefficient for each PC, resulting in the predictor of pas-
sage number, called CultureAGE. Lambda penalty represented the 
value with lowest mean-squared error, selected via 10-fold cross-
validation (Figure S2b,c). Further details on PC-trained DNAm meas-
ures can be found from our previous reports (Higgins-Chen et al., 
2021; Levine et al., 2020).

To validate the measure, PCs were estimated in independent 
MEF passaged samples that were not included in elastic net selec-
tion (MEF3) and external datasets (in vivo) using the loading from the 
training sample. These PCs were then incorporated into the selected 
elastic net model (Figures 1, 3, and 4). Pearson correlations were 

used to assess associations between CultureAGE and (1) passage 
number in both the training and validation sample, and (2) age in 
multi-tissue in vivo samples. One-way ANOVA multiple group com-
parisons were used for analyze senescence statistical significance. 
Two-tailed t tests were used to compare significance in iPSC repro-
gramming and in MEF4 validation. To test for associations with CR, 
OLS regression was used that included age, CR, and an interaction 
term (age*CR).

4.2.3  | WGCNA and module construction

Consensus WGCNA (Langfelder & Horvath, 2008) was conducted 
using four input datasets—MEF training samples (replicates 1 and 
2), and the Thompson et al. data for blood, liver, and adipose. The 
remaining Thompson et al. data (kidney, lung, and muscle) were de-
liberately excluded from WGCNA so as to have a true validation. In 
total, we used 27,035 CpGs as the input, which excluded beta val-
ues of 0 from the original 28,323 overlapped CpGs. Adjacency was 
estimated for each dataset based on biweight midcorrelations and 
negative correlations were treated as unconnected in the network 
(signed network). Adjacencies were then converted to Topological 
Overlap Matrices (TOMs) and combined into a single consen-
sus TOM, such that overlap for each CpG pair was designated as 
the minimum dissimilarity score across the four individual TOMs. 
Hierarchical clustering was then conducted with the following pa-
rameters: deepSplit = 1, cutHeight = 0.95, minClusterSize = 50, and 
distance = 1-consensus TOM, method = average. This resulted in a 
network with n = 16 modules. Given that similar modules can often 
be split by WGCNA, we next tested whether modules should be 
merged. This was done by estimating module eigengenes and then 
assessing dissimilarity between modules. Using a cut height of 0.4, 
the 16 modules were merged into 13 that served as our final mod-
ules for all remaining analyses.

One feature of WGCNA is the ability to estimate module eigen-
genes, which serve as single quantitative value meant to represent 
the core signal of a whole module—that can consist of tens to thou-
sands of individual variables. Typically, PC1 from PCA run on all 
variables in a module is used to represent the module eigengene. 
However, the traditional WGCNA package estimates this separately 
for all dataset meaning that the eigengenes may not be based on 
the same equations across datasets (variables can have different 
loadings). This may cause a bias in results and make validation less 
straight forward. To overcome this, we estimated PC1 for each mod-
ule using the MEF training data and then applied these loading to 
all other datasets, including those used in WGCNA and thus that 
were held-out. Finally, we tested whether the module eigengene val-
ues were associated with either passage number (MEF data) or age 
(multi-tissue data).

For calculating the module CpG contributions to CultureAGE, 
we applied the PCloading and coefficients to each module CpG and 
determined a CpG contribution score as the fold increase above 
a random event. More specifically, we summed the cumulative 

https://github.com/NuttyLogic/BSBolt
https://github.com/NuttyLogic/BSBolt
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contribution per PC (across all 28,323 CpGs) and determined the 
average CpG contribution (or random chance) by baselining the 
score by 28,323 events (or the original CpGs used to calculate 
the PCs). Note, the absolute value of each PCloading was used. 
We then compared the PCloading sum across each PC (PC2, PC4, 
PC5, PC8, PC9, and PC29) by every module selected CpG and de-
termined contribution as [PCloading*coefficient of Module CpG 
/ PCloading*coefficient of average CpG]. For example, CpG con-
tribution = 1 means the selected CpG site is not specifically se-
lected over random chance, but CpG contribution >1 means the 
CultureAGE measure is selecting the CpG site to drive the score. 
The raw CpG contributions are plotted in Figure S5a, and the av-
erage across all PCs is plotted in Figure S5b. Finally, we normalized 
each module contribution by the number of CpGs in each module, 
which resulted in a normalized weight that we calculated as a per-
centage of the total module CpGs (N = 4137 CpGs) to produce a 
final normalized % contribution (Figure S5a).

4.2.4  |  Cistrome genome enrichment analysis

We used the Cistrome gene analysis tool kit (http://dbtoo​lkit.cistr​
ome.org/) to determine enriched genes. We selected the top 1  k 
hits and used the mm10 reference. The outcome of the enrichment 
analysis was reported as a Giggle score, which is a rank of genome 
significance between the input file and thousands of genome files 
from databases like ENCODE. It is important to note that Cistrome 
is constantly updating genome files, thus the enrichment analy-
sis was conducted at the same time. Additionally, we selected 100 
CpGs from each module using kME to select the most central 100 
CpGs. Sub-selected CpGs are reported via genomic partition in 
Figure S4b. For selecting the background 100 CpGs, we randomly 
selected the 100 CpGs from the cohort of 27,035 CpGs. For Giggle 
score reporting, we plotted the raw giggle score of each resulting 
module query, although any file (GSM_ID) that was also a back-
ground hit was corrected using the formula; GSM_ID_Hit-GSM_
ID_Background  =  GSM_ID_Actual. Note, when the background 
GSM_ID was not present there was no correction. We report raw 
giggle scores in a scatterplot format in Figure S4b and the average 
corrected values (Top 10  genes) in Figure 5d. For calculating the 
top CpG contributor (>5) enriched domains, we conducted a similar 
analysis, except 118 CpGs were used in both the >5 region and in 
background. All values are reported in Figure S5c.

Genomic partitioning and CpG locations were determined using 
LolaWeb (http://lolaw​eb.datab​io.org/).
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