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Gaining confidence in inferred 
networks
Léo P. M. Diaz & Michael P. H. Stumpf*

Network inference is a notoriously challenging problem. Inferred networks are associated with 
high uncertainty and likely riddled with false positive and false negative interactions. Especially for 
biological networks we do not have good ways of judging the performance of inference methods 
against real networks, and instead we often rely solely on the performance against simulated data. 
Gaining confidence in networks inferred from real data nevertheless thus requires establishing reliable 
validation methods. Here, we argue that the expectation of mixing patterns in biological networks 
such as gene regulatory networks offers a reasonable starting point: interactions are more likely 
to occur between nodes with similar biological functions. We can quantify this behaviour using the 
assortativity coefficient, and here we show that the resulting heuristic, functional assortativity, offers 
a reliable and informative route for comparing different inference algorithms.

Network inference is the process by which we aim to learn the structure of networks from data1,2. The networks 
that we are particularly interested in are those that capture molecular signalling and regulatory processes. How-
ever, the interactions occurring inside cells are often hard to observe, and statistical dependencies between indi-
rect observations are used as a proxy to infer real interactions in the processes of interest. That way, dependency 
in patterns of gene expression may be taken as a reflection of real interactions between e.g. the genes or their 
products, but such relationships are particularly difficult to infer indirectly3.

There is a vast literature on developing approaches for network inference (reviewed partially in1,2,4–6). The 
panoply of methods includes: correlation and partial correlation measures; Bayesian network algorithms; infor-
mation-theoretical dependency measures; regression approaches; methods adapted from dynamical systems 
theory; general machine learning approaches, including different flavours of deep neural networks; and hybrid 
methods that incorporate a panel of different estimation procedures. Each method comes with its own set of 
assumptions and limitations, and these may not always be made explicit.

Assessing the strengths and weaknesses of different methods, and comparing their performance has been 
fraught with difficulties, such as the high computational cost of many network inference methods, which has 
often prohibited extensive analysis2. More importantly, however, is the scarcity of suitable test datasets, with large, 
exhaustively validated networks of real biological systems remaining largely elusive. The DREAM initiative is an 
ongoing effort aimed to remedy this lack of ground truth to use as reference by providing solid in silico test cases 
for which we can precisely evaluate and compare the performance of different statistical approaches, including 
network inference methods, which were the focus of the DREAM 4 challenges for instance4. Other studies have 
followed up on this to provide similar assessments of network inference methods for single cell data5,6.

Yet, conclusions drawn from such efforts also come with limitations. Worryingly, these may be easily over-
looked, often as a consequence of the design setup of the challenges themselves, presented as contests where 
inference algorithms are ranked from best to worst according to their performance. Such rankings in absolute 
terms are quick to discard the specific context in which an algorithm was tested as in silico tests may have implicit 
or explicit biases for a particular set of approaches over others. Therefore such rankings are only valid in the 
specific, highly controlled setting of the corresponding inference challenge7.

In some instances algorithms have become de facto standards, either because they arrived early on the scene 
or because of their fast or easy implementation; and often less emphasis has been put on assessing their accuracy, 
with the quality of their predictions rarely being evaluated explicitly post publication. Sometimes, and this is 
demonstrably not appropriate, inferred networks have even been analysed as if they were reliable representa-
tions of biological reality.

Clearly the situation is far from satisfactory: (i) there is need for better models of biological systems, including 
networks, which can form the basis for more detailed mechanistic and predictive models; (ii) in silico methods 
could be a cheaper and attractive alternative to many experimental assays, provided their limitations are made 

OPEN

School of BioSciences and School of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3010, 
Australia. *email: mstumpf@unimelb.edu.au

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-05402-9&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:2394  | https://doi.org/10.1038/s41598-022-05402-9

www.nature.com/scientificreports/

explicit; (iii) apart from sanitised simulated data there is typically very little to go on for a meaningful evaluation 
of an algorithm’s performance.

Here we introduce and discuss a heuristic that allows us to quantify relatively the confidence we should have 
in proposed biological networks, such as those emerging from network inference. Heuristics of this type—and we 
shall revisit and stress this point below—offer primarily a sanity check: if the inferred network scores very poorly, 
we should probably resist from analysing it further. The heuristics are not meant to replace experimental or statis-
tical (in)validation8,9 rather they aim to put on a quantitative basis what is frequently done by visual inspection.

Below we first outline network inference and the plausibility of inferred networks; we then illustrate how 
network assortativity10,11 allows us to compare and rank different network inference algorithms; we then outline 
how this approach can be employed in practice, before concluding with a discussion on difficulties in the process 
of network inference.

Assessing the plausibility of inferred networks
A network is represented by the ordered pair

where V denotes the set of nodes or vertices V = {v1, v2, . . . , vN } , and E = {e1, e2, . . . , eM} , the set of links or 
edges. While V is typically known, E only is in a few instances, and, arguably, exceedingly rarely in biology; 
instead we rely on statistical methods to infer the presence or absence of edges between pairs of nodes vi , vj ∈ V , 
i, j = 1, . . . ,N . We will not distinguish between directed and undirected networks as our discussion is applicable 
to both with only minor modification.

Network inference algorithms typically score edges1,2,12, and this score, here denoted by ξij , represents the 
relative weight in favour of an edge existing between nodes vi and vj . We shall often write ξ(q) , to denote the q-th 
highest score (we ignore possible ties, which can be straightforwardly resolved by ordering such sets of edges 
randomly), and understand that this refers to the score of the corresponding edge. Network inference is thus 
based on a process by which a pair of nodes is assigned a real value,

In fact, in network inference, we generally consider a function φ that takes states, ηi and ηj , associated with nodes, 
i and j, to determine the scores, ξ,

Thus we use a property of the nodes, such as expression levels, to determine if there is an edge present between 
them. For a set of l network inference methods,

which will result in inferred sets of edges, E1, E2, . . . , El , we want to assess the relative merit of these candidate 
inferred networks, which are, within the constraints of the methodology, the best available representation of the 
real network of interest.

Properties of biological networks.  Any real biological network (we note that there are limitations to net-
works as representations of real-world biological systems) is expected to have certain properties, which include 

1.	 Specificity: interactions will be more likely between nodes that have certain functionality (e.g. belong to 
the same functional class; or belong to different functional classes that have a high probability of interact-
ing—here Gene Ontology annotations can serve as a proxy for, or best guess of, functionality).

2.	 Modularity: groups of nodes will form tightly interacting modules with pronounced clique structure to 
fulfil their biological function; modules are expected to be enriched for nodes that have similar or related 
functions.

3.	 Connectedness: the true network will connect all nodes (this is not necessarily the case for incomplete 
data13).

4.	 Robustness: gross structural features, and thus the function of the network, should be robust against the 
removal of individual nodes.

5.	 Hierarchy: some nodes will have more prominent network positions (degree, centrality) and may orches-
trate module and modular dynamics.

6.	 Balance: a real network should have a structure that reflects function and functional importance14,15. For 
similar importance we can expect similar levels of network organisation, robustness, and modularity across 
the whole network16,17.

None of these points should be contentious if we accept (with the usual caveats) the functional relevance of bio-
logical networks. These points may contradict some simplistic network models18, but, as has been argued, and 
indeed demonstrated, elsewhere, the structure of real biological networks is much more nuanced and “scale-rich” 
than simple models might have suggested14,17,19.

Point 1, in particular (and to a lesser extent also point 2), allows us to develop quantitative criteria against 
which proposed networks (here we are predominantly concerned with inferred networks) can be evaluated. 
Points 3 and 4 reflect on network properties that go beyond local interactions, which may nevertheless help to 

G = (V , E)

(1)φ′ : (i, j) ∈ Z
2 −→ ξ ∈ R.

(2)φ : (ηi , ηj) ∈ (Rn
,R

n) −→ ξ ∈ R.

(3)C = {C1,C2, . . . ,Cl},
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compare the performance of different network inference methods3,13. For points 5 and 6 we may also be able to 
develop testing procedures, but these would have to start more explicitly from the top-down: coarse-graining 
and renormalisation methods may offer some potential routes25.

One important distinction needs to be made regarding the types of node properties we may want to compare 
in points 1 and 2. They can be categorical or structural: among the former we include biological annotations26; 
among the latter network properties of nodes10,11. For the former we can assume a null-model of independence. 
For the latter we can only assume conditional independence (conditional on aspects of network structure) which 
makes testing more complicated26.

Quantifying aspects of network organisation through assortativity.  Mixing patterns refer to the 
overall network organisation arising through attachment of nodes to other nodes with similar properties, and for 
pairwise comparisons we can use the assortativity coefficient10,11 to quantify this behaviour. This assumes that we 
can assign each node to a set of q properties, K = {κ1, κ2, . . . , κq} ; here κq may represent “unknown”. Crucially, 
the properties κi , i = 1, . . . , q must be different from the measurements or states, ηj , j = 1, . . . , u , that were used 
for inferring the network26.

The number of nodes with annotation κi is denoted by νi . We then define a matrix, A, where the entries, aij , 
are the number of edges connecting nodes with annotation i with those with annotation j. The assortativity 
coefficient11, r, then is given by

where the second equality results straightforwardly from conventional properties of matrix representations of 
networks.

The assortativity coefficient quantifies mixing patterns: confined to the range −1 ≤ r ≤ 1 , a network is said to 
be assortative when r > 0 (where nodes tend to be connected to nodes with similar properties), and disassorta-
tive otherwise10. The assortativity coefficient was originally calculated using node degree as a basis to compare 
node similarity, yielding degree assortativity10. However, in addition to node degree, any other node annotation 
may be used.

Functional network modules play a crucial part in cellular processes27–30, and inferred networks should reflect 
this organisation. Quantifying network assortativity with respect to functional annotations of nodes then allows 
us to draw from both points 1 and 2 in “Properties of biological networks” section, (functional) specificity and 
modularity: assortativity can be used as a heuristic to quantify the explicit assumption of mixing patterns by 
biological function.

Experimental evidence supporting the importance of functional modules in biological networks includes: 
observations in Saccharomyces cerevisiae of preferential interaction between functionally related genes26,31,32 that 
cluster at the level of cellular process20 into functional modules with more connections within, as opposed to 
between, modules than expected to be the case in random networks33; and the identification of groups of gene 
(“dynamical modules”) coherently implementing biological functions in the Drosophila melanogaster gap gene 
network30. In general, the clustering of genes within biological process supports the assumption of functional 
modules, i.e. mixing patterns with respect to biological function.

As we have argued, this behaviour is quantified by the assortativity coefficient: under this assumption, we 
expect biological networks to exhibit assortative mixing with respect to biological function; a higher coefficient 
indicates more support in favour of a given network. We refer to this heuristic as functional assortativity, which 
is a function of node annotations corresponding to biological function. This proxy measure for quantifying the 
plausibility of inferred networks presents the advantage to hold regardless of the inference methodology and 
thus allows us to compare inference algorithms.

Measuring confidence in inferred networks
Below we outline the inference methods used, before discussing their respective candidate networks in light of 
the assortativity coefficients.

Inference algorithms considered.  We compare the performance of seven inference algorithms and use 
these to illustrate the behaviour of the assortativity coefficient. We use two correlation-based approaches—linear 
correlation (LC) and rank correlation (RC) coefficients—and an information-theoretic approach—based on the 
mutual information (MI)—as baseline predictions because of their popularity and ease of use (e.g.34); to these 
we add three other information-theoretic approaches—context likelihood of relatedness (CLR)23, proportional 
unique contribution (PUC)3, and partial information decomposition and context (PIDC)3,35—and a regression-
based algorithm—GENIE324, ran here with default settings—see Table 1 for more detailed descriptions of each. 
The focus on information-theoretic approaches stems from the ability of mutual information to capture non-
linear relationships in a largely unbiased fashion22,36, which is of obvious importance in a biological context.

We choose to focus on undirected networks; that way, assumptions about putative regulatory relationships 
are kept minimal and each edge can be treated as a falsifiable hypothesis. GENIE324 produces directed networks, 
and we turn the edges into undirected edges in order to allow comparison; we do this by retaining only the first 
occurrence of each edge in either direction (meaning that each edge in the undirected network is ranked accord-
ing to the position of the most likely interaction in the directed network).

We illustrate the methods by applying these inference algorithms to a single cell dataset of mouse embryonic 
stem cells, where gene expression is measured over seven days as cells differentiate into neurons37. Each gene 
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is manually annotated with one 12 classes of biological functions (mesoderm, primitive endoderm, endoderm, 
neuroectoderm, trophoectoderm, naive pluripotency, primed pluripotency, core pluripotency, loading control, 
cell cycle, chromatin modulator, and signalling), which allows us to measure functional assortativity as described 
above.

Functional assortativity coefficient.  We plot the functional assortativity coefficient (FAC) as a func-
tion of the number of candidate edges included in the networks resulting from the different methods in Fig. 1. 
By definition this is either 1 or −1 depending on whether the first edge is between nodes with the same or with 
different annotations. Both can be biologically reasonable: diverging annotations can, for example, result when 
one node is annotated as “primed pluripotency” and the other node as “signalling”, as is the case for the top-
rated edge resulting from PIDC (which connects CLDN6 and IGF2); this is a biologically plausible, and in line 
with known relationships in several organisms. The same annotation of both nodes is indicative of functional 
relationship as outlined above; “core pluripotency”, for example, is shared by FGF4 and POU5F1/OCT4, the top-
ranked edge for CLR, PUC, MI, and RC, and the 8th highest ranked edge for PIDC; this is a well-documented 
interaction playing a central role in stem cell differentiation38–40.

It is, of course, possible to work through the whole list of interactions and seek explicit confirmation for each 
scored interaction. If this is not automated this could be subject to investigator bias. The rationale for using the 
assortativity coefficient is to make this process automated and, conditional on the available network and annota-
tion data, unbiased. So while a realistic network will have—even for high-quality and nuanced annotations—a 
proportion of cross-category edges, a majority of within-category edges is expected.

The three more advanced information-theoretic inference methods, PIDC, CLR and PUC, display the high-
est FAC values for each fixed network size considered (Fig. 1). For all inference methods the FAC eventually 
decreases into the background noise as the networks become completely connected graphs. For each inference 
method we observe a maximum in the FAC for low to moderate values of the number of edges included in 

Table 1.   Description of inference algorithms compared.

Algorithm Description References

Linear correlation Measures the linear correlation between a pair of random variables 20

Rank correlation Measures the rank correlation between a pair of random variables 21

MI
Measures dependency between variables using the mutual information, that is the sum of the entropy 
of the variables minus their joint entropy; it represents the amount of information about one variable 
when another variable is known

22

CLR
Based on the value of the MI between pairs of variables in the context of MI scores for each possible 
combination of variable pairs. This approach is referred to as network context and amounts to calculat-
ing the likelihood of each MI score conditional on the overall score distribution

23

PUC Based on the mean unique information between variable pairs that accounts for their MI, as calculated 
via the partial information for each possible variables triplet for a given pair

3

PIDC Builds on the PUC approach by taking the network context into account in a similar way that CLR does 
i.e. by considering the overall distribution of PUC values

3

GENIE3
Creates as many regression problems as the number of input genes, then uses random forests to infer 
edges and their nature (genes are considered putative TFs if setting them as nodes on the trees reduces 
the variance of the predicted output)

24

Figure 1.   Evolution of the FAC as a function of the number of edges in a relevance network where edges are 
introduced in the order implied by their score.
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the network (roughly between 50 and 150). And for the network sizes considered here, the FACs for networks 
inferred with PIDC, CLR and PUC are generally higher than the FACs obtained using other methods.

This demonstrates that these algorithms result in inferred networks that have a higher number of interactions 
among functionally related nodes, compared to correlation or mutual information. As this is in line with biologi-
cal knowledge and intuition we would put more trust into networks inferred with e.g. CLR, PUC or PIDC than 
networks inferred by other means. Thus this analysis is in line with the results of recent comparative analyses of 
network inference methods5,6.

Discrepancies in inference algorithms predictions.  The different inference algorithms, l, yield differ-
ent sets of inferred edges, El , as is obvious in the overlap patterns of the Venn diagrams shown in Fig. 2: while a 
substantial number of edges are shared across inference algorithms, each method infers a set of interactions that 
no other methods pick up. This is already known, and is consistent with observations of discrepancies in widely 
used between inference methods for single-cell data5,6. It further highlights the need for developing better ways 
to assess our confidence in inferred networks, especially in the absence of ground truths12.

Other noteworthy trends are the large overlap between PIDC, CLR and PUC; more surprising perhaps is the 
apparent similarity of the signal picked up by the two correlation methods and MI (Fig. 2). Furthermore, GENIE3 
appears to be an outlier and routinely scores a relatively sizeable set of candidate edges that are not picked up by 
any other method. In the absence of a ground truth it is hard to make too much of these Venn diagrams, except 
perhaps at the extremes: groups of strong methods are expected to result in high concordance (reflected in large 
overlap), whereas very small overlap may indicate a set of three particularly poor inference methods.

Behaviour under artificial noise.  In order to investigate how sensitive functional assortativity is to the 
assumption of mixing patterns, we show in Fig. 3 its behaviour as the inferred networks are perturbed in differ-
ent ways.

We find that the FAC tends to 0 as biological functions are randomised among the nodes (Fig. 3, left column), 
showing that the signal it picks up is not merely an artefact of a particular network topology. Instead this suggests 

Figure 2.   A selection of Venn diagrams showing patterns of overlap between three given inference methods 
for relevance networks with 200 edges. Overlaps are according to the number of edges shared between the given 
inference methods. Large overlap can mean that the different methods detect the same signal, which does not 
necessarily mean that these are true edges. These diagrams thus provide an assessment of the concordance of the 
different inference methods.
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Figure 3.   Illustrating the behaviour of the FAC under noisy conditions. Mean (solid line) and standard 
deviation from the mean (shaded area) of the FAC as pairs of edges are rewired at random (left column), and 
as nodes are randomly attributed a different annotation (central column)—each plot shows 1000 repeats. Right 
column: comparison of the observed FAC for networks with 200 edges (vertical line) against distributions of the 
FAC in 1000 random networks with 200 nodes; blue, orange, and red coloured bands respectively indicate one, 
two and three standard deviations from the mean.



7

Vol.:(0123456789)

Scientific Reports |         (2022) 12:2394  | https://doi.org/10.1038/s41598-022-05402-9

www.nature.com/scientificreports/

that the inferred networks pick up a real signal from the nodes, which is a non random function of the particular 
topology of inferred networks and the associated group labels.

This is supported by the signal disappearing into noise with increasing levels of randomness in network 
structure (Fig. 3, middle column) and a sanity check of random values as expected in random networks (Fig. 3, 
right column).

From this, we conclude that functional assortativity is informative and reliable. Informative, because it is 
different than random: it measures the extent of mixing patterns by function, and the values it takes are not the 
result of chance alone. Reliable, because it is robust to low levels of noise—it can still pick up a signal under rea-
sonable perturbations—but that signal vanishes for higher levels of noise, thus apparently avoiding false positives.

Discussion
The lack of comprehensive, experimentally-derived networks that can be used as a reference makes rigorous 
assessment of network inference algorithms challenging. Most methods have their specific assumptions and this 
will lead to discrepancies in their predictions.

In the context of analysing real biological networks, such discrepancies are a clear indication that rankings 
of network inference algorithms should be taken with caution: they are only a reflection of their performance in 
the specific context they were tested in (and indeed, for the same inference method, we have seen discrepancies 
in performance—e.g. excellent predictions in some contexts, but only slightly better than random in others24). 
This goes to show that there is no definitive “best” method and performance is context-dependent.

We argue that this motivates the need for ways to compare inferred networks that are not biased towards our 
necessarily limited current knowledge41. We believe that the assumption of mixing patterns by function achieves 
this: it uses expectations as a basis for comparison, and these expectations are backed by both theoretical argu-
ments and empirical results. This frees us of the potentially misleading circularity that is inherent to in silico 
approaches, and has the advantage of making our assumptions explicit and thus falsifiable.

We find that the behaviour of mixing patterns by function is reliably measured by the FAC. This makes it 
conceptually related to network modularity, where instead of quantifying aspects of network structure based 
purely on topological properties, it does so based on biological function. This balances the limited mechanistic 
assumptions of many network inference methods (although GENIE3 and other methods allow inclusion of 
prior knowledge)—only quantifying statistical dependency at its core—by grounding the process in realistic 
biological assumptions.

While clearly not all interactions are between genes performing the same biological function, this type of 
interaction will dominate (compared to the case of purely random connections). Thus functional assortativity 
allows us to quantify confidence in inferred networks as we would thus put more trust in networks that are 
functionally assortative than those that are not. As such, it is a heuristic that can guide the decision-making 
part of the inference process when it is understood as an inverse problem42. It effectively displaces the notion of 
confidence from the ability to reproduce previous observations to ability to produce expected results. We believe 
this approach, and others based on a similar perspective, to be useful in contexts where our knowledge is limited.

Conclusion
Networks remain a useful starting point for mechanistic analysis and assessing confidence in in silico inferred 
networks is important for the further use of such networks. Two limiting factors in our approach are (i) it only 
provides a heuristic way of ranking different inferred networks; and (ii) it requires that genes be annotated with 
a biological function43,44—this data may not be readily available; it may be incomplete; and it may be subject 
to uncertainty and or errors. We believe that there is an urgent need for an approach such as the one described 
here. In the absence of rigorous statistical assessments of inferred networks, the simple heuristic provided by 
the functional assortativity coefficient can provide criteria by which to gauge the reliability of inferred networks.

The present approach relies on the annotation of nodes, and increasing the quality of such annotations will 
clearly benefit this proxy measure. Additional improvements could come from considering functional assorta-
tivity locally, that is in specific areas of the overall network. Currently, however, as a rule of thumb, functional 
assortativity allows us to rank different candidate networks or network inference methods. knowing which 
inferred networks are worth further consideration, and which ones are best ignored will have a profound impact 
on our ability to make use of networks. Quickly being able to reject some network inferences does allow for more 
streamlined analysis, but is also essential45 if we want to base predictions on ensembles of network inference 
methods: ensembles of inference methods can be severely affected by poorly performing algorithms and filtering 
out those methods with poor performance—as assessed, for example, via the FAC—can boost the reliability of 
networks inferred from ensemble approaches.

Data availability
All data and code are available at http://​doi.​org/​10.​5281/​zenodo.​40216​79.
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