Skip to main content
. 2022 Feb 14;12:2398. doi: 10.1038/s41598-022-06127-5

Table 4.

Summary of cataract phase classification models.

Dataset name Dataset size Method AUPRC AUROC PPV Sensitivity Specificity Accuracy F1 score
Touma et al. (this study) Cataract 21 & Cataract 101 122 Google AutoML Video Intelligence 0.855 NR 81.0% 77.1% 98.0% 96.0% 0.79
Yu et al.3
Model #3 Own dataset 100 CNN input with cross-sectional image data NR 0.712 78.6% 74.5% 97.5% 95.6% NR
Model #4 Own dataset 100 CNN-RNN input with a time series of images NR 0.752 62.0% 59.3% 95.6% 92.1% NR
Primus et al.19 Cataract 21 21 GoogLeNet CNN NR NR 69.0% (74.0%) 67.0% (72.0%) NR NR

0.68

(0.73)

Zisimopoulos et al.20 CATARACTS 50 ResNET-RNN NR NR NR NR NR 78.3% 0.75
Quellec et al.21 Own dataset 186 Adaptive spatiotemporal polynomial (real-time detection) NR NR NR NR NR 85.3% NR
Qi et al.22 Cataract 101 101 ResNET (real-time detection) NR NR NR NR NR 88.1% NR
Charrière et al.23 Own dataset 30 Bayesian network (real-time detection) NR 0.828 NR NR NR NR NR
Lalys et al.24 Own dataset 20 Dynamic time wrapping and hidden Markov models (real-time detection) NR NR NR NR NR 95.0% NR

AUPRC Area under the precision-recall curve, AUROC Area under the receiver operating characteristic, PPV Positive predictive value.