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Summary

Common executive functioning (cEF) is a domain-general factor that captures shared variance 

in performance across diverse executive function tasks. To investigate the neural mechanisms of 

individual differences in cEF (e.g., goal maintenance, biasing), we conducted the largest fMRI 

study of multiple executive tasks to date (N=546). Group average activation during response 

inhibition (antisaccade task), working memory updating (keep track task), and mental set shifting 

(number–letter switch task) overlapped in classic cognitive control regions. However, there were 

no areas across tasks that were consistently correlated with individual differences in cEF ability. 

Although similar brain areas are recruited when completing different executive function tasks, 

activation levels of those areas are not consistently associated with better performance. This 

pattern is inconsistent with a simple model in which higher cEF is associated with greater or 

less activation of a set of control regions across different task contexts; however, it is potentially 

consistent with a model in which individual differences in cEF primarily depend on activation 

of domain-specific targets of executive function. Brain features that explain commonalities in 

executive function performance across tasks remain to be discovered.

Introduction

Executive functions (EFs) are a family of cognitive processes that regulate goal-related 

behavior. Individual differences in EF abilities are “important to just about every aspect of 

life” (Diamond, 2013, p. 137). The variance shared across diverse EF tasks, a Common 

Executive Functioning (cEF) factor (Friedman & Miyake, 2017), appears to be a particularly 

important dimension of individual differences, showing stronger relationships to outcomes 
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compared to individual EF tasks. In particular, cEF is associated with important life 

outcomes including academic achievement (Cantin et al., 2016), self-regulation (Gustavson 

et al., 2015), subjective well-being (Toh et al., 2020), psychopathology (Friedman et al., 

2020; Harden et al., 2020; McTeague, Goodkind, & Etkin, 2016; Snyder et al., 2015), and 

substance use (Gustavson et al., 2017; Jones et al., 2020). Despite this importance, we still 

know very little about the neural basis of individual differences in cEF. Although the areas 

that are typically more active during EF-demanding compared to baseline conditions across 

tasks are well documented (e.g., Niendam et al., 2012), it is not known whether activation 

differences in these areas or other areas across tasks are associated with better cEF ability. 

To date, only a handful of studies with modest N (for individual differences questions) have 

examined individual differences, and those tend to focus on individual tasks or EF abilities, 

such as a response inhibition or task set shifting (Jamadar et al., 2010; Wager, Jonides, 

Smith, & Nichols, 2005; Wager et al., 2005). Here, we investigate the neural correlates of a 

cEF factor score in the largest multi-task fMRI study (N = 546) of EFs to date. We evaluate 

whether individual differences in a highly stable cEF factor that captures shared variance 

in across three separable EF components (response inhibition, working memory updating, 

and mental set shifting) are associated with similar patterns of brain activation or functional 

connectivity across tasks tapping each of these EF components.

Most neuroimaging studies have focused on the frontoparietal and cingulo-opercular areas 

that tend to activate across individuals during EF tasks (Collette et al., 2005; Duncan, 2010; 

Fedorenko, Duncan, & Kanwisher, 2013; Nee et al., 2013; Dosenbach et al., 2006; Niendam 

et al., 2012), rather than areas that distinguish between individuals as a function of their 

level of EF performance. Yet the brain regions that activate consistently across individuals 

for any given task may not necessarily be sensitive to individual differences (Yarkoni & 

Braver, 2010).

Of those studies that do investigate the neural basis of individual differences in EFs, 

there are two notable issues. First, they have focused on single EF tasks. One obstacle 

to understanding individual differences in EFs is that EFs are by definition domain general 

processes that control lower-level processes in diverse contexts. Any one EF task offers only 

a glimpse of this unobservable construct, in which the EF of interest cannot be separated 

from the particular context in which it is observed (e.g., a categorization task that also 

requires stimulus processing, response mappings, etc.). Thus, to get a full picture of an EF, 

one has to measure performance in multiple contexts or tasks and look at what is common 

across these contexts (Miyake et al., 2000). This multi-task approach has become popular 

in the behavioral literature, but is rarely adopted within the neuroimaging literature. Most 

studies focus on a single EF task (e.g., Ravizza & Carter, 2008, Jamadar et al., 2010; 

Burgess et al., 2011; Wager, Jonides, Smith, & Nichols, 2005, Purkayastha, Wager, & 

Nichols, 2008).

Second, most fMRI studies of EF individual differences to date are modest in sample size 

(e.g., N = 18, Jamadar et al., 2010; N = 43, Wager et al., 2005). Small sample sizes are 

particularly limiting for fMRI studies of individual differences, which require larger sample 

sizes to detect reliable and reproducible associations), compared to studies that focus on 

group mean effects (Yarkoni, 2009). For example, nearly 200 participants are required for 
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80% power to detect a small effect, r = 0.20, as is commonly observed in the imaging 

literature, at an alpha = 0.05 (not accounting for multiple comparisons). Consortium-level 

and biobank-scale projects (such as the UK Biobank; Bycroft et al., 2018) are attempting 

to overcome the limits of small sample sizes. However, by design, they usually fall victim 

to the first concern by not measuring EFs with high resolution in an effort to maximize 

the sample size. To date, no study has simultaneously addressed both of these concerns by 

deeply phenotyping EFs in a sample that is appropriately sized for individual differences 

analyses.

Here, we present the first large study (N = 546) to investigate associations of task-related 

fMRI activations/connectivity in multiple tasks with individual differences in a highly 

reliable cEF factor (Friedman & Miyake, 2017). We measured cEF with a battery of 

six tasks tapping response inhibition, working memory updating, and mental set shifting 

abilities. Three of these tasks (one per EF component) were administered in an fMRI 

context, and three were administered outside the scanner. This design allowed us to evaluate 

neural correlates of individual differences in cEF across multiple tasks that tap separable EF 

constructs.

Specifically, we use activation and connectivity analyses to evaluate hypotheses related 

to the two main mechanisms proposed to drive cEF individuals differences: actively 

maintaining goals and using those goals to bias ongoing processing (Friedman & Miyake, 

2017). From a neural perspective, goal maintenance refers to sustained activation or attractor 

dynamics (Braver & Cohen, 2000) in frontal areas that allow information to be held on-line 

so it is accessible in the focus of attention. The neural implementation of goals involves 

linking desired actions/states with the multimodal information relevant to those states, which 

is particularly important in difficult EF tasks when the desired link between goals and 

sensory information rapidly changes based on tasks demands, or is poorly established by 

default (Miller & Cohen, 2001). Goal maintenance is hypothesized to be supported by 

lateral prefrontal cortex, whereas processing of lower-level information relevant to goals is 

distributed across relevant portions of association cortex and thus should spatially vary based 

on the specifics of the task at hand.

Hence, our first set of analyses leverages multi-task conjunctions to ask Question 1: Is 
variability in cEF associated with an overlapping or task-specific spatial pattern of 
activation across three EF tasks? We are primarily interested in the spatial pattern of 

individual differences results within frontoparietal regions that are commonly implicated in 

EF tasks. We propose four possible outcomes: 1a) If individual differences in cEF reflect 

high-level goal maintenance, we should observe that cEF differences are related to activation 

of dorsolateral prefrontal cortex during all three tasks. 1b) If individual differences reflect 

variation in top-down attentional control, in a domain-general manner, to lower-level goal-

related information (such as increasing activation to goal-relevant stimuli dimensions; Jessen 

et al., 1999), we might observe common activation in regions that are more proximal to the 

target/s of cognitive control, such as the lateral parietal cortex. 1c) If instead cEF differences 

reflect variation in processing of task-specific lower-level associative information, we would 

expect to see that activation differences related to cEF are spatially inconsistent across tasks 

and include lower-level sensory areas. 1d) Finally, individual differences in EF may be may 

Reineberg et al. Page 3

Neuroimage. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



be related to other brain regions not typically activated during goal-directed behavior. For 

example, some work suggests the default network may have functions complementary to 

those of the frontoparietal network such as formation of conceptual maps (Constantinescu, 

O’Reilly, & Behrens, 2016) or integration of prior knowledge to inform new situations 

(Schlichting & Preston, 2015). That said, the internal mentation functions commonly 

associated with the default network (Andrews-Hanna, 2011) could also be seen as distracting 

in the context of demanding externally-directed tasks, so it is not yet clear whether more or 

less default activation will be associated with individual differences in cEF.

Goal maintenance and other mechanisms that could manifest in fMRI activations may not 

be the only mechanisms relevant to individual differences in EF. One can maintain the goal 

and yet fail to implement it when appropriate, as illustrated by “goal neglect” (Duncan et 

al., 1996). This observation is consistent with Friedman and Miyake’s (2017) suggestion that 

goal maintenance and the use of those goals to bias ongoing processing may be separable 

mechanisms, with the latter related to connectivity between brain regions. Specifically, 

in computational models of EF, individual differences in biasing are implemented by 

manipulating connectivity strength between frontal maintenance areas and posterior areas 

that process lower-level information necessary for the task at hand (i.e., targets of control; 

Herd et al., 2014). An important area involved in such biasing is middle frontal gyrus 

(MFG), which can adaptively connect to other cortical areas based on task demands (Cole et 

al., 2013; Depue et al., 2015).

Thus, our second set of analyses used task-based functional connectivity analysis to evaluate 

Question 2: Is variability in cEF associated with connectivity of lateral prefrontal 
cortex across the three neuroimaging tasks? If lateral prefrontal cortex is responsible for 

biasing the activity of other brain areas, task-based functional connectivity analyses should 

reveal that cEF is associated with change in connectivity of those areas involved in biasing 

(lateral prefrontal cortex) when tasks become more demanding. We propose three possible 

outcomes for the task-based functional connectivity analyses: 2a) Lateral prefrontal cortex 

biases processing in a posterior area common to all EF contexts. 2b) Lateral prefrontal 

cortex biases processing in task-specific posterior areas. 2c) Lateral prefrontal cortex is not 

involved in biasing as measured by task-based functional connectivity.

Methods

Resource Availability

Data and Code Availability.—All unthresholded statistical maps will be made available 

in Neurovault (neurovault.org) upon publication. Further information and requests for data 

should be directed to the lead contact, Andrew Reineberg (andrew.reineberg@colorado.edu).

Participant Details—Analyses used data from a total of 546 individuals who had data 

for at least one task (237 male/309 female; Mage = 28.67 years, SDage = 0.63 years, range 

= 28 - 32 years): n = 443 for the antisaccade task, n = 488 for the keep track task, and 

n = 480 for the number–letter task; 358 participants had usable data for all three scanner 

tasks. These individuals were a subset of the initial sample scanned (587 individuals), after 

data were removed due to incidental anatomical findings or excessive movement during the 
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scanning session based on the criteria of greater than 3 mm translation (motion in x, y, or z 

plane) or 3° rotation (roll, pitch, or yaw motion). Participants were part of the Longitudinal 

Twin Study (LTS), a long-term longitudinal study of twins in Colorado recruited from 

the Colorado Twin Registry based on birth records (see Corley et al., 2019; Rhea et al., 

2006, 2013, for additional information). Of the 546 individuals, there were 119 pairs of 

monozygotic (MZ) twins, 109 pairs of dizygotic (DZ) twins, 41 MZ twin singletons, and 

49 DZ twin singletons. Singletons are members of twin pairs whose cotwins either did not 

participate or were excluded from analysis. Based on self-report, the entire LTS sample 

is 92.6% White, 5.0% more than one race, <1% American Indian/Alaskan Native, <1% 

Pacific Islander, and 1.2% unknown/not reported. Hispanic individuals composed 9.1% of 

the sample. Participants were paid $150 for participation in the study or $25 per half an hour 

for those who did not finish the entire 3-hour session.

Ethics Statement.—All study procedures were approved by the Institutional Review 

Board of the University of Colorado Boulder.

Procedure—The study was run in a single 3-hour session. Following informed consent, 

participants were familiarized with the imaging procedures including practice versions 

of the tasks to ensure comprehension later in the scanner. They first completed a 1.5-h 

scanning session. The following scanning sequence order was used for all participants: scout 

localizer scan, 6-minute resting-state scan (not analyzed in the current study), structural 

scan, antisaccade task, keep track task, number–letter task, and a diffusion tensor imaging 

sequence (not analyzed in the current study). After the scans, participants returned to a 

behavioral testing room to complete three additional EF tasks – Stroop, category-switch, and 

letter memory, in that order. If both twins of a pair participated on the same day, the twins 

completed the protocol consecutively (twin order randomized) with the same ordering of 

behavioral testing and imaging acquisition.

Participants were scanned in a Siemens Tim Trio 3T (n = 259) or Prisma 3T (n = 287) 

scanner (the Trio scanner was upgraded approximately halfway through the study). Scanner 

type was included as a nuisance regressor in all analyses. Neuroanatomical data were 

acquired with T1-weighted magnetization prepared using rapid gradient echo magnetization 

sequence (acquisition parameters: repetition time (TR) = 2400 ms, echo time (TE) = 2.07, 

matrix size = 320 × 320 × 224, voxel size = 0.80 × 0.80 × 0.80mm, flip angle (FA) =8.00°, 

slice thickness = 0.80mm). Functional data were acquired with T2*-weighted echo-planar 

functional scans. Acquisition parameters were: number of volumes = 966 for each run of the 

antisaccade task (2 runs total), 784 for each run of the keep track task (3 runs total), 1588 for 

each run of the number–letter task (2 runs total); TR = 460 ms; TE = 27.2 ms; multi-band 

acceleration factor = 8; matrix size = 82 × 82 × 56; voxel size = 3.02 × 3.02 × 3.00 mm; FA 

= 44.0°; slice thickness = 3.00 mm; field of view (FOV) = 248 mm.

Behavioral and Imaging Tasks—The battery of six tasks is an abbreviated version 

of the nine-task battery used in the LTS study in prior waves of data collection (see 

Friedman et al., 2016). It contained two tasks from each of three EF components: 

response inhibition, working memory updating, and mental set shifting. One task from 

each component was administered during fMRI (antisaccade, keep track, and number–
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letter) and one task from each category was administered outside the scanner (Stroop, 

letter memory, and category-switch). These tasks were chosen to align the current study 

with the rich longitudinal historical data available for LTS participants and to allow for 

future longitudinal analyses. We have found these tasks effective at eliciting genetic and 

environmental individual differences in prior waves of data collection (Friedman et al., 

2016) and useful in prior individual differences analyses exploring EF relationships with 

psychopathology (du Pont, Rhee, Corley, Hewitt, & Friedman, 2019; Friedman et al., 2020), 

substance use (Gustavson et al., 2017) , and stressful life events (Morrison et al., 2020), 

among many other associations. To maintain continuity with our prior work with this sample 

and ensure that we did not change the constructs of interest, we maintained key aspects of 

the tasks (such as the short trial times used in the antisaccade), even when those would not 

be considered typical for a scanner task (as most scanner tasks are not focused on eliciting 

individual differences in performance).

The design of the three non-scanner tasks was identical to that used in the age 23 battery 

administered to this sample (Friedman et al., 2016). All tasks included additional practice 

trials and “warm-up” trials at the beginning of each block that were not analyzed.

The Stroop task (adapted from Stroop, 1935) captures the ability to stop a prepotent word 

reading response and instead name the color in which the words were printed. Participants 

voiced the color (red, blue, or green) of text presented on a black screen as quickly as 

possible. Reaction times (RTs) were measured with a ms-accurate voice key. There were 

three trial types: a block of 42 neutral trials in which 3-5 asterisks were presented in 

one of three colors (red, blue, and green); a block of 42 congruent trials in which color 

words were presented in matched font color (e.g., the word “RED” displayed in red 

font); and two blocks of 42 trials each of incongruent trials in which color words were 

presented in non-matched font color (e.g., the word “RED” displayed in blue ink). Stimuli 

disappeared as soon as the voice key detected the response. Trials were separated by a 

250 ms white fixation cross. The dependent measure was the mean RT difference between 

correct incongruent and neutral trials.

The letter memory task (adapted from Morris & Jones, 1990) captures the ability to maintain 

and update items in working memory. In each of 12 trials, participants viewed a series of 

9, 11, or 13 consonants, with each letter appearing for 3 s. As each letter appeared, they 

had to say aloud the last four letters they viewed, including the current letter. The dependent 

measure was the proportion of 132 sets in which they reported the set of letters in the correct 

order.

The category-switch task (adapted from Mayr & Kliegl, 2000) captures the ability to shift 

between mental sets. In each trial, participants categorized a word according to animacy 

(i.e., living vs. non-living) or size (i.e., smaller or larger than a soccer ball), depending 

on a cue (heart or crossed arrows, respectively). The cue preceded the word by 350 ms 

and remained above the word until the participant responded with one of two buttons on 

a ms-accurate button box. The stimuli disappeared from the screen when the participant 

responded. There was a 350 ms delay between responses and the next trial. A 200-ms 

buzz sounded for errors. The task began with two single-task blocks of 32 trials each, in 
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which participants categorized words only by animacy then only by size. Then participants 

completed two mixed blocks of 64 trials each, in which half the trials required switching the 

categorization criterion. The dependent measure was the local switch cost — the difference 

between average response times on correct switch and no-switch trials within mixed blocks. 

RTs for trials following errors were also excluded from analysis, as the switch vs. repeat 

classification would be incorrect if participants were using the incorrect task set on those 

trials.

Three tasks were adapted for fMRI from the versions used by Friedman et al. (2016) 

with this sample. The antisaccade task (Roberts, Hager, & Heron, 1994) requires inhibiting 

reflexive eye movements to a cue stimulus, instead saccading to the opposite side of the 

screen in time to see a briefly appearing target stimulus. Participants completed 20 s blocks 

of prosaccade, anti-saccade, and fixation trials (12 blocks of each across two runs; 5 trials 

per block for the prosaccade and antisaccade blocks). Each block was preceded by a jittered 

instruction (TOWARD, AWAY, or FIXATION for 2, 4, or 6 s) indicating the direction to 

which they should direct their attention relative to the cue. After a jittered fixation lasting 

1–3 s, a small visual cue flashed on one side of the computer screen. The cue lasted for 234 

ms, however, the duration of this cue was changed to 284 ms after the first 276 participants 

as we noticed low average performance in an interim analysis for another project. After the 

cue, a target (a digit from 0 to 9) appeared for 150 ms before being masked. The mask lasted 

1650 ms, during which time the participant was instructed to vocalize the target. The cue 

and target appeared on the same side of the screen during prosaccade trials and opposite 

sides during anti-saccade trials. Hence, in order to identify the number on the antisaccade 

trials, participants had to avoid the tendency to saccade to the cue and instead immediately 

look in the opposite direction. The behavioral dependent measure was the proportion of 

correctly identified targets on the 60 antisaccade trials. The main fMRI contrast of interest 

was antisaccade trials versus prosaccade trials. The antisaccade task was broken into 2 runs.

The keep-track task (Yntema, 1963) captures the ability to maintain and update information 

in working memory. Each trial was preceded by a 1,500 ms instruction (REMEMBER, 

READ, or FIXATION) indicating the trial type. On each remember trial, 500 ms after the 

instruction disappeared, a fixation cross appeared in the center of the screen, and below it 

appeared 3 or 4 target categories (animals, colors, countries, distances, metals, or relatives). 

The categories remained on the screen throughout the trial. After a duration of 2, 4, or 6 s, 

a series of 16 words (2s per word) appeared where the fixation was; each word belonged 

to one of the six categories. Participants had been shown the full list of words during 

the practice trials, so were familiar with them and the categories to which they belonged. 

After presentation of the words, a prompt (“???”) appeared for 10 s and participants were 

instructed to orally recall the last exemplar of each target category. Because each list of 

16 words contained 1-3 exemplars of each category, they had to update which words to 

remember and ignore words from irrelevant categories. In addition to these “Remember” 

trials, the scanner version of the task included baseline conditions of “Read” trials, in which 

participants just silently read the words without trying to remember them (followed by a 

4 s “---” prompt during which they remained silent), and 20 s rest (fixation) trials. The 

behavioral dependent measure was the proportion of the 45 words correctly recalled out of 

all trials where they were asked to remember words. The main fMRI contrast of interest was 
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viewing the words in remember trials versus read trials. The keep track task was broken into 

3 runs, each with 3 recall trials (two with 4 words to recall and one with 3), 3 read trials 

(also two with 4 categories and one with 3 categories present with the words), and 3 fixation 

trials.

The number-letter task (Rogers & Monsell, 1995) captures the ability to shift between 

mental sets. In each trial, participants viewed a box sectioned into four quadrants. The 

borders of one quadrant were darkened as a cue for 350 ms before a number–letter or 

letter–number pair (e.g., 3F, G7) appeared inside. Participants were instructed to categorize 

the number as odd/even if the cued quadrant was one of the upper 2 quadrants, or the letter 

as consonant/vowel if the cued quadrant was one of the lower 2 quadrants, using two buttons 

on a ms-accurate button box. The stimuli disappeared from the screen when categorized. 

There was 350 ms delay between response and the next trial. The trials were arranged 

in blocks, and rest blocks (20 s) were intermixed with the task blocks. Each block was 

preceded by a jittered instruction (TOP, BOTTOM, MIXED, or FIXATION for 2, 4, or 6 

s) that indicated where the stimuli would appear for that block. In mixed blocks, half the 

trials were repeat trials in which the task stayed the same as the previous trial; the other 

trials required a switch in categorization task. Each block consisted of 13 trials. The first 

trial in each block was not counted because it was neither switch nor repeat. The behavioral 

dependent measure was the difference between average RTs on correct switch trials (i.e., 

trials in which a switch of mental set was made) versus correct trials in which no switch 

was made. As in the category-switch task, RTs for trials following errors were also excluded 

from analysis, as the switch vs. repeat classification would be incorrect if participants were 

using the incorrect task set on those trials. To equate all tasks based on the difficulty of 

their respective baseline conditions, the main contrasts of interest in the number-letter task 

analysis is switch vs. repeat trials in single-task blocks because repeat trials in the mixed 

context are more cognitively demanding than the baseline condition in the other imaging 

tasks. We also report results from the switch versus repeat trials in mixed blocks contrast 

(i.e., reflecting local switch cost) in the supplemental results for comparison to prior work 

that utilized this contrast. The task was broken into 2 runs, each containing eight mixed 

blocks, four single-task blocks (two number and two letter blocks), and four 20 s fixation 

blocks.

Statistical Analyses

Behavioral data were processed with the same pipeline we used in a previous manuscript 

(Reineberg et al., 2018). Reaction times were trimmed within-subject to obtain the best 

measures of central tendency within conditions (Wilcox & Keselman, 2003). Extreme high 

and low scores at the between-subjects level (greater than 3 SDs from the group mean) were 

Windsorized by replacing them with the cutoff value of 3 SDs above or below the mean to 

improve normality and reduce the impact of extreme scores while maintaining these scores 

in the distribution. Behavioral data from the antisaccade task were z-scored within each 

version (234 and 284 ms cue versions) prior to between-subject trimming to remove mean 

differences due to cue duration.
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After the trimming procedures, behavioral data from all six tasks were input to a 

confirmatory factor analysis in Mplus. The model for these six tasks was similar to the 

one used in prior waves of this longitudinal study with nine tasks (Friedman et al., 2016): 

There were three orthogonal factors: a cEF factor on which all 6 tasks loaded, an orthogonal 

Updating-specific factor on which the keep track and letter memory tasks loaded, and an 

orthogonal Shifting-specific factor on which the number–letter and category-switch tasks 

loaded. To identify the orthogonal 2-indicator specific factors, the loadings for each specific 

factor were constrained to be equal after first scaling the tasks variances to be similar that 

the standardized loadings would be equal. The resulting model fit was reasonable according 

to recommended thresholds for confirmatory fit index (CFI>.95) and standardized root mean 

residual (SRMR<.08), although the chi-square statistic was significant and the root-mean 

squared error of approximation exceeded the recommended value (RMSEA<.06): χ2(7) = 

33.74, p < .001, CFI = .954, RMSEA = .081, SRMR = .040. As a similar model fit well and 

was used in the two prior waves of this longitudinal study, we proceeded with this model as 

specified and extracted cEF, Updating-specific, and Shifting-specific factor scores using the 

“SAVE=FSCORES” option in Mplus.

Image processing and data analysis were implemented using FSL version 5.0.9 (FMRIB, 

Oxford, UK, http://www.fmrib.ox.ac.uk/fsl/). A standard pre-processing was applied: motion 

correction, brain extraction, high pass filter (0.01 Hz), 8mm FWHM spatial smoothing, and 

registration and spatial normalization to the Montreal Neurological Institute (MNI) 152-T1 

2-mm template. Additionally, we applied an ICA-based single-subject denoising procedure 

(implemented in FSL’s AROMA tool) to each participant’s functional scan to remove 

artifact signal associated with breathing, heartbeat, movement, and other noise sources.

Data were analyzed using FSL’s general linear model tool. Lower-level model regressors 

were task-specific, with each task having regressors of interest (e.g., antisaccade trials, 

prosaccade trials) and confound regressors (e.g., inter-trial intervals, error trials) as well as 6 

linear head movement parameters (X, Y, Z, roll, pitch, yaw) and their squared values. Each 

task had several 20-second fixation blocks, which were left as the un-modeled baseline per 

standard FSL procedure. The main contrast of interest for each of the three EF tasks was 

between demanding EF events (antisaccade trials for antisaccade, remember trials for keep-

track, and switch trials for number–letter) and less demanding events (prosaccade trials, 

read trials, and repeat trials within the single trial blocks) or fixation blocks controlling for 

nuisance events (e.g., pre-stimulus fixation cross events).

For each lower-level contrast, an intermediate model was used to combine multiple runs, and 

one-sample t-tests were performed at the highest level to obtain the group average activation. 

The main focus of the current study was an additional higher-level model with a covariate 

for cEF to obtain an estimate of which brain region’s activity during the demanding versus 

less demanding condition covaried with cEF factor scores. These covariate (individual 

differences) models ask about activation differences for those who are different in their 

cEF ability and should not be confused with group average models. Task-specific covariates 

were used in secondary analyses (i.e., antisaccade performance covariate for antisaccade 

task analysis, etc.). In addition to a gender covariate, all models included a scanner covariate 

to account for the fact that approximately 50% of the sample’s data was obtained using a 
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Siemens Trio scanner before upgrading to a Siemens Prisma scanner. In post-hoc analyses 

suggested during review, we checked for significant motion-BOLD relationships in all areas 

with significant cEF-BOLD relationships. A single region from the antisaccade task cEF 

covariate results had a significant motion-activation relationship, however the effect of cEF 

persisted after statistically controlling for individual differences in motion.

FSL’s PALM permutation testing tool was used to account for non-independence associated 

with twin pairs. This tool allowed targeted permutation between and within twin pairs. We 

used FDR-corrected output from PALM unless otherwise noted. For conjunction analysis of 

the group average and covariate results, we binarized FDR-corrected stat maps for each task 

at a pfdr < 0.05 threshold. Binary maps were overlapped and any location in the brain with a 

sum of 3 was plotted as a three-way conjunction.

In addition to the standard task activation analyses outlined above, we performed functional 

connectivity analyses via the psychophysiological interaction (PPI) framework (Friston et 

al., 1997). We were interested in whether individual differences in cEF were associated 

with the change in MFG connectivity from the less demanding to the more demanding 

EF condition of each task. In particular, we were interested in whether cEF was related to 

MFG connectivity with the regions implicated by the individual differences models from 

the task activation analyses. To perform the PPI analyses, we first extracted the time course 

for a classic cognitive control region (MFG; mask taken from the Harvard-Oxford atlas) 

for each participant and run. A contrast-coded regressor was created for each run of each 

task for the demanding condition (1) versus the less demanding condition (−1). Additionally, 

a dummy-coded regressor for the combined demanding and less demanding (both coded 

as 1) conditions was created. Using FEAT, we prepared a new lower-level model for each 

run that included the new contrast and dummy-coded regressors, the MFG time course, 

a regressor of nuisance components, and the interaction of the MFG time course and the 

contrast-coded regressor. The interaction effect is the main component of interest in PPI 

analyses, as it represents the location in the brain where connectivity to MFG changes as a 

function of task demands. We subjected the lower-level PPI results to the same intermediate 

models (to combine runs) and higher-level group models (with cEF covariate and nuisance 

regressors) as described above. To ascertain whether the regions from the task activation 

analyses emerged in the task-based connectivity cEF covariate maps, we masked the results 

of the PPI models in each task by the respective individual differences maps from the 

task activations analyses. For this analysis, we did not utilize a correction for multiple 

comparisons because we considered the masked areas from the task activation covariate 

maps a priori areas of interest.

Results

Behavioral Results

Descriptive statistics for all six behavioral tasks and three factor scores are provided in 

Table 1. The 234- and 284-ms cue versions of the antisaccade task differed in mean 

accuracy but not reliability. cEF, Shifting-specific, and Updating-specific latent variables 

are orthogonal. However, their factor scores are moderately correlated because they are 

imperfect approximations of latent variables due to factor score indeterminacy. Factor 
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score determinacy estimates for the complete data pattern were 0.815, 0.652, and 0.733 

for cEF, Updating-specific, and Shifting-specific factors respectively. cEF factor scores 

positively correlated with Updating-specific (r = 0.360, p < 0.001) and Shifting-specific (r 
= 0.253, p < 0.001) scores, whereas Updating-specific and Shifting-specific factor scores 

were negatively correlated (r = −0.317, p < 0.001). Regarding correlations of the behavioral 

scores from the three scanner tasks, antisaccade performance was positively correlated with 

keep track performance (r = 0.34, p < 0.001). After reverse scoring the category–switch 

task so that higher scores would indicate better performance (lower shift costs), category-

switch performance was positively correlated with Antisaccade performance (r = 0.34 p < 

0.001) and keep track performance (r = 0.21, p < 0.001). Descriptive statistics, reliability, 

and the pattern of relationship among cEF, Updating-specific and Shifting-specific factor 

scores closely replicate the results of an identical analysis of EF behavior in the first 250 

participants of the current wave of data collection in the LTS sample (Reineberg et al., 

2018).

Because the ability to measure robust intercorrelations among cognitive tasks depends, in 

part, on the reliability of the individual tasks (Draheim et al., 2021, Rouder et al., Hedge, 

Powell, & Sumner, 2018), we assessed the internal reliability (Table 1) and 6-year test-retest 

reliability of our tasks. Internal reliability was high for all tasks (.74 to .96). Consistent 

with our goal of measuring the same individual differences constructs we had previously 

measured in this sample, performance in the three scanner tasks correlated well with the 

behavioral versions of the same tasks administered 6 years earlier (Friedman et al., 2016), 

rs = 0.51 to 0.68, ps < .001. These correlations were comparable to the 6-year test-retest 

correlations of the 3 behavioral tasks we administered outside of the scanner, rs = 0.48 

to 0.84, ps < .001. cEF, Updating-specific, and Shifting-specific factor scores for this 

assessment also showed strong correlations with those from the prior wave (based on 9 

tests): rs = 0.796, 0.683, and 0.624, respectively, all ps < .001.

fMRI Group Average Activation

Group average maps for the main contrast of interest (i.e., demanding versus less demanding 

trials) for all three EF tasks and the three-way conjunction of these maps can be found 

in the left-hand column of Figure 1. The group average maps for all three tasks (Figures 

1a–c) were very similar. The three-way conjunction of group average maps (Figure 1d) 

revealed clusters of peak activation common to all tasks and included classic frontoparietal 

and cingulo-opercular activations as well as default network deactivations.

Because we tried to equate all contrasts in the main analysis based on the difficulty of the 

baseline conditions, we focused on the global switch cost contrast for the number–letter task 

based on the easier baseline condition of repeat trials in a single task context. However, we 

provide an analysis of the local switch cost contrast (switch versus repeat trials in the mixed 

context in the number–letter task) in a supplemental analysis for comparison to prior work 

(Figure S1). Activation for the local switch cost contrast was very similar to activation in 

the main contrast of switch (during mixed context) versus repeat (in single-task blocks), with 

additional sensory-somatomotor and insular activity in the latter.
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A comparison of unthresholded or minimally thresholded maps could be a useful alternative 

to a conjunction analysis, similar to how meta-analysis of unthresholded maps has utility 

over meta-analysis of foci when investigating consistency in effects across many studies in 

fMRI meta-analysis (Salimi-Khorshidi, Smith, Keltner, Wager, & Nichols et al., 2009). The 

statistical maps (Table 2) showed moderate to strong correlations (rs = 0.39 - 0.77) when 

utilizing the subthreshold information (i.e., below the threshold for correcting for multiple 

comparisons). Although the group average activation maps were very similar overall, there 

are notable differences across the three group average maps, which were most pronounced in 

posterior cingulate cortex and the visual processing stream. The antisaccade task had more 

posterior cingulate cortex (PCC) deactivation and less visual activation than the other two 

tasks. The number–letter task had more visual activation and less PCC deactivation than the 

other tasks.

To explore whether there might be heterogeneity across tasks for different functional 

networks, we also looked at similarity of the statistic map after assigning voxels to one of 7 

bins based on its functional network assignment derived from a commonly used parcellation 

(Yeo et al., 2011). This analysis allows us to assess whether correlation of group average 

statistic maps (Table 2) are driven by particular networks or are representative of a whole 

brain effect. For example, the overall correlation among the three tasks could be misleading 

if, for example, frontoparietal, dorsal attention, and ventral attention network activation 

were extremely correlated across all tasks but the default network was not. The distribution 

of voxel activations by functional network and correlation of the group average statistic 

maps by functional network is described in detail in Figure S2. This analysis predominantly 

revealed agreement in the correlation of per-network activations across the three task maps; 

however, the whole brain correlation (Table 2) of antisaccade and keep track maps may be 

suppressed because of heterogeneity across functional networks (e.g., there is a correlation 

of activity in the two tasks for all networks except the default network).

Is variability in cEF associated with an overlapping versus task-specific spatial patterns of 
activation across three tasks?

To investigate question 1, we used covariate models to quantify the relationship between 

cEF and change in activity from the less demanding to higher demanding task conditions. 

The cEF covariate results are shown in Figure 1e–g and described in Tables 3-5 for the 

antisaccade, keep track, and number–letter tasks, respectively. These maps were much less 

spatially consistent than the group average maps (Figure 1, left hand column).

The three individual differences maps had no areas of three-way overlap based on our a 
priori analysis plan for conjunctions (overlap of the three FDR-corrected maps presented in 

Figure 2). Upon loosening the threshold for significance so the joint probability was less 

than 0.05 in the three-way conjunction (i.e., each individual map thresholded at pfdr < ∛0.05 

= 0.368), there were several small areas of overlap. Across tasks, higher levels of cEF were 

associated with increased activation of bilateral precuneus, left posterior cingulate cortex, 

left lateral parietal cortex, and left anterior middle temporal gyrus (Figure 1h). These areas 

of weak overlap tend to be in the default mode network, supporting the fourth proposed 

mechanism for cEF individual differences (association with regions not typically during 
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goal-directed behavior such as the default network). However, the directionality was such 

that higher cEF was associated with less deactivation of the default mode network during 

more demanding conditions.

Although there were no regions in the three-way overlap of the FDR-corrected cEF 

individual differences maps, there were overlapping regions when ignoring directionality 

of effects. Upon absolute value transformation of the cEF covariate maps, clusters of overlap 

(Figure S5) included bilateral MFG, medial superior frontal gyrus, left angular/superior 

parietal cortex, and the cerebellum. These areas were all at the anatomical borders between 

major functional networks.

We were mindful that conjunctions are sensitive to thresholding decisions. To determine 

how similar the cEF covariate maps were, including all subthreshold information in the 

map and not just the information that exceeded our threshold for statistical significance, we 

correlated all pairwise combinations of the three maps as we did previously for the group 

average maps. The whole brain spatial correlation of unthresholded cEF covariate statistic 

maps for the three tasks is described overall in Table 2. Correlations between tasks were 

moderate-to-strong for all pairs of tasks (|r| = 0.21 - 0.60). However, these correlations 

varied in direction, with a positive correlation between the cEF-related pattern for keep track 

and category-switch, but negative correlations of those two patterns with the cEF-related 

pattern for antisaccade. The opposite direction of these correlations is inconsistent with a 

simple model in which higher cEF is associated with greater or less activation of a set of 

regions across different task contexts.

Additionally, to explore whether cEF-related activations show consistency across all three 

tasks for all networks, we calculated correlations between pairs of tasks after grouping 

voxels by functional network assignment as described by Yeo et al. (2011) (Figure S3). 

There appeared to be some heterogeneity: For example, although the whole brain correlation 

of antisaccade with keep track cEF covariate maps is only moderate overall, the cEF-related 

sensory-somatomotor network activation is more correlated than the overall correlation 

suggests.

A final question of interest was whether the brain areas that are active on average in the EF 

tasks are the same areas that are associated with individual differences in the cEF covariate. 

When comparing the cEF-covariate analysis maps to the group-average activation within 

each task, many areas involved in individual differences in cEF reside in areas active in 

the group on average. In fact, Table 2 and Figure S4a reveal the group average and cEF 

covariate maps are strongly correlated (|r| = 0.60 - 0.68) within task when examining the 

unthresholded statistic maps. As in the cross-task correlations, group average activation 

in antisaccade was negatively correlated with cEF covariate-related activation. That is, 

voxels positively activated in the group average analysis tended to have negative activations 

associated with cEF individual differences.

Due to task impurity, performance on any given EF task is driven by cEF as well as 

additional constructs. Therefore, a covariate statistic map based on performance on each task 

performed in the scanner should be a combination of cEF-covariate regions and additional 
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task-specific regions. We derived covariate maps for in-scanner performance to compare 

them to the cEF maps as an exploratory look at regions relevant for task-specific individual 

differences (see Figure S6a–c). If the task-specific performance covariate maps are very 

similar to the cEF covariate maps, then cEF-related neural mechanisms explain most of 

the behavioral variation for that task. This exploratory analysis suggests the localization of 

cEF and task-specific performance effects is largely the same in the brain (for details see 

Supplementary Information and Figure S6c).

Is variability in cEF associated with connectivity of lateral prefrontal cortex across three 
tasks?

To investigate question 2, we evaluated PPI models. The PPI results presented below 

were not significant when conducting a whole-brain analysis and correcting for multiple 

comparisons across the brain, suggesting they should be interpreted as preliminary evidence 

of a connectivity-based basis of individual differences in cEF.

We measured changes in task-based connectivity of our a priori area of interest, MFG, from 

the less demanding to the more demanding condition in each task. We masked the PPI 

analysis results by the maps from Figure 1e–g to constrain our analysis to just those areas 

we previously demonstrated to be related to individual differences in cEF. For all three tasks, 

some of the same areas from the GLM cEF covariate results described above emerged in 

this targeted task-based functional connectivity analysis. These results provide some support 

for our hypothesis that lateral prefrontal cortex may have a role in biasing processing in 

task-specific areas (via the observed connectivity) even though lateral prefrontal cortex itself 

did not emerge as a predictor of cEF individual differences in the activation-based GLM 

analyses. Connectivity results and example scatterplots are provided in Figure 2.

For antisaccade, higher cEF was associated with increased MFG connectivity from the 

harder to easier condition to inferior MFG/inferior frontal gyrus, sensory cortex, frontal 

pole, medial frontal cortex, and decreased connectivity to lateral parietal cortex. For keep 

track, higher cEF was associated with increased MFG connectivity to visual cortex, motor 

cortex, and lateral parietal cortex. Finally, for number–letter, higher cEF was associated with 

decreased MFG connectivity to visual cortex, lateral parietal cortex, and precuneus. The 

spatial pattern of PPI and task activation covariate results was similar across the whole brain 

when considering all subthreshold (i.e., threshold for correction for multiple comparisons) 

information (Figure S4b).

Discussion

This study is the largest multi-task fMRI study (N=587) of EFs to date, and was uniquely 

designed to determine if there is a set of brain regions that are commonly engaged 

across EF tasks as a function of individual differences in cEF. We found robust group 

average activations within each of three task contexts as well as conjunction of the three 

tasks’ group average results. We also found robust activations associated with individual 

differences in cEF in each individual task. However, there was no significant three-way 

conjunction of these individual differences results. Of several possibilities (hypotheses 
1a-1d in Introduction), our results for task activation analyses suggest the neural basis 
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of cEF individual differences is spatially inconsistent (hypothesis 1c) and not restricted 

to frontal areas. Utilizing a lower threshold for statistical significance revealed default 

network activation may also be relevant to individual differences in cEF (hypothesis 
1d). Although individual differences in activation of frontal maintenance areas were not 

consistently associated with cEF individual differences across all task contexts, preliminary 

results suggested task-based connectivity of lateral prefrontal cortex may be associated with 

individual differences in cEF across all task contexts (hypothesis 2b). However, because the 

connectivity results did not survive whole-brain correction for multiple testing, future work 

is required to more fully understand the role of prefrontal biasing in individual differences in 

cEF. Individual differences in cEF are primarily reflected in activation of task-specific areas.

Although our key finding, the lack of conjunction of the individual differences covariate 

maps, is a null result, it is striking in the context of this study. We scanned a very large 

sample, assessed cEF performance rigorously with a factor scores of 6 reliable tasks, found a 

robust conjunction of activation at the group-level, and found robust patterns of cEF-related 

activation differences within each task. Nevertheless, these robust cEF-related differences 

did not overlap across tasks, and in some cases reflected opposing patterns of associations. 

Similar null results have been briefly mentioned in prior reports: For example, Engelhardt 

et al. (2019) reported “no significant clusters of accuracy-correlated activity shared by the 

three tasks” (p. 486) in their fMRI study of three EF tasks in 117 children, although they 

did observe significant accuracy associations within each task. As unsatisfying as such a 

null result is, it is nevertheless informative. It challenges the somewhat prevalent, and very 

reasonable, assumption (evidenced by popular ROI approaches) that individual differences 
in cEF reflect variation in recruitment of the common cognitive control networks that 

are so strongly activated at the group level. Brain features that explain commonalities in 

EF performance across tasks remain to be discovered, and doing so will likely require 

alternative approaches to testing for spatial commonality, or alternative interpretations of 

task-specific associations.

Support for task-specific neural correlates

Our group-average results for each of the three tasks contained classic frontoparietal 

and cingulo-opercular activation as well as default network deactivations. This pattern is 

consistent with prior group-average results from single tasks (Duncan, 2010; Duncan & 

Owen, 2000; Kimberg, Aguirre, & D’Esposito, 2000; Luna et al., 2001; Wager, Jonides, 

& Reading, 2004; Wager & Smith, 2003), multi-task conjunctions (Collette et al., 2005; 

Engelhardt, Harden, Tucker-Drob, & Church, 2019), and meta-analyses of EF tasks 

(McKenna, Rushe, & Woodcock, 2017; Nee et al., 2013; Niendam et al., 2012; Owen, 

McMillan, Laird, & Bullmore, 2005). As such, it appears that our tasks successfully engaged 

brain regions typically associated with EFs.

Notably, however, individual differences in the extent to which these areas were activated 

was only weakly related to cEF ability. When considering only cEF-related activation 

that met or exceeded our threshold for statistical significance (accounting for multiple 

comparisons), there was no three-way overlap, suggesting the most powerful correlates of 

EF are task-specific activations. Differences in activation in association cortex were the 
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dominant feature in cEF covariate maps for the keep track and number–letter task. In 

addition, both the antisaccade task and keep track task had frontal activations associated 

with individual differences. Although this pattern of results was unexpected, it is not 

incompatible with existing theories of the neural basis of EF, such as the multiple demand 

network (Duncan & Owen, 2000), the cascade of control model (Banich et al., 2000), 

and the hierarchical control model (Christoff & Gabrieli, 2000). These theories focus on 

neural machinery necessary to complete particular cognitive tasks rather than how individual 

differences in activations lead to differences in performance.

Our results suggest researchers interested in activation related to individual differences 

should be aware that task selection can critically affect the spatial pattern of results. 

Here we showed different EF tasks can even have individual differences activations in 

opposing directions. In the antisaccade task, high EF individuals were those who showed 

less activation in lateral frontal, superior medial, and anterior cingulate regions for the more 

demanding as compared to the less demanding condition. In the keep track task, higher 

cEF was associated with increased activation of frontal cortex for the more demanding 

compared to less demanding condition. A similar pattern was seen in the unthresholded 

maps: Although the covariate maps showed low to moderate correlations across tasks, 

the antisaccade cEF map was negatively correlated with the cEF maps for the other two 

tasks. When considering conjunctions regardless of directionality (i.e., in an absolute value 

analysis), we did see overlap in the fully corrected cEF covariate maps in several locations 

at the borders of the dorsal/ventral attention, frontoparietal, and default networks. In this 

case, activation in similar areas was associated with individual differences in cEF, but the 

directionality of the effect changed with different task demands. No prior work led us to 

predict this differential pattern. If this pattern is not specific to this speeded antisaccade task 

but instead reflects a general property of inhibitory tasks, future work will be needed to 

determine why inhibitory task contexts may lead to cEF-associated deactivations while other 

EF task contexts lead to cEF-associated activations.

Our results are also consistent with computational models of EF tasks. Computational 

models encode source-target relationships between frontal cortex maintenance functions 

(e.g., attractor dynamics; Hazy, Frank, & O’Reilly, 2007) and association cortex that 

encodes sensory and motor information relevant to the current goal (Banich, 2009; Miller 

& Cohen, 2001; Munakata et al., 2011; Posner & Driver, 1992). Relationships between 

sources and targets of control are often modified via changes in biasing, or connections 

between areas representing frontal cortex and posterior areas (Herd et al., 2014). As in 

such models, individual differences in biasing are reflected in task-based connectivity 

between frontal cortex and posterior areas as opposed to observing individual differences 

in task-set maintenance which would be detected by activation levels in GLM analyses. 

Consistent with this hypothesis that control is implemented via connectivity from frontal 

regions to posterior regions involved in goal-relevant processes, our task-based functional 

connectivity results indicated that individual differences in cEF were also related to the 

modulation of the spatially diverse task-specific regions by the same MFG region during 

each task, although these results were not significant at the whole-brain corrected level. Prior 

individual differences work supports the idea that MFG is involved in flexible biasing (Cole, 

Ito, & Braver, 2015; Depue, Orr, Smolker, Naaz, & Banich, 2015; Panikratova et al., 2020), 
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perhaps due to its unique ability to fluidly connect to nearly all cortical areas (Cole et al., 

2013; Ito et al., 2017).

Based on our results, future work might focus on connectivity of the lateral prefrontal cortex 

rather than exploring the complex spatial pattern of individual differences activations that 

may depend on task demands. However, connectivity of lateral prefrontal cortex may be 

only part of the story of individual differences. To make the best predictions about cognition 

using task-based activations, future studies may consider combining metrics from a priori 
areas such as lateral prefrontal cortex with information from across the whole brain. If a 

whole brain search is not desired, the current study suggests lateral parietal cortex, sensory 

cortex, and the default network are additionally involved in individual differences, and as 

such should be considered as regions of interest for future work.

The role of the default network in EF is particularly interesting given that the default 

network is typically associated with a variety of internally-directed functions (Andrews-

Hanna, 2011) and that decrease in activation of this network is observed when participants 

are engaged in an externally-directed task (Spreng, Mar, & Kim, 2009). However, task-

positive and task-negative networks can work synergistically under certain circumstances. 

For example, activation in the default mode network along with activation in the 

frontoparietal network can support goal-oriented behavior, as in autobiographical planning 

(Spreng et al., 2010). When we relaxed the threshold for conjunction significance for the 

input maps to a liberal threshold (so the probability of the product of significance across 

the three tasks was < 0.05) we also found evidence of common individual differences 

activation across all three tasks. In this relaxed conjunction analysis, we saw overlap across 

tasks for associations with cEF in bilateral precuneus, left posterior cingulate cortex, left 

lateral parietal cortex, and left anterior middle temporal gyrus. These regions span all 

three major subdivisions of the default network, the hub regions, the medial temporal lobe 

subsystem, and the dorsal medial prefrontal subsystem, which are involved in valuation of 

motivationally salient information, memory-based simulation functions, and introspection, 

respectively, among other functions (Andrews-Hanna, 2011). Our results suggest these 

regions are important for individual differences in cognitive ability. Specifically, higher 

cEF was associated with higher default network activity across the three EF tasks. One 

possibility is that high EF individuals could adaptively utilize the internal mentation 

functions of the default network highlighted above, such as memory-based simulation, to 

assist them in performance. However, there are other explanations. For example, high EF 

individuals may be able to tolerate more noise from internal mentation while performing EF 

tasks and hence exhibit more activation of these regions during task contexts than those with 

low EF. Future work is needed to test these hypotheses.

Strengths and Limitations

Our primary conjunction analyses assumed that activation in different brain areas reflects 

different functions, which may be invalid. Specifically, we searched for conjunction 

of individual differences as an indicator of seemingly centralized functions such as 

goal maintenance, assuming such maintenance happens in one location. Maintenance of 
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antisaccade related goals and keep track related goals could be localized in different places; 

however, there is little external evidence to support this claim.

The current study reports an initial analysis of the neural basis of individual differences 

in cEF. The GLM and connectivity results presented here do not represent all the possible 

neural implementations of individual differences in cEF or all the possible ways to test the 

goal maintenance and biasing hypotheses posed in the current manuscript. For example, 

the tasks we used were designed primarily to isolate sources of executive function. Future 

work could, for example, utilize multi-voxel pattern analysis (Norman, Polyn, Detre, & 

Haxby, 2006) to isolate and track variability in the strength of targets of control to an 

extent we were not able to in the current study. Additionally, individual differences in 

cEF may manifest via alternative measures we did not test here. For example, in our 

prior resting-state work, network-to-network connectivity (Reineberg et al., 2018) as well 

as graph-theoretic properties (Reineberg & Banich, 2016) of several brain regions were 

associated with individual differences in executive functions. These and other measures 

could be considered in future task-based fMRI studies of individual differences.

A strength of our approach was the specialized design of the tasks to elicit individual 

differences. For example, we maintained the same temporal structure in the scanner that 

has been used in the past in a purely behavioral context. The time pressure adds difficulty 

that may not normally be present in scanning studies that have long inter-trial intervals. 

However, the speeded nature of the tasks means that our tasks may not be as comparable to 

prior imaging work in which individual differences were not the main focus. Arguing against 

this possibility, our group average activation results suggest the areas necessary to perform 

our tasks are highly comparable to what is found in the existing literature as summarized 

above, both in terms of the task-specific results, conjunctions, and meta-analyses. Thus, 

these versions of the tasks seem to be generally comparable to versions designed without 

regard to individual differences.

Finally, our experiment was not designed to differentiate between differences in strategy 

selection versus differences in neural mechanisms. Experimenter instructions only 

communicated the goals for each EF task but did not instruct individuals on how to 

implement the goals cognitively. High cEF individuals may adopt different strategies 

in the three EF tasks compared to their lower-performing counterparts. Differences in 

strategies across individuals are not out of the question and are a topic of interest in the 

aging literature, where older adults lower performance may be driven by adoption of less 

demanding (but less effective) cognitive strategies (Cabeza et al., 2018). Such differences are 

an issue for future exploration.

Conclusion

The current study is the first task-based activation study to examine the neural basis of 

individual differences in a cEF factor derived from performance on multiple EF tasks 

and in multiple task contexts. Although we found robust cEF-related activations in each 

task and subthreshold patterns of cEF-related activation were correlated across task, the 

peak cEF-related activations after correcting for multiple comparisons for each of three 
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different EF tasks did not have any three-way conjunction. The role of the default network 

as observed in the analysis of individual differences in which we relaxed the significance 

threshold is a potentially novel mechanism to be explored in the future. cEF was not 

associated with the degree of lateral frontal activation in every task, although there was 

weak evidence for the hypothesis that cEF was associated with the functional connectivity of 

lateral prefrontal cortex to diverse task-specific areas, albeit at a much less rigorous standard 

of statistical significance when compared to the GLM analyses. Thus, there may be multiple 

contributors to good performance – quality of representations, default network activation to 

aid in internal mentation that may support task goals or task sub-processes, and strength of 

biasing towards domain-specific targets of control.

These insights would not be possible without this rich dataset from multiple fMRI tasks 

completed by a large sample of participants. Had we observed how individual differences 
in cEF or task performance predicted activity in one task, as is typically done in prior 
studies, we would have arrived at very different conclusions about the areas associated 
with individual differences, depending on which task we had chosen (e.g., potentially mis-
localizing a locus of goal maintenance). Thus, although the results of this conjunction 

analysis are complex, this complexity advances the literature and may help resolve 

inconsistency in past studies with individual tasks.
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Figure 1. fMRI results.
a-c. Group average activation for antisaccade, keep track, and number–letter tasks. d. 

Conjunction of group average map from all three tasks. e-g. Common Executive Functioning 

(cEF) covariate analyses. Individual differences maps for antisaccade, keep track, and 

number–letter tasks. h. Conjunction of individual differences maps for antisaccade, keep 

track, and number–letter tasks. Input maps are thresholded at pfdr < ∛0.05 = 0.368 rather 

than pfdr < 0.05 as in panels e, f, and g. red = positive activation or covariate association, 

blue = negative activation or covariate association
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Figure 2. Task-based functional connectivity results.
Individual differences in Common Executive Functioning (cEF) were associated with 

change in middle frontal gyrus (MFG; green) connectivity from the less demanding to the 

more demanding condition in each task. Connectivity result are masked by task activation 

cEF covariate maps and uncorrected for multiple comparisons. Connectivity beta values for 

the largest cluster for each task were extracted as examples. Scatterplots those connectivity 
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betas versus cEF scores (residualized on age, sex, and scanner) are shown on the right for 

example clusters from maps on the left (black circles).
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Table 1.

Descriptive statistics for behavioral variables.

n mean sd min max skew kurtosis Reliability 6-year stability
†

Antisaccade (234 ms cue) 276 44.42 21.03 6.67 96.67 0.35 −0.70 0.94* 0.68°

Antisaccade (284 ms cue) 289 58.95 21.25 8.33 96.67 −0.36 −0.77 0.93*

Stroop 580 145.93 75.09 −163.32 373.03 0.55 0.84 0.96* 0.48

Keep track 579 0.77 0.13 0.36 1.00 −0.69 0.14 0.74^ 0.51

Letter memory 585 73.28 13.97 35.61 100.00 −0.05 −0.97 0.93^ 0.84

Number-letter 568 182.22 120.73 −60.54 565.48 0.93 0.94 0.93* 0.55

Category switch 583 180.32 149.90 −103.05 664.08 1.22 1.55 0.93* 0.66

Common EF 587 0.00 0.81 −2.42 2.02 −0.13 −0.45 0.80

Shifting-specific EF 586 0.00 0.65 −2.11 1.70 −0.32 −0.26 0.62

Updating-specific EF 584 0.00 0.73 −2.52 1.73 −0.81 0.65 0.68

EF = Executive Functioning.

*
Split-half reliability (odd/even for Stroop task and category-switch task or run1/run2 for antisaccade task and number–letter task), adjusted with 

the Spearman-Brown prophecy formula.

^
Cronbach’s alpha across 3 runs for keep-track and 4 sets of trials for letter memory.

†
Pearson’s r between behavioral performance at current time and prior wave of data collection.

°
6-year stability for antisaccade task calculated across 234 and 284 ms cue versions.
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Table 2.

Spatial correlation (Pearson’s r) of all unthresholded z-statistic maps.

a. b. c. d. e. f. g. h. i. j. k. l.

GLM Group 
Average

a. antisaccade 1 0.65 0.39 −0.68 0.34 0.15 −0.05 0.08 0.13 −0.17 0.24 0.09

b. keep track 0.65 1 0.77 −0.41 0.65 0.44 0.12 0.4 0.05 −0.08 0.45 −0.18

c. number-
letter

0.39 0.77 1 −0.27 0.63 0.6 0.1 0.29 0.16 −0.14 0.37 −0.22

cEF 
Covariate

d. antisaccade −0.68 −0.41 −0.27 1 −0.21 −0.27 −0.11 −0.15 −0.2 0.15 −0.06 0.01

e. keep track 0.34 0.65 0.63 −0.21 1 0.6 0.25 0.32 0.04 −0.2 0.34 −0.21

f. number-
letter

0.15 0.44 0.6 −0.27 0.6 1 0.33 0.37 0.08 −0.14 0.18 −0.29

PPI Group 
Average

g. antisaccade −0.05 0.12 0.1 −0.11 0.25 0.33 1 0.73 0.23 0.11 0.14 −0.35

h. keep track 0.08 0.4 0.29 −0.15 0.32 0.37 0.73 1 0.15 0.26 0.21 −0.42

i. number-
letter

0.13 0.05 0.16 −0.2 0.04 0.08 0.23 0.15 1 0.08 0 0.04

cEF 
Covariate

j. antisaccade −0.17 −0.08 −0.14 0.15 −0.2 −0.14 0.11 0.26 0.08 1 −0.02 −0.08

k. keep track 0.24 0.45 0.37 −0.06 0.34 0.18 0.14 0.21 0 −0.02 1 −0.15

l. number-
letter

0.09 −0.18 −0.22 0.01 −0.21 −0.29 −0.35 −0.42 0.04 −0.08 −0.15 1

Red = positive correlation, Blue = negative correlation. GLM = general linear model results; PPI = psychophysiological interaction analyses; cEF = 
Common Executive Functioning scores.
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