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Abstract

Multi-modal MRIs are widely used in neuroimaging applications since different MR sequences 

provide complementary information about brain structures. Recent works have suggested that 

multi-modal deep learning analysis can benefit from explicitly disentangling anatomical (shape) 

and modality (appearance) information into separate image presentations. In this work, we 

challenge mainstream strategies by showing that they do not naturally lead to representation 

disentanglement both in theory and in practice. To address this issue, we propose a margin 

loss that regularizes the similarity in relationships of the representations across subjects and 

modalities. To enable robust training, we further use a conditional convolution to design a 

single model for encoding images of all modalities. Lastly, we propose a fusion function to 

combine the disentangled anatomical representations as a set of modality-invariant features for 

downstream tasks. We evaluate the proposed method on three multi-modal neuroimaging datasets. 

Experiments show that our proposed method can achieve superior disentangled representations 

compared to existing disentanglement strategies. Results also indicate that the fused anatomical 

representation has potential in the downstream task of zero-dose PET reconstruction and brain 

tumor segmentation.

1 Introduction

Multi-modal MRIs using different pulse sequences (e.g., T1-weighted and T2 Fluid 

Attenuated Inversion Recovery) are widely used to probe complementary and mutually 

informative aspects of the brain structure, thereby playing a pivotal role in improving the 

understanding of neurodevelopment across the life span and diagnosis of neuropsychiatric 

disorders [15]. However, compared to uni-modal image analysis, models that operate on 

multi-modal data are more likely to encounter the issue of incomplete inputs (some cases 

have missing modalities) due to data corruption, when applied to larger MRI datasets [7].

To tackle these challenges, recent works [15,17] have suggested to explicitly disentangle 

anatomical and modality-specific information from multi-modal MRIs. Specifically, each 

image is encoded into two representations: an anatomical representation that encodes 

the morphological shape of brain anatomies and is mostly shared across all modalities 
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of the same subject, and a modality representation that encodes image appearance 

information specific to the modality. Such disentanglement is typically derived based 

on cross-reconstruction [8], i.e., by examining the quality of images synthesized from 

anatomical and modality representations from mixed sources. The resulting disentangled 

representations are shown to be useful for downstream tasks including cross-modality 

deformable registration [14], multi-modal segmentation [17], image harmonization [4], 

multi-domain image synthesis, and imputation of missing modalities [15].

All the above studies focused on evaluating the results of the downstream tasks. It remains 

unclear whether the learned representations are truly disentangled or not. In this work, 

we show that the cross-reconstruction strategies can easily lead to information leakage 

between representations, i.e., representations are still partly coupled after disentanglement. 

To address this issue, we propose a margin loss that regularizes the within-subject 

across-modality similarity between representations with respect to the across-subject within-

modality similarity. Such regularization encourages the anatomical and modality information 

to fully disentangle in the representation space. Further, to obtain a robust training scheme, 

we use a modified conditional convolution to combine separate encoders associated with the 

modalities into a single coherent model. Lastly, we introduce a fusion function to combine 

the disentangled anatomical representations as a set of modality-invariant features, which 

can be used to solve various downstream tasks. We evaluate our method on three multi-

modal neuroimaging datasets, including T1- and T2-weighted MRIs of 692 adolescents from 

the National Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA) 

[19], T1-weighted and T2-FLAIR MRIs of 173 adults for zero-dose PET reconstruction, and 

multi-modal MRIs (T1, post-contrast T1, T2, and T2 Fluid Attenuated Inversion Recovery) 

from 369 subjects of the BraTS 2020 dataset [10]. Results indicate that our method 

achieves better disentanglement between anatomical and modality representations compared 

to several baseline methods. The fused modality-invariant representation shows potential in 

the downstream task of PET reconstruction and brain tumor segmentation (BraTS).

2 Related Works

Representation disentanglement is an active topic in image-to-image translation tasks lately 

[8]. The goal of these tasks is to disentangle the content (e.g., anatomical information) and 

style (e.g., modality, texture, appearance) information from an image so that images of the 

same content can be translated between different styles. The disentanglement is learned 

by optimizing a cross reconstruction loss on synthesized images, with content and style 

sampled from different training images [6,2]. A major issue is that these methods do not 

explicitly enforce the disentanglement, and hence the learned representations still suffer 

from information leakage.

Based on this observation, methods based on adversarial training [8,9,3,1] further regularize 

the content representations to be independent of the source style domain. For example, 

DRIT [8] couples adversarial training with a cross-cycle consistency loss to achieve 

between-domain translation based on unpaired data. MTAN [9] uses a multi-class 

adversarial loss for the style labels. DRNet [3] leverages the adversarial loss to disentangle 

the stationary and temporal components. Sagie et al. [1] proposed a zero loss to force the 
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style encoder to capture information relevant to the specific domain. However, adversarial 

training can be unstable and easily stuck in a local optimum. In addition, only one of the two 

representations (usually the content representation) can be adversarially regularized, which 

can easily cause information leakage into the other representation. As an extreme scenario, 

the style representation can contain all the information about the input, while the content 

representation may carry little or random information, just enough to fool the discriminator.

Lastly, a common issue of the above methods is that they utilize a separate decoder for 

each domain. It means that regardless of being disentangled or not, the learned content 

representations can always produce satisfying results for domain translation or downstream 

tasks as long as they carry task-related information from the input. In conclusion, in the 

absence of visualization or evaluation of the disentangled representations, it is unclear if the 

representations learned by the above methods are still coupled or not.

3 Proposed Method

To address this ambiguity, we first introduce a robust model for disentangling the 

anatomical and modality representations for multi-modal MRI based on image-to-image 

translation in Section 3.1. Next, we introduce a strategy for fusing the disentangled 

anatomical representations from all available modalities of a subject into a modality-

invariant representation, which can be used as the input for any downstream model.

3.1 Representation disentanglement by image-to-image translation

We assume each subject in the training set has MRIs of m modalities (sequences) and 

let xi ∈ Xi denote the input image of the i-th modality. As shown in Fig. 1a, we aim to 

disentangle xi into an anatomical representation si by an anatomical encoder si = Ei
A xi

and a modality representation zi by a modality encoder zi = Ei
M xi . We assume that the 

anatomical representation si encodes the morphological information of brain structures that 

is mostly impartial to the imaging modality, while zi provides image appearance information 

specific to a modality. The decoder D then reconstructs xi from a pair of anatomical 

and modality representations. Prior works [2] have suggested that such disentangled 

representations can be learned by optimizing the self-reconstruction and cross-reconstruction 
losses; Given a pair of si and zj derived from images of any two modalities, D is supposed 

to synthesize an image that is similar to the input image xj ∈ Xj, whose synthesized domain 

corresponds to the j-th modality.

Lself−recon = 1
m ∑

i = 1

m
Exi Xi xii − xi 1 ,

Lcross−recon =
λc

m2 − m
∑

i = 1

m
∑

j = 1, j ≠ i

m
Exi Xi, xj Xj xij − xj 1 ,
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where xij = D Ei
A xi , Ej

M xj . In addition to these reconstruction losses, another loss 

function commonly used for training image-to-image translation [14] is the latent 
consistency loss, which encourages the representations derived from raw inputs to be similar 

to the ones from the synthesized images.

Llatent = λl
m2 ∑

i = 1

m
∑
j = 1

m
Exi Xi, xj Xj zji − zi 1 , (1)

where zji = Ei
M D Ej

A xj , Ei
M xi  is the modality representation derived from a synthesized 

image.

Enforcing Disentanglement by Similarity Regularization.—Although prior works 

have leveraged the above concept of disentanglement for several multi-modal downstream 

tasks, there is no theoretical guarantee that the cross reconstruction can encourage the 

encoder to disentangle anatomical and modality representations. In fact, information can 

freely leak between representations. As a naive example, both si and zi can be an exact copy 

of xi so that the decoder D can easily reconstruct the input.

We resolve this problem by exploring the similarity relationships between representations. 

As the brain’s morphological shape is highly heterogeneous across subjects, we assume the 

anatomical representations s from the same subject but different modalities should be more 

similar than those from the same modality but different subjects. Note, si of the same subject 

are not necessary to be exactly the same, as multi-modal imaging is designed to capture 

distinct characteristics of brain anatomies. For instance, the brain tumor itself is more visible 

on T1-weighted MR with contrast (T1c) compared to T1 without contrast due to the injected 

contrast medium. On the other hand, modality representations z from the same modality 

but different subjects should be more similar than those from the same subject but different 

modalities. We propose to model such relationships using a similarity loss inspired by the 

margin-based hinge loss [5].

Lsim = λs
m2 ∑

i = 1

m
∑
j = 1

m
E max 0, αs − cos f si

p , f sj
p + cos f si

p , f si
q +

λz
m2 ∑

i = 1

m
∑
j = 1

m
E max 0, αz − cos zi

p, zi
q + cos zi

p, zj
p

(2)

where p and q correspond to a pair of subjects randomly sampled in a minibatch, cos(·,·) 

denotes the cosine distance between two vectors, and f denotes a MaxPooling and flattening 

operation. Unlike the L2-based similarity loss, Eq. (2) encourages the within-subject and 

across-subject distances to differ by the margins αs and αz and thereby avoids deriving 

identical representations.

Conditional convolution.—Another drawback of traditional multi-modal image 

translation methods is that each modality is associated with a pair of anatomical and 

modality encoders that are independently learned. However, these encoding tasks are highly 

dependent across modalities. Hence, each convolutional operation at a certain layer should 
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function similarly across networks. To enable robust multi-modal translation, we couple the 

set of independent anatomical encoders Ei
A xi  into one coherent encoder model EA(x;i) 

and likewise couple all modality encoders Ei
M xi  into EM(x;i) with i being an additional 

input to the model. We construct these two unified models using Conditional Convolution 

(CondConv) [16] as the fundamental building blocks. As inspired by [16], parameters of 

a convolutional kernel is conditioned on the input modality i using a mixture-of-experts 

model CondConv(x; i) = σ β1
i ⋅ W 1 + … + βn

i ⋅ W n ⊛ x , where σ(·) is the sigmoid activation 

function, ⊛ denotes regular convolution, {W1,…, Wn} are the learnable kernels associated 

with n experts, and β1
i , …βn

i  are the modality-specific mixture weights. As such, the 

convolutional kernel exhibits correlated behavior across modalities as the n experts are 

jointly trained on data of all modalities.

3.2 Fusing disentangled representations for downstream tasks

As shown in Fig. 1b, after obtaining the disentangled representations, the anatomical 

representations from all available modalities of a subject are fused into one fixed-size 

encoding as the input for a downstream model T, which can be any state-of-the-art model 

for the downstream task. Note that the fusion function here should pool features of a various 

number of channels to a fixed number of channels. Let s be the concatenation of anatomical 

representations from the available modalities Concat(si,…,sj). Then the fusion is the 

concatenation of several pooling functions: Concat(MaxPool(s),MeanPool(s),MinPool(s)). 

With this fusion operation, one can use two strategies to train the downstream model T. 

We can either solely train T based on the frozen s derived by the self-supervised learning 

of the encoders (Section 3.1), or fine-tune the encoders jointly with the downstream task 

model T. Though the joint training can potentially result in representations that better suit 

the downstream task, we confine our analysis to the first strategy (fixing encoders) in this 

work to emphasize the impact of representation disentanglement.

4 Experiments

We first describe the dataset and the experimental settings in Section 4.1 and 4.2. We then 

show in Section 4.3 that our proposed approach (Section 3.1) can effectively disentangle 

anatomical and modality representations on three neuroimaging datasets. We further show 

in Section 4.4 that the disentangled representations in combination with the fusion strategy 

(Section 3.2) can alleviate the missing modality problem in two downstream tasks.

4.1 Datasets

ZeroDose—The dataset comprised brain FDG-PET and two MR modalities (T1-weighted 

and T2 FLAIR) from 171 subjects with multiple diagnosis types including tumor, epilepsy, 

and dementia. The FLAIR and PET images were first registered to T1, and then all 

modalities were normalized to a standard template and resized to 192×160 in the axial 

plane. Intensities in the brain region of each image were converted to z-scores. The top and 

bottom 20 slices in each image were omitted from analysis. Each 3 adjacent axial slices 

were converted to a 3-channel image as the input to the encoder models. Random flipping of 

brain hemispheres was used as augmentation during training. Five-fold cross-validation was 
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conducted with 10% training cases used for validation. The downstream task was zero-dose 

PET reconstruction, i.e., to synthesize high quality FDG-PET from multi-modal MRIs. This 

is useful in practice as the injected radiotracer in current PET imaging protocols can lead 

to the risk of primary or secondary cancer in scanned subjects. Moreover, PET is more 

expensive than MRI and not offered in the majority of medical centers worldwide.

NCANDA—Based on the public data release1, we used the T1 and T2 MRIs of 692 

adolescents with no-to-low alcohol drinking from the NCANDA dataset [19]. The images 

were preprocessed by a pipeline [18] composed of denoising, bias field correction, skull 

stripping, aligning T1 and T2 to a template, and resizing to 192 × 160. Other settings were 

the same as the ZeroDose dataset. As this dataset only contained healthy individuals, we 

used it solely for evaluating the representation disentanglement based on the middle 40 

slices in each image. BraTS Multimodal Brain Tumor Segmentation Challenge 2020 [10] 

provides multi-modal brain MRI of 369 subjects with four modalities: T1, post-contrast 

T1 (T1Gd), T2, and T2-FLAIR (FLAIR). Three categories were labeled for brain tumor 

segmentation, i.e., Gd-enhancing tumor (ET), peritumoral edema (ED), and necrotic and 

non-enhancing tumor core (NCR/NET). We used the 55 middle axial slices and cropped the 

image size to 192×160. Other preprocessing steps and settings were kept the same.

4.2 Experimental Settings

Implementation Details—The anatomical encoder EA was a U-Net type model. Let 

Ck denote a Convolution-BatchNorm-ReLU block with k filters (4 × 4 spatial filters with 

stride 2), and CDk an Upsample-Convolution-BatchNorm-ReLU block. The architecture 

was designed as C32-C64-C128-C256-C256-CD256-CD128-CD64-CD32. A convolution then 

mapped the resulting representations to 4 channels with softmax activation as the anatomical 

representation. The modality encoder EM consisted of 5 convolution layers of 3 × 3 filters 

and stride 2 with LeakyReLU of a 0.2 slope. Numbers of filters were 16-32-64-128-128. A 

fully connected layer mapped the resulting features to a 16-D representation. The decoder D 
was based on SPADE [13] with the architecture used in [2]. The networks were trained for 

50 epochs by the Adam optimizer with learning rate of 2 × 10−4 and weight decay of 10−5. 

The regularization rates were set to λc = 2.0, λl = 0.1, λs = 10.0, λz = 2.0. The margins in 

the similarity loss were set to αs = αz = 0.1. For the downstream model T in the zero-dose 

PET reconstruction, a U-Net based model with attention modules [12] was adopted. The 

downstream model for BraTS brain tumor segmentation was the BraTS 2018 challenge’s 

winner NVNet [11].

Competing Methods—We first implemented the encoders using traditional convolution 

(training separate encoders), denoted as Conv. Based on this implementation, our 

disentanglement approach incorporating the similarity losses is denoted as +Sim. We then 

compared our approach with two types of methods. We term the first type [6,2] that 

regularized the disentanglement merely using cross-reconstruction and latent consistency 

loss as +NA. The other type [8,9,3,1,14,15,17] that utilized adversarial training on 

1NCANDA_PUBLIC_4Y_STRUCTURAL_V01 (DOI: 10.7303/syn22216457); collection was supported by NIH grants AA021697, 
AA021695, AA021692, AA021696, AA021681, AA021690, and AA02169
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the anatomical representations are termed as +Adv. To make fair comparison on the 

disentanglement strategies, all comparison methods used the same network structure for the 

encoder and decoder. Finally, we replaced Conv with CondConv (training a single encoder) 

to show the advantage of using conditional convolution.

4.3 Evaluation on disentangled representation

We first evaluated the methods on representation disentanglement and image cross 

reconstruction based on 5-fold cross-validation. We derived the anatomical and modality 

representations of the test subjects learned by the approaches. Fig. 2 visualizes the 4-channel 

anatomical representations of one subject from NCANDA. We observe that s1 and s2 

(extracted from T1 and T2) learned by the two baselines (Conv+NA and Conv+Adv) were 

substantially different, indicating that they might still contain modality-specific information. 

On the other hand, our approach (Conv+Sim) produced visually more similar anatomical 

representations than the baselines. This indicates that the proposed similarity regularization 

can decouple the modality-specific appearance features from the structural information 

shared between modalities.

This result is also supported by the visualization of the learned representation spaces. As 

shown in Fig. 3a–c, we randomly selected 200 modality representations in the test set of 

the BraTS dataset and projected them into a 2D space by t-SNE. Only our approach clearly 

separated the representations of different modalities into 4 distinct clusters (Fig. 3c), which 

was in line with the regularization on z in Eq. (2). The clustering with respect to modalities 

was not evident for the projections of the baseline approaches (Fig. 3a,b), indicating that 

complimentary information had leaked into the modalities representations. Moreover, the 

baseline approaches failed to disentangle T1 and T1Gd, two contrasts with high visual 

resemblance, as the red and blue dots were coupled in the representation space. Likewise, 

we visualized the space of anatomical representations in Fig. 3d–f. We randomly selected 

4 subjects in the BraTS test set and projected the pooled anatomical representation f(si) 

of 4 consecutive slices into a 2D space. Now the 4 distinct clusters of our approach were 

defined with respect to subjects as opposed to modalities, and there was no apparent bias 

of modality in each subject’s cluster (Fig. 3f), indicating the representations solely encoded 

subject-specific yet modality-invariant information. The representation spaces learned by 

the two baselines contained both subject-specific anatomical and modality information (Fig. 

3d,e); that is, although the projections could be separated by subjects (black circles), each 

subject-specific cluster could be further stratified by modalities (color of the markers).

The improved disentanglement also resulted in better cross-reconstruction. Fig. 4 shows the 

results of a test subject from the BraTS dataset. In each panel, xij is displayed on the jth row 

and ith column; Diagonal images correspond to self-reconstruction and off-diagonal ones 

are cross-reconstruction. The proposed Conv+Sim achieved the best visual quality (accurate 

structural details), especially the FLAIR reconstruction highlighted in red boxes, where 

the tumor area was more precisely reconstructed. This improvement was quantitatively 

supported by the higher similarity between ground-truth and synthesized images in terms of 

peak-signal-noise ratio (PSNR) and structural similarity index (SSIM) (Table 1). For each 

image of a specific modality, we synthesized it based on its own modality representation 
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and the anatomical representation from another modality (For each image in the BraTS 

dataset, we computed the average metrics over all three cross reconstruction results). 

According to Table 1, Conv+NA achieved the lowest reconstruction quality for both SSIM 

and PSNR on all three datasets. The quality improved when adding adversarial training on 

the anatomical representations (Conv+Adv) but was still lower than the two implementations 

with the proposed similarity loss (except for T1 reconstruction in NCANDA). Of the two 

models with +Sim, CondConv+Sim recorded better performance on the ZeroDose and 

NCANDA datasets. This indicates that CondConv enabled more stable reconstruction results 

by coupling highly dependent modality-specific encoders. However, on the BraTS dataset, 

Conv+Sim achieved better cross-reconstruction for T2 and FLAIR. The reason could be 

that CondConv shared anatomical and modality encoders across modalities at the expense 

of model capacity, especially when more than two modalities were involved. It is also 

worth mentioning that all methods achieved higher performance on NCANDA because it 

was the only dataset of healthy controls. Taken all together, only our approach resulted 

in true disentanglement between anatomical and modality representations, which was not 

guaranteed by the baselines.

4.4 Evaluation on downstream tasks

Deep learning models that rely on multi-modal input often suffer from the missing input 

problem. When a model is trained on data with complete inputs and tested on data with 

one modality missing, standard approaches either fill in all zero values (Standard+Zero) 

or use the average image of that modality over the entire cohort (Standard+Avg). 

Here, we demonstrate that an alternative solution is to train and test the model on the 

fusion of disentangled anatomical representations from all available modalities (Ours, 

CondConv+Sim). We show that this strategy can largely alleviate the impact of missing 

inputs.

In each run of the cross-validation, we first learned the disentangled representations and 

then trained the downstream models (based on the raw multi-modal images for the standard 

methods or fused anatomical representations for our proposed method) for zero-dose PET 

reconstruction. Then, the downstream model was tested on data with or without missing 

modalities. When all modalities were used for testing, the standard and proposed approaches 

achieved comparable reconstruction accuracy in terms of both PSNR and SSIM (N/A in 

Table 2), but we observe that our approach could generally result in more accurate tumor 

reconstruction (Fig. 5), which could not be reflected in the whole-brain similarity measure. 

The improvement of our approach became evident when one of the modalities was missing 

(Table 2). In particular, missing FLAIR induced larger performance drop for all approaches, 

as ZeroDose contained a large number of images with tumor, which was more pronounced 

in FLAIR than T1.

Next, we replicated this experiment for the downstream task of brain tumor segmentation 

on the BraTS dataset and measured the performance using the dice coefficient (DICE; 

Each cell in Table 2 records the average DICE across three categories: ET, ED, and NCR/

NET). In line with the results of the ZeroDose experiment, the standard and proposed 

methods both obtained similar DICE scores, when complete inputs were used during testing. 

Ouyang et al. Page 8

Inf Process Med Imaging. Author manuscript; available in PMC 2022 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Standard+Zero recorded the lowest accuracy when missing any modality. Standard+Avg 

was less impacted when T1 or T2 was missing, but more impacted by T1Gd and FLAIR 

as the standard model relied mostly on those two modalities for localizing the tumor. 

The proposed method achieved the highest DICE score in all scenarios, among which the 

missing T2 recorded the largest drop on DICE. This might be because T2 had the most 

distinct appearance compared to other modalities, thus having the largest impact on the 

fused representation.

5 Conclusion

In this paper, we first proposed a novel margin loss to regularize the within-subject 

across-modality similarity between representations with respect to the across-subject 

within-modality similarity. It alleviates the information leakage problem in existing 

disentanglement methods. We further introduced a modified conditional convolution layer to 

enable training a single model for multiple modalities. Lastly, we proposed a fusion function 

to combine the disentangled anatomical representations from available modalities as a set of 

modality-invariant features for downstream tasks. Experiments on three brain MR datasets 

and two downstream tasks demonstrated that the proposed method achieved meaningful and 

robust disentangled representations compared with the existing methods. Though we only 

evaluated on brain images, the method is likely to generalize to other organs as long as 

the assumption on the within-subject across-modality and across-subject within-modality 

similarity holds.
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Fig.1: 
Overview: (a) An image xi is disentangled into an anatomical representation si and a 

modality representation zi by EA and EM. The decoder D reconstructs the input from 

the two representations. These networks are trained by the reconstruction and latent 

consistency losses. We propose to add a similarity regularization Lsim that models the 

relationships between the representations from different images; (b) The disentangled 

anatomical representations of a subject are fused into one modality-invariant encoding that 

can be used as an input to a downstream model T.
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Fig.2: 
Visualization of s1 and s2 of one NCANDA subject. Only our approach (+Sim) resulted in 

visually similar anatomical representations from T1 and T2.
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Fig. 3: 
t-SNE visualization of the z space (a,b,c) and the s space (d,e,f) for BraTS dataset in 

2D spaces. Fully disentangled z should cluster by modality (denoted by color); Fully 

disentangled s should cluster by subjects (denoted by marker style) with no modality bias 

(sub-clusters by modality).
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Fig.4: 
Cross reconstruction results for one test subject from the BraTS dataset.
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Fig.5: 
ZeroDose PET reconstruction from T1 and FLAIR for two test subjects.
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Table 1:

5-fold cross-validation for quantitative cross-reconstruction evaluation.

(a) ZeroDose

Methods
T1 FLAIR

PSNR/SSIM PSNR/SSIM

Conv+NA 25.603/0.682 24.435/0.612

Conv+Adv 27.131/0.742 25.846/0.674

Conv+Sim(Ours) 27.222/0.735 25.970/0.667

CondConv+Sim (Ours) 27.231/0.742 25.978/0.681

(b) NCANDA

Methods
T1 T2

PSNR/SSIM PSNR/SSIM

Conv+NA 29.719/0.849 28.077/0.808

Conv+Adv 30.421/0.866 27.950/0.807

Conv+Sim(Ours) 30.266/0.863 28.367/0.825

CondConv+Sim (Ours) 30.331/0.865 28.451/0.832

(c) BraTS

Methods
T1 TIGd T2 FLAIR

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Conv+NA 27.304/0.717 24.897/0.638 25.148/0.621 25.166/0.617

Conv+Adv 27.485/0.717 25.385/0.656 25.951/0.658 26.135/0.642

Conv+Sim(Ours) 27.892/0.756 26.114/0.723 26.479/0.744 26.588/0.692

CondConv+Sim(Ours) 27.916/0.752 26.221/0.731 26.445/0.735 26.489/0.687
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Table 2:

Performance of two downstream tasks with incomplete input.

Methods

ZeroDose BraTS

N/A T1 FLAIR N/A T1 T1Gd T2 FLAIR

PSNR/SSIM PSNR/SSIM PSNR/SSIM DICE

Standard+Zero
25.475/0.739

18.122/0.436 18.8863/0.435
0.826

0.364 0.240 0.616 0.298

Standard+Avg 24.425/0.676 23.137/0.631 0.724 0.279 0.733 0.452

Ours 25.386/0.729 24.610/0.682 24.193/0.674 0.821 0.782 0.779 0.758 0.772

Left: zero-dose PET reconstruction; Right: brain tumor segmentation.
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