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The application of bacteriophages as antibacterial agents has many benefits in the “post-antibiotic 
age”. To increase the number of successfully targeted bacterial strains, phage cocktails, instead of a 
single phage, are commonly formulated. Nevertheless, there is currently no consensus pipeline for 
phage cocktail development. Thus, although large cocktails increase the spectrum of activity, they 
could produce side effects such as the mobilization of virulence or antibiotic resistance genes. On the 
other hand, coinfection (simultaneous infection of one host cell by several phages) might reduce the 
potential for bacteria to evolve phage resistance, but some antagonistic interactions amongst phages 
might be detrimental for the outcome of phage cocktail application. With this in mind, we introduce 
here a new method, which considers the host range and each individual phage-host interaction, to 
design the phage mixtures that best suppress the target bacteria while minimizing the number of 
phages to restrict manufacturing costs. Additionally, putative phage-phage interactions in cocktails 
and phage-bacteria networks are compared as the understanding of the complex interactions 
amongst bacteriophages could be critical in the development of realistic phage therapy models in the 
future.

Bacteriophages, or phages, are the viruses of bacteria. They infect and replicate within their host and, subse-
quently, lyse and kill the bacterial cell to release new phage offspring. This “life” cycle confers phages with an 
intrinsic ability to act as antimicrobials, making them an interesting approach to overcome the current global 
antibiotic resistance crisis brought about by widespread antibiotic misuse. Indeed, the application of bacterio-
phages as therapeutics and biocontrol agents is increasingly gaining popularity, especially as a tool to fight against 
multiresistant pathogenic bacteria in several fields such as human health, agriculture, and the food industry 1,2.

Besides their lytic ability, another distinctive feature of phages is their high host specificity. This property 
would prevent disturbance of the surrounding microbiota when phages are used to remove pathogenic bacteria, 
which is a significant advantage over antibiotic therapy3. Nevertheless, in terms of efficiency, very specific phages 
(those infecting only a small number of strains) represent a challenge, making it necessary to use mixtures con-
taining different phages with complementing host ranges, the so-called phage cocktails, to increase the number 
of target strains and become useful for a wider range of applications/patients4. Alternatively, a single phage with 
a broad host range or a polyvalent phage5 can be used to target multiple strains from a species or even multiple 
species in a community. However, polyvalent phages frequently show differences in infection efficiency (EOP) 
on different hosts due to, for instance, differential receptor-phage binding affinity.

From a logistical standpoint, therapeutic regimes involving only one phage would be simpler and potentially 
less costly. Indeed, phages that are part of a cocktail must be propagated individually, purified, and mixed prior 
to use, which might result in higher manufacturing costs. On the other hand, cocktails improve the commercial 
applicability of phage formulations partly due to their wider range of bacterial targets. Thanks to this ability, 
cocktails have the potential to be used without prior identification of the pathogens involved. Furthermore, phage 
cocktails may reduce or almost eliminate the chance of selecting phage-resistant bacteria6. To achieve this goal, 
phages in the cocktail should preferably belong to different families, so that strains becoming resistant to one 
phage can be potentially targeted by another phage in the mixture, as superinfection immunity is not possible 
between unrelated phages.
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To date, there are no validated guidelines for the design of individual or mixed phage preparations target-
ing a given pathogen7. Therefore, in order to assemble a phage cocktail with optimal therapeutic potential, it is 
first necessary to identify candidate phages, and then determine their infection profiles against a diverse set of 
strains spanning the major lineages of the target bacterium. Nonetheless, bacteriophage cocktails should not be 
random mixtures of different bacterial viruses. For instance, Merabishvili et al.8 recommended some features to 
be considered for the selection of phages, which include being strictly virulent, not carrying virulence genes, and 
exhibiting high killing of the target pathogen, good stability and no transducing ability. In some cases, cocktail 
design would also involve the choice of bacteriophages with different bacterial cell wall receptor recognition 
sites9,10, thereby minimizing the emergence of resistance mutants. Additionally, phage candidates should exhibit 
the broadest host range possible against the target bacterium. When necessary, the host range might be broadened 
by serial passages on different bacterial strains, thus allowing adaptation of the bacteriophages by coevolution 
with their host11. Also, there are specific methods available to isolate phages with broad host range12 or to broaden 
the host range through site-directed mutagenesis of the host-range-determining regions (HRDRs) in the phage 
tail fiber protein13. Likewise, synthetic biology can be used to modify the phage host range by engineering phage 
genomes through modular swapping of phage tail components14.

In some cases, it is necessary to target several bacterial species with one formulation. This application would 
entail the design of even more complex cocktails, containing mixtures of bacteriophages active against each 
bacterial species. In this case, cocktail design is mainly based on the microbial composition and the frequency 
of occurrence of different bacterial species in the target infection site. Examples of complex cocktails include the 
commercial products Pyo- and Intestibacteriophage15.

Phage cocktail design must take into account not only interactions between phages and their hosts but also 
phage-phage interactions. The most well-known example of a phage-phage antagonistic relationship is the super-
infection immunity mediated by temperate phages. Indeed, bacteria carrying a prophage are typically resistant 
to infection by related phages16. Moreover, phage satellites or pathogenicity islands can limit propagation of 
their helper phage, which confers some level of phage resistance to host bacteria17. Because of these and other 
interactions, the host range of a phage cocktail could be different from that predicted theoretically by combin-
ing the host range of each individual phage. Indeed, some phages might interact upon coinfection18 leading to 
synergetic or antagonistic effects19. For example, some cocktails show a narrower host range than the sum of the 
host ranges of all individual phages independently20. This could be due to host infection competition between 
phages, i.e., coinfection of the same host cell by multiple phages may lead to increased competition for limited 
cellular resources, thus reducing the fitness of an individual phage21. Antagonistic interactions might also occur 
when phages share the same receptor sites, or due to abortive infection mechanisms22. In turn, synergistic inter-
actions between phages may be related to the rate of infection, the production of progeny, or the time between 
infection and progeny release23. More recently, a phage-phage communication system, arbitrium, that allows 
cross talk among close phages to regulate the lytic/lysogenic life cycles was described by Stokar-Avihail et al.24. 
Interestingly, this system may allow interactions with more genetically distant phages.

Overall, it seems clear that optimizing the number and combination of phages will be critical for designing 
effective therapeutic and biocontrol strategies. In a previous work25, the information provided by host range 
matrices was analyzed by building phage-bacteria infection networks (PBINs) and calculating the nestedness 
temperature (host range hierarchy of the phages). Subsequently, an estimator of phage cocktail size (Φ) was 
proposed considering some global properties of the host range matrices such as fill (fraction of successful infec-
tions), nestedness temperature, and number of bacteria. Here, we explore a new method, which considers the 
host range and each individual phage-host interaction, to design the phage mixtures that best suppress the target 
pathogens while minimizing the required number of phages.

Results and discussion
Designing phage cocktails from phage‑bacteria infection networks (PBINs).  In a recent work25, 
a pipeline for designing phage cocktails based on global properties (fill, temperature, and number of bacteria) 
of the PBINs was proposed. However, host range matrices needed to be processed by two different sorting algo-
rithms (BinMatNest and Ward) and the phage cocktail was not automatically generated (Fig. 1a). Here, we have 
developed a new approach (see Methods) that considers individually the host range of every phage, designs cock-
tails using only one sorting algorithm and automatically provides the Minimum Cocktail Size (MCS) (Fig. 1b).

A total of 50 datasets that include bacteria and phages from different sources, such as seafood, plants, live-
stock, dairy, sewage, clinical isolates and laboratory collection strains (Table 1) were used to build the PBINs 
and calculate the Expected Importance (EI) of every bacterium and phage (see Methods) in order to design 
the corresponding phage cocktails. Whereas most datasets (42 out of 50) comprised a single bacterial species, 
matrices harboring 2, 5 and 15 species were also surveyed (Table 1). The most frequent species was Escherichia 
coli, which appeared on 18 matrices, followed by Pseudomonas aeruginosa and Staphylococcus aureus, which 
appeared on four and three datasets, respectively. However, most bacterial species (43 out of 52) were present in 
a single dataset. In total, 2,877 bacterial strains, 899 phages and 52,688 phage-host interactions were evaluated. 
Subsequent processing of the PBINs led to the construction of subnetworks named Phage Cocktail Networks 
(PCNs), harboring all bacterial strains susceptible to phage infection as well as the phages contained in a hypo-
thetical cocktail (Fig. 1b). Therefore, a processed network displays two types of source nodes (unselected vs. 
cocktail phages), two types of target nodes (resistant vs. susceptible bacteria) and two types of edges (unselected 
phages-bacteria vs. cocktail phages-bacteria interactions). Selection of the phages constituting the candidate 
cocktails was performed by applying both heuristic (Network Metrics) and exhaustive (Exhaustive Search) 
algorithms from the Cytoscape application PhageCocktail26 (freely available at https://​apps.​cytos​cape.​org/​apps/​
phage​cockt​ail), seeking the PCN that maximized the expected number of lysed bacteria while keeping a MCS. 

https://apps.cytoscape.org/apps/phagecocktail
https://apps.cytoscape.org/apps/phagecocktail
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The heuristic algorithm employs EI values and considers phages with a broad host range (high EIp values) as 
better candidates for the cocktail, and bacteria susceptible to be infected by fewer phages (low EIb values) as 
more problematic. Contrastingly, the exhaustive algorithm evaluates all the possible phage combinations, which 
warrants the identification of the smallest theoretical cocktail. However, this algorithm imposes a computational 
runtime penalty and may take several hours to execute26 when the number of phages is large. For instance, one 
matrix (named Korf et al. in Table 1) needed to be processed overnight. It must be highlighted that, even though 
alternative algorithms, such as agglomerative hierarchical clustering of phages by their host range, are faster, the 
exhaustive algorithm employed in this work warrants the best results (Díaz-Galián et al., submitted), i.e., the 
MCS infecting the highest number of bacteria.

Since Exhaustive Search outperforms Network Metrics, yielding smaller cocktails for the same number of 
infected bacteria (data not shown), we selected the PCNs obtained with the latter algorithm for further evaluation 
(Fig. 2). To compare both algorithms the expected importance (EI) of each node, determined by the Network 
Metrics algorithm (see Methods), is also shown. It is noteworthy that the Exhaustive Search preferably selected 
generalist phages displaying high EI values (Fig. 2). Although the current implementation of Exhaustive Search 
in PhageCocktail 1.1 is limited to combinations comprising up to 12 phages, this did not represent a problem in 
our search given that the size of the largest candidate phage cocktail predicted by the algorithm was 11.

The complexity of a bipartite network depends on its size, symmetry, and fill (fraction of the maximum num-
ber of edges). For instance, square matrices result in more complex networks than similarly sized asymmetric 
networks because the maximum number of edges (possible phage-host interactions) increases. Additionally, the 
maximum algorithmic complexity27 of a PBIN is found for intermediate fill values because broad-host-range 
phages simplify cocktail design and any phage with an EIp of 100 might be able to infect every host in a dataset. 
With this in mind, we sought to further characterize the PBINs by comparing the number of bacteria, phages 
and fill of each matrix (Fig. 3a). Most of the PBINs (80%) comprised more bacteria than phages, and the number 
of nodes (phages plus bacteria) ranged between 10 and 906. Large matrices were lightly filled suggesting a weak 
negative correlation between matrix size and fill (see below). Two outgroups harbored a significantly higher 
than average number of phages (166 vs. 18) and bacteria (896 vs. 58). These results showed the lack of consensus 
regarding the number of bacteria needed for host range determination, which coincides with the data obtained 
from a recent survey28 that found very little agreement in this regard between researchers (most answers stretched 
between 20 and 100 but one reached 800). Similarly, bias in data gathering, such as not considering narrow-host-
range phages, might skew the fill of the PBINs.

Figure 1.   Alternative pipelines for designing phage cocktails. (A) Global properties of Phage Bacteria Infection 
Networks (PBINs). Nestedness algorithms reorder host range data and estimate the deviation (temperature) 
from a perfectly nested matrix by computing the relative distances (d/D) to the isocline of perfect order (blue 
line). The metric Φ considers global properties of the networks to estimate phage cocktail size25. Agglomerative 
hierarchical clustering is used prior to manual selection of the phages constituting each cocktail. (B) Automatic 
determination of the Minimum Cocktail Size (MCS). Bipartite phage-bacteria interaction matrices are 
imported into Cytoscape as directed networks, and the expected importance (EI) is measured for each node 
(see Methods). Nodes are colored and sorted by their EI and cocktails are designed, both heuristically and 
exhaustively, using the app PhageCocktail. The subnetwork (Phage Cocktail Network) harboring all susceptible 
bacterial strains and phages corresponding to the MCS is selected for each PBIN.
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References Matrix size Hosts Phages Source

Hong et al. (2013)a 21 Salmonella gallinarum 7 3 Sewage, laboratory

Shende et al. (2017)a 40 Escherichia coli, Bacillus subtilis 8 5 Manure, sewage water

Mizuno et al. (2020)b 64 Citrobacter rodentium 32 2 Sewage treatment plant

Liao et al. (2019)a 68 Escherichia coli 17 4 Non-fecal compost, laboratory

Krasowska et al. (2015)a 76 Bacillus subtilis 19 4 Soil, laboratory

VHR1b, James L. Van Etten lab 78 Chlorella variabilis 6 13c Laboratory

Gutiérrez et al. (2015)b 90 Staphylococcus, Macrococcus caseolyticus 45 2 Sewage treatment plant

Hwang et al. (2009)a 96 Campylobacter jejuni 16 6 Poultry, sewage, soil, laboratory

Kwiatek et al. (2015)a 100 Pseudomonas aeruginosa 20 5 Sewage, clinical

Hammerl et al. (2016)a 108 Brucella inopinata 36 3 Laboratory

Xie et al. (2016)a 120 Salmonella enterica 12 10 Manure, water, soil, laboratory, cattle feedlots

Magaré et al. (2017)a 125
Bacillus novalis, Pseudomonas aerugi-
nosa, Staphylococcus epidermidis, Bacillus 
cereus, Staphylococcus aureus

5 25 Air

Álvarez et al. (2019)a 126 Ralstonia solanacearum 42 3 River water, potatoes, laboratory

Pereira et al. (2016)a 126 Salmonella typhimurium 42 3 Sewage, food, water, laboratory

Yu et al. (2016)a 155 Pseudomonas syringae pv. actinidiae 31 5 Soil, kiwifruit orchards

VHR5b, PMID: 22,936,928, 26,884,161, 
10,430,569, 24,433,295, 22,834,906, 14,592,760 156

Sulfolobus strains, Pyrobaculum 
arsenaticum,Pyrobaculum oguniense,Sulfolubus 
islandicus, Acidanus strains

12 13 Acidic hot springs

Denou et al. (2009)b 156 Escherichia coli 26 6 Human feces

Schouler et al. (2021)b 168 Escherichia coli 56 3 Chicken fecal, recombinant phages

Gutierrez et al. (2010)b 195 Staphylococcus epidermidis 65 3 Women’s breast milk

Dias et al. (2013)a 200 Staphylococcus aureus 20 10 Livestock, sewage

Maura et al. (2012)b 219 Escherichia coli 73 3 Human feces

Galtier et al. (2017)b 219 Escherichia coli strain 73 3 Feces homogenates from murine gut samples

Alič et al. (2017)a 220 Dickeya 55 4 Orchid, wastewater

Molina et al. (2021) (3C)a 260

Citrobacter freundii, Citrobacter youngae, 
Escherichia coli, Hafnia alvei, Klebsiella pneu-
moniae, Lactobacillus acidophilus, Lactobacillus 
casei, Lactococcus lactis ssp. Lactis, Salmonella 
typhimurium, Enterobacter aerogenes, Serratia 
marcescens, Shigella boydii, Shigella flexneri, 
Shigella sonnei, Yersinia enterocolitica

26 10 Manure, sewage, laboratory, dairy

Salifu et al. (2013)a 270 Rhodococcus equi 27 10 Soil, equine

Arachchi et al. (2014)a 300 Listeria monocytogenes 50 6 Laboratory, seafood

Oh et al. (2017)a 324 Bacillus cereus 27 12 Laboratory, fermented food, soil

Wandro et al. (2019)a 330 Enterococcus faecium 15 22 Sewage human feces

Gunathilaka et al. (2017)a 348 Escherichia coli 12 29 Wastewater, laboratory

Jurczak-Kurek et al. (2016)a 360
Escherichia coli, Pseudomonas aeruginosa, 
Salmonella entérica, Staphylococcus sciuri, 
Enterococcus faecalis

60 6 Clinical, urban sewage

Litt and Jaroni (2017)a 378 Escherichia coli 54 7 Clinical, cattle feces

Romero-Suarez et al. (2012)a 416 Xanthomonas arboricola pv. juglandis 16 26 Walnut orchards

Wang et al. (2015)a 451 Escherichia coli 41 11 Cattle feces, human

Murphy et al. (2013)a 480 Lactococcus lactis 20 24 Dairy, Gouda-type cheese-producing plants 
Lactococcal phages

Sajben-Nagy et al. (2012)a 544 Pseudomonas tolaasii 34 16 Laboratory, mushroom

Sekulovic et al. (2014)b 555 Clostridium difficile 37 15 Animal and human fecal

Mangieri et al. (2020)50 630 Escherichia coli 30 21 Cattle and sheep feces, bedding material, 
sewage

Galtier et al. (2016)b 876 Escherichia coli 73 12 Sewage

Vu et al. (2019)a 1209 Listeria 31 39 Vegetable, seafood, sivestock, foods and food 
processing environments

VHR14b, Mathieu et al. (2020) 1344 Escherichia coli 84 16 Fecal samples of 1-year-old children

Molina et al. (2021) (3A)a 1456 Escherichia coli 56 26 Livestock feces, dairy, laboratory

Petsong et al. (2019)a 1692 Salmonella enteritidis, Salmonella typhimurium 47 36 Livestock

Jäckel et al. (2017)a 2147 Ochrobactrum, Brucella inopinata 113 19 Laboratory

Brady et al. (2017)a 2280 Paenibacillus larvae 40 57 Beehive

Lourenço et al. (2020)b 2744 Escherichia coli 98 28 Sewage water, laboratory

Continued
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Analysis of minimum‑sized phage cocktail networks (PCNs).  The distribution of the MCS in the 
different datasets (Fig. 3b) shows that most of the PCNs were indeed single phage formulations, followed by 
2- and 3-phage cocktails, whereas larger (4, 5, 7, 8 and 11) cocktail sizes were less common. On the other hand, 
the number of bacteria in PCNs with a low MCS tended to be smaller. Thus, the minimum number of bacteria 
in large cocktails (containing four or more phages) was 10, whereas 19% of the PCNs corresponding to smaller 
cocktails contained nine or fewer bacterial strains.

In a previous work25, the size of candidate phage cocktails was estimated using a metric (Φ) that considers 
properties of PBINs such as nestedness temperature, fill and the number of target bacteria. However, Φ does 
neither evaluate individual phage-host interactions nor provide the minimum possible cocktail size. Comparison 
of both estimators, MCS and Φ, revealed (Fig. 3c) that Φ was larger than MCS for half (49%) of the PBINs, while 
being identical for most of the other half (37% of the total). Strikingly, Φ was smaller than MCS for the remain-
ing PBINs (14%) most of which were fairly large networks. Remarkably, Φ takes into account the ecological and 
evolutionary information provided by the structure of PBINs, but it does not intend to achieve the minimum 
possible cocktail size. Also, Φ can be even larger than the number of phages assayed25 suggesting that additional 
phages should be isolated to perform effective biocontrol of the bacterial population. Conversely, the Exhaus-
tive Search algorithm used to determine MCS examines individual phage-host interactions, thereby providing 
the optimal theoretical cocktail, rather than global properties of the network, and the expected success of the 
cocktails can be gauged by comparing PBINs and PCNs.

For fully successful cocktails, all the bacteria in a PBIN should also be part of the final PCN. With this in 
mind, the expected cocktail efficacy was estimated as the fraction (%) of bacteria susceptible to at least one 
phage in the cocktail by calculating the ratio of bacteria in every PCN/PBIN pair (Fig. 3d). These calculations 
revealed that 26% of the PCNs comprised all the bacterial strains from the original PBINs, which corresponds 
to the fraction (13 out of 50) of fully successful phage cocktails. While the fraction of bacteria lysed is generally 
high for all cocktail sizes (the median of all datasets is 74%), the variability of the expected efficacy decreases as 
MCS increases. This, however, is likely due to the asymmetric distribution of cocktail sizes (Fig. 3b). Interestingly, 
large phage cocktails did not exhibit low efficacy values (Fig. 3d) evincing that the algorithms used to design 
the cocktails do not spuriously increase the MCS. In the case of the heuristic algorithm, MCS is determined by 
favoring generalist phages with broad host range over specialists with narrow host range. In this regard, several 
experiments have shown that host range is a highly evolvable trait that relies on diversity, density and quality of 
hosts29. However, although host range expansion seems advantageous for phages, generalism may come with 
some tradeoffs such as a lower propagation rate30. Taking this into consideration, it would be interesting to 
develop alternative strategies for designing phage cocktails that maximize phage productivity, for example by 
selecting phages with large burst sizes and/or short latent periods, rather than those that minimize cocktail size.

Phage‑phage interactions: PBINs vs. PCNs.  Although all the datasets evaluated in this work comprise 
experimental data, the actual performance “in vivo”of the phage cocktails designed here might be affected by 
phage-phage interactions that could hamper or facilitate coinfection (simultaneous infection of one host cell by 
several phages). To evaluate these putative interactions, PCNs were grouped by their MCS and then used to cal-
culate the percentage of bacteria lysed by a given number of phages in all cocktails of the same size (Fig. 4a). This 
analysis revealed the intensity and frequency of phage-phage interactions for different cocktail sizes. Notably, the 
bulk of the bacterial hosts were lysed by a single phage, even in large cocktail networks, and only in the group 
comprising 3-phage cocktails there were more bacteria lysed by two phages than by a single one. Additionally, no 
bacterial host was lysed by 7, 9, 10 or 11 phages in the PCNs containing 7, 8 or 11 phages. These results suggest 
that, even though search algorithms preferably select generalist phages, the nestedness of the PCNs might be 
lower than that of the original PBINs25. Consequently, despite the fact that phages in nature span the continuum 
from specialist to generalist31, cocktail design might alter this equilibrium by favoring the selection of broad-
host-range phages.

To further compare the structure of PBINs and PCNs, we studied the redundancy variation (rv) of phage 
coinfections. The redundancy of phage-host interactions (r), defined as the fraction of phages lysing a given 
bacterial strain in a network (see Methods), can increase, decrease or remain constant when comparing PBINs 
and PCNs (see examples in Fig. 4b). In turn, rv allows comparison of the redundancy found in a PCN compared 

References Matrix size Hosts Phages Source

Fong et al. (2019)51 2806 Salmonella enterica 61 46
Sediment, cattle feces, sewage effluent, irriga-
tion water, water tanks from an aquaculture 
facility

Gencay et al. (2019)a 2952 Salmonella 72 41 Laboratory, pork meat, environmental and 
wastewater samples

Korf et al. (2019)a 3200 Escherichia coli 64 50 Poultry, sewage, manure, clinical

Saussereau et al. (2014)b 8960 Pseudomonas aeruginosa 896 10 Cystic fibrosis isolates, laboratory

Mathieu et al. (2020)a 12,450 Escherichia coli 75 166 Fecal

Total 52,688 2877 899

Table 1.   Experimental host range matrices used to generate Phage-Bacteria Infection Networks. a Full 
reference available at Molina et al. (2021) https://​doi.​org/​10.​3389/​fmicb.​2021.​564532. b Downloaded from 
https://​viral​hostr​angedb.​paste​ur.​cloud/​data-​source/. c The original matrix was trimmed to remove gaps.

https://doi.org/10.3389/fmicb.2021.564532
https://viralhostrangedb.pasteur.cloud/data-source/


6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:2458  | https://doi.org/10.1038/s41598-022-06422-1

www.nature.com/scientificreports/

Figure 2.   Graphical representation of Phage Bacteria Infection Networks (PBINs) and candidate Phage 
Cocktail Networks (PCNs) depicting the Minimum Cocktail Size (MCS). A total of 50 PBINs, each harboring 
a PCN subnetwork, were built and phage cocktails were designed using an exhaustive algorithm as detailed 
in Methods and sorted by increasing matrix size (Table 1). The shape of the nodes represents bacteria ( ), 
unselected phages ( ) and cocktail phages ( ). The expected importance (EI) of each node represented by color 
shading so that more relevant nodes show more intense colors. Bacteria not susceptible to any phage (EIb = -100) 
are clustered in grids. Lysis is indicated by dark (unselected phages) or orange (phage cocktail) lines.
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to that of the original PBIN. This parameter ranges between a minimum (rvmin), when only one phage in the 
cocktail infects the host, and a maximum (rvmax), when all the phages lysing the host are considered. However, 
for single phage formulations rv = rvmin = rvmax. Consequently, rv can never decrease (Fig. 4b) and its value 
depends on how many phages infect the host in the PBIN (see Methods). After grouping the PCNs by MCS the 
redundancy change (rv) of the different bacterial strains was determined as log10 (rPCN/rPBIN) (Fig. 4c). It 
can be perceived that the median values of rv increased (up to 2.5-fold) for all but single phage cocktails. This 
result implies that most bacterial strains were lysed by all the phages in the PBINs corresponding to single phage 
cocktails. For the rest of the networks there was a fraction of bacteria showing negative rv values while others 
exhibited an increase of up to 35 times (1.5 log). However, rv did not reach 0.8 in large (7, 8 and 11-phage) 
cocktails, i.e., redundancy increased less than 6.3 times. Concurrently, a paired samples t-test revealed (data not 
shown) a statistically significant 0.17 log difference between the means of rv and rvmin and a 0.27 log difference 
between rv and rvmax, evincing the asymmetric effect of phage cocktails on rv. Remarkably, when rv values were 
grouped by the number of lysing phages instead of the MCS (Fig. 4d), the variability observed for rv decreased 
as the number of lysing phages increased. This result is partially explained by the low number of bacteria sus-
ceptible to a high number of phages in the cocktails, but it also reflects that these host strains are susceptible 
to be infected by a high number of phages both in the PBINs and PCNs. Conversely, bacteria lysed by a single 
phage in the cocktails were heterogeneous regarding their susceptibility to the other phages in their respective 
PBINs. Thus, some host strains susceptible to a single phage in the cocktails can be infected by multiple phages 
in the corresponding PBIN.

Figure 3.   Characterization of networks (PBINs and PCNs) complexity and expected cocktail efficacy. (A) 
Analysis of PBINs complexity and symmetry. Each dot represents a single matrix (see Fig. 2) and the fill (%) is 
represented by color intensity. The cyan line indicates the position of symmetric matrices. (B) Distribution of 
PCNs grouped by the number of phages (MCS). Each bar sector represents a PCN and its length correlates with 
the number of bacteria lysed by the cocktail. (C) Comparison of MCS and Φ estimators. 34 PBINs, taken from 
Molina et al.25, were sorted by decreasing size. Bar length indicates the MCS, whereas color corresponds to the 
MCS/Φ ratio. (D) Expected cocktail efficacy vs. MCS. The fraction (%) of bacteria susceptible to at least one 
phage of the cocktail is shown for every PBIN. The number of bacteria is grouped by percentiles and represented 
by a density plot.
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Recently, Niu et al.19 found different combinations of phages in cocktails displaying neutral, synergistic or 
antagonistic effects. Phages coinfecting the same host gain access to a common pool of proteins, which can 
be considered as intracellular public goods. Subsequently, a plethora of social behaviors may arise including 
cheaters, which do not contribute to the production of public goods, and cooperators, such as phages produc-
ing depolymerases that facilitate the adsorption of other phages to the host29. On the other hand, the phage-
phage arms race might entail various strategies to prevent superinfection, such as triggering the premature lysis 
of bacterial cells infected by competitors32 or phage-encoded CRISPR-Cas systems33. Therefore, phage-phage 
interactions are worth examining carefully, as they might be detrimental or beneficial to the outcome of phage 
cocktail application. With this in mind, redundancy is a useful parameter to be considered in order to formulate 
cocktails with superior efficacy.

Nonetheless, the intensity of phage-phage interactions also depends, to some extent, on phage-host dynamics. 
For instance, the bacteriophage multiplicity of infection (MOI), ratio of phages to bacteria, is frequently employed 
to calculate the amount of phages that should be applied during dosing. Additionally, bacterial densities can 
change, and target bacteria may not be homogeneous regarding phage access34. As a result, redundancy variation 

Figure 4.   Analysis of phage-phage interactions: PBINs vs. PCNs. (A) Number of phages lysing bacterial strains 
for each cocktail size. The PCNs were grouped by MCS values and the fraction (%) of bacterial strains lysed by 
different number of phages is shown as a heatmap. (B) Examples of redundancy variations. Original PBINs and 
resulting PCNs are represented by blue and yellow shaded circles, respectively. Redundancy (r), the fraction 
of phages infecting a bacterial strain, is shown for one specific strain (red circle) in five PBINs and two PCNs. 
Additionally, the redundancy of a second strain is shown in PBIN #5. Examples of redundancy increase (1, 2, 5 

), constancy (3 ; 5 ) and decrease (4 ) are shown. (C) Redundancy variation (rv) of phage-host networks. 
PCNs were grouped by MCS and the redundancy change of the bacterial strains is represented as dots and 
density lines. The color indicates the number of lysing phages. The median of each distribution is shown by a 
cyan line. (D) Redundancy variation (rv) vs. number of lysing phages. Bacterial strains (dots) were grouped by 
the expected number of lysing phages and highest density region (HDR) box plots were generated. The color of 
the different dots indicates the MCS values and the cyan line represents the median of each distribution.
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analysis could be customized by incorporating additional information such as the MOI, the ratio of phageome 
to microbiome in the original environment, the burst size of different phages or their virulence index score35 to 
further improve its value during cocktail design.

Size is not a determining factor for cocktail efficacy.  Next, we assessed the potential correlations 
among the different parameters that characterize the networks by building a heatmap (Fig. 5). Interestingly, the 
expected success of the cocktails (% of bacteria lysed) displays a moderately positive correlation with the fill of 
the network, whereas its correlation with the number of phages, bacteria or cocktail size (MCS) is weak (< 0.4). 
A previous comparison of 31 datasets (Molina et al.25, data extracted from Chan et al.36) had already shown that 
the observed bacterial load reduction does not increase significantly with the size of the phage cocktail.

As shown in Fig. 3C, there is a strong positive correlation (Spearman’s r = 0.84) between MCS and Φ. Also, 
both parameters show a negative correlation with the fill of the PBIN, being particularly strong (> 0.8) in the 
case of Φ (Fig. 5). Additionally, MCS has a positive correlation with the number of target bacteria and rvmax. 
In contrast, cocktail size is not correlated at all with the experimental rv (Fig. 4c), probably due to its negative 
correlation with redundancy in both PBINs and PCNs. These results indicate that datasets comprising more 
bacteria correspond to low filled networks, which leads to larger cocktail sizes and low redundancy values. To 
fully distinguish whether this reflects the different structure of small and large networks or some bias in data 
gathering by researchers, untrimmed datasets would be required.

Concluding remarks.  This study provides a simple and straightforward method to tackle cocktail design 
commencing with host range matrices. However, it must be noted that the use of binary networks, which only 
consider host range, leads to the loss of valuable information regarding infection efficacy37. It has been well estab-
lished that a broad host range is not necessarily a synonym of success for bacteriophages38, especially because 
niche expansion may involve facing some antagonistic pleiotropic costs39, such as the loss of virulence40 and/
or infection efficacy41. Moreover, the co-evolution of phages and their hosts often entails changes in bacterial 
community composition and structure42 or a decrease in the phage growth rate43. These strategies would ensure 
preservation of the host bacterial population for long-term exploitation, as well as increase extracellular stability 
of the newly-formed virions44. Likewise, the existence of synergy and/or antagonism among phages co-infecting 
the same host19 suggests that the development of new algorithms for phage cocktail design should involve the 
analysis of quantitative matrices and co-infection values. This method would allow the differentiation between 
simple short-term and more complex long-term biocontrol of host populations.

Immunity networks, built from CRISPR-Cas sequences, have been shown to influence the structure of com-
plex PBINs due to their effect on virus diversification and host control45. Moreover, network proximity analyses 
have been used for rapid identification of potential drug combinations targeting 2019-nCoV/SARS-CoV-246. 
Therefore, network-based methodologies can be applied not only to the control of microbes in foods, industrial 
settings and phage therapy applications, but also to study the dynamics of the microbiome, the evolution of 
host and viral populations37, and even to fight the SARS-CoV-2 pandemic47. Notwithstanding these examples 
of implementation of biological networks comprising viruses, the systematic analysis of PCNs is still far from 
being widespread. The present work attempts to tackle the potential offered by these strategies towards building 
a well-defined pipeline for phage cocktail design. However, further work will still be necessary to incorporate 
additional information regarding phage-phage interactions so that phage-bacteria networks accurately reflect 
the complexity of synergies and antagonisms amongst phages.

Figure 5.   Correlation heatmap of different phage-host network parameters. Correlation values correspond to 
Spearman’s r. All strong positive and negative correlations were statistically significant (P value < 0.001).
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Methods
Data collection.  A total of 50 datasets (Table 1) were gathered from three different sources: 34 tables were 
obtained from Molina et al.25, 14 were downloaded (https://​viral​hostr​angedb.​paste​ur.​cloud) from the Viral Host 
Range database48, and 2 were randomly selected after searching MEDLINE using the term “phage cocktail” and 
restricting the date from January 2019 onwards.

Generation of phage‑bacteria infection networks (PBINs).  The host range matrices (Table 1) were 
processed in the form of bipartite phage-host interaction matrices, reducing the lytic spectrum to either lytic 
or non-lytic interactions. These matrices were later transformed into directed networks (PBINs) by importing 
them into the Cytoscape platform49 using the plugin aMatReader. The Expected Importance (EI) of each phage 
(EIp) and bacterium (EIb) within the generated networks was calculated according to Eqs. 1 and 2, respectively:

where | · | is the cardinality of the bacteria (B) and phages (P), and outd and ind refer to the outdegree and indegree 
of the nodes, that is, the number of arrows leaving source nodes (phages) or entering target nodes (bacteria), 
respectively. These equations consider that phages with a broad host range (higher outdegree values) are initially 
better candidates to constitute the cocktail, and that bacteria susceptible to be infected by fewer phages (lower 
indegree values) are more problematic for cocktail design. Additionally, it must be noted that the values gener-
ated by these two equations have opposite signs, which simplifies color labelling of source (phages) and target 
(bacteria) nodes in the networks (Fig. 1). An exception to this are phages that do not infect any bacterium or 
bacteria infected by every single phage in the dataset because both receive an EI of zero.

Heuristic search of minimum sized phage cocktails.  First, bacteria lysed by a single phage (EIb = 1/ 
|P|) were identified for every network, and the corresponding phages were incorporated into the cocktail. Subse-
quently, the phage lysing the most bacteria (i.e., with the highest EIp value) was included in the cocktail, unless 
no additional bacterial strains were lysed by the newly added phage. This process was iterated until all suscepti-
ble bacteria were predicted to be lysed by the cocktail, using the Network Metrics algorithm implemented in the 
Cytoscape app PhageCocktail 1.1.26.

Exhaustive search of minimum sized phage cocktails.  The Exhaustive Search option of the Cytoscape 
app PhageCocktail 1.1 was used to perform a combinatorial calculation of all the possible phage combinations 
from size 1up to a 12-phage cocktail size. Then, it returns the best phage combination (the one that lyses the 
most bacteria) for each size until reaching the maximum number of lysed bacteria. The last cocktail shown in the 
generated output file corresponds to the highest percentage of lysed bacteria, and, hence, was selected as the best 
candidate. The number of phages in this cocktail was then considered to be the Minimum Cocktail Size (MCS).

Analysis of redundancy variation.  Phage Cocktail Networks (PCNs) were built from the original PBINs 
by selecting susceptible bacteria and the phages constituting a given cocktail. Redundancy (r) was defined as the 
number of phages lysing a bacterial strain (indegree) relative to the number of phages in the network, and redun-
dancy variation (rv) was measured for each bacterial strain by comparing the redundancy in the PCN (rPCN) to 
that in the whole PBIN (rPBIN) as indicated in Eq. 3.

This metric varies between a minimum (rvmin), when only one phage in the cocktail infects a given bacterial 
host, and a maximum (rvmax), when every phage infecting each host strain in the PBINs is considered (Eq. 4).

Data availability
The authors confirm that the data supporting the findings of this study are available within the article.
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