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Abstract

Video accessibility is crucial for blind screen-reader users as online videos are increasingly 

playing an essential role in education, employment, and entertainment. While there exist quite 

a few techniques and guidelines that focus on creating accessible videos, there is a dearth of 

research that attempts to characterize the accessibility of existing videos. Therefore in this paper, 

we define and investigate a diverse set of video and audio-based accessibility features in an effort 

to characterize accessible and inaccessible videos. As a ground truth for our investigation, we built 

a custom dataset of 600 videos, in which each video was assigned an accessibility score based 

on the number of its wins in a Swiss-system tournament, where human annotators performed 

pairwise accessibility comparisons of videos. In contrast to existing accessibility research where 

the assessments are typically done by blind users, we recruited sighted users for our effort, since 

videos comprise a special case where sight could be required to better judge if any particular scene 

in a video is presently accessible or not. Subsequently, by examining the extent of association 

between the accessibility features and the accessibility scores, we could determine the features 

that signifcantly (positively or negatively) impact video accessibility and therefore serve as good 

indicators for assessing the accessibility of videos. Using the custom dataset, we also trained 

machine learning models that leveraged our handcrafted features to either classify an arbitrary 

video as accessible/inaccessible or predict an accessibility score for the video. Evaluation of our 

models yielded an F1 score of 0.675 for binary classification and a mean absolute error of 0.53 for 

score prediction, thereby demonstrating their potential in video accessibility assessment while also 

illuminating their current limitations and the need for further research in this area.
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1 INTRODUCTION

Videos are increasingly becoming a first-choice medium to share information in several 

domains including education, news, and social media. Websites such as Youtube allow users 

all over the world to create, share, and consume videos of different kinds such as how-to 

videos, tutorials, lectures, highlights, events, and even presentations. For instance, more than 

500 hours of content gets uploaded every minute on the Youtube website which has in 

excess of 2 billion monthly users as of 2021 [40].

Video format is inherently multi modal, where the information is conveyed to a user via a 

combination of both visual content and complementing audio. As the default audio present 

in a video typically by itself cannot provide the full information contained in that video, 

it needs to be extended to cover the information conveyed by the visual content as well in 

order to make the video accessible to blind users who can only listen to the video content. 

In this regard, prior works exist that either provide accessibility guidelines for video content 

creators[38, 39], or propose automated methods for creating video descriptions[4].

However in practice, the guidelines are rarely followed as the whole process requires 

significant manual effort, thereby making it expensive, time consuming, and selective. Even 

the automated methods have not yet achieved mainstream acceptance. As a consequence, 

videos found on websites vary significantly in how accessible they are to blind screen-reader 

users. At one extreme, there exist videos where all information is conveyed visually, e.g., 

a video showing a nature scene with no sound, or with a background music would likely 

convey no information to the blind user, and in the other extreme, there are videos where 

the audio covers all the necessary information in the videos, e.g., a narrator accurately 

describing a nature scene would make it possible for the video to be followed by blind users. 

Most videos however exhibit accessibility between these two extremities where the audio 

partially covers the information present in the videos.

If the accessibility of a video can be expressed in some quantified form (e.g., a score), the 

blind users can then use this cue to compare and select more accessible videos to watch 

among the several alternatives available in search results. Without this cue, they have to 

follow a tedious and frustrating trial-and-error approach where they have to test each video 

in the search results by listening to a portion of it before deciding whether to continue 

listening or move on to test the next search result video [27]. Therefore in this paper, we 

explore a statistical approach for quantifying the degree of accessibility exhibited by any 

arbitrary video. Specifically, we explore the following research challenge: Can we quantify 
the degree of accessibility of a video in the form of a rating or score, and then explain or 
justify this rating?

In this regard, we first constructed a dataset comprising subjective accessibility evaluations 

of 600 videos, where multiple sighted raters evaluated the accessibility of each video via a 

Swiss-system tournament [17] thereby resulting in a final accessibility score (i.e., number 

of wins) for each video at the end of the tournament. Leveraging this dataset, we then 

investigated a diverse assortment of handcrafted visual and audio features with regard to 
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the strength of their associations with the accessibility scores, i.e., what features better 

correlate with high/low accessible scores. Using these custom features, we also trained: (i) 

a binary classifier that can predict whether a video is accessible or not with a performance 

of 0.675 F1 score; and (ii) a neural network based prediction model (see Figure 1) that 

can provide reasonable estimates (mean absolute error of 0.53) of the accessibility score of 

unseen videos in the dataset. The use of custom handcrafted features in the models facilitates 

explainable predictions, i.e., the features can be used to justify the predicted scores or the 

assigned accessible/inaccessible labels.

Our contributions are as follows:

• We collect annotations for a dataset for quantifying video accessibility that 

consists of subjective accessibility evaluations of 600 short videos

• We perform statistical analysis of associations between accessibility of a video 

and a set of handcrafted visual and audio features that represent the video, both 

similar to the ones existing in the literature, and new ones

• We design and perform evaluation of predictive models that can either 

classify a video as accessible/inaccessible or generate accessibility scores/labels 

automatically for the video.

2 RELATED WORK

Our contributions in this paper closely relate to the following extant literature: (i) general 

accessibility evaluation frameworks; (ii) video accessibility; and (iii) multimedia feature 

extraction.

2.1 Accessibility Evaluation and Diagnostics

Evaluating accessibility of software, tools and websites is immensely beneficial for both 

users and developers, therefore there exist plenty of works that facilitate such evaluations[11, 

35]. However, many of these methods focus predominantly on assessing the accessibility 

of websites. For instance, [19] proposed two metrics to evaluate webpage accessibility. 

The first metric attempts to quantify navigability by considering factors such as estimated 

time it takes to navigate to page sections of interest, use of headings in HTML source, 

and the accessibility of links. The second metric attempts to quantify listenability aspect 

by considering factors such as existence of alternative (‘ALT’) text, and repetition of 

content. On the other hand Gonzalez et al. [21] proposed a system named KAI for not 

only measuring the accessibility of webpages for people with visual impairments, but also 

producing an accessibility report for different sections of a webpage. A comparative study 

of seven different accessibility metrics is presented in [37]. Other than the work by Asakawa 

et al. [8] that focuses on accessibility of online Flash content, all other aforementioned 

techniques, to the best of our knowledge, do not focus on evaluating video content.

Several automated accessibility diagnostics tools or accessibility checkers also presently 

exist that can analyze an arbitrary webpage or a PDF document, and subsequently generate 

a detailed accessibility report highlighting the issues that need to be fixed by the web 
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developers of that page. For example, Darvishy et al. [13] and Doblies et al. [14] both 

proposed a tool for diagnosing and correcting accessibility problems in PDF documents. On 

the other hand, WAVE (Web Accessibility Evaluation Tool) [2] can pinpoint accessibility 

issues with webpages. In the context of mobile application development, GSCXScanner for 

iOS [1] and Lint in Android Studio [3] can assist the developers in evaluating the code 

structures and then improve the accessibility of their applications.

2.2 Video Accessibility

Prior work on video accessibility exists mainly in the form of guidelines for creating 

accessible videos. One such example is the W3C guidelines on video accessibility [39]. 

W3C guidelines outline considerations for accessibility for video creators not only for 

people with visual impairments, but also people with hearing diffculties. These guidelines 

suggest that the videos should contain audio descriptions when there is visual content 

that is essential to convey the meaning of the video [38]. It also introduces various video 

description methods and ways of creating video descriptions [38].

In addition to creation guidelines, there also exist prior works that focus on improving the 

accessibility of existing videos. For example, Yuksel et al. [41] present an approach based 

on creating video descriptions for improving the video accessibility for both people who are 

blind and those with low-vision. Better utilization of the audio modality via annotations has 

also been proposed to improve video accessibility [15]. A more recent work [9] describes 

a method that leverages the concept of visual saliency as a guiding signal for detecting the 

important regions in the video and then selecting magnifying these regions for improved 

low-vision interaction with the video.

Compared to the sizeable literature on improving video accessibility, research on video 

accessibility assessment and evaluation remains an under-studied topic. As an example work 

in this direction, the work of Acosta et al. [5] concerns accessibility of educational videos 

produced by universities. Their manual analysis revealed widespread accessibility issues 

of these videos. While the analysis performed here is manual, as opposed to our goal of 

investigating the possibility of an automated system, this work identifies the nature and the 

scope of many video accessibility problems.

Perhaps the closest research related to our work in this paper is by Liu et al. [27] who 

explore the same problem, but differ from us with regard to the methods and formulations. 

First, their work is a macro-level assessment that focuses on entire videos, similar to 

the ones that could be found on online video platforms, whereas our work is more fne-

grained in that we focus on individual scenes in a video or short videos. Second, the core 

heuristics used in their analysis was determined from the findings of a user study with 

blind participants, where these participants assessed the accessibility of different videos. In 

contrast, we recruited sighted users for our analysis, since videos comprise a special case 

where sight is potentially more suited to judge if any particular scene in a video is presently 

accessible or not; without the benefit of visual confirmation, blind users are likely to miss 

several inaccessible parts of a video during accessibility assessment. Nonetheless, some of 

their findings do seem comparable with our observations, and we report these details later in 

Section 3.2 and Section 4.3.
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2.3 Feature Extraction

Automatically computing the handcrafted features used in our analysis and models requires 

the use of some state-of-the-art techniques in computer vision and audio analysis. We 

discuss some of the techniques relevant to our work next.

2.3.1 Object Detection.—One way to understand the factors that impact the 

accessibility of a video is by handcrafting different visual and audio features that represent 

the video and then determining how these features correlate with the accessibility (score/

rating) of the video. Object detection, which has witnessed significant improvement in 

recent years due to advent of deep learning techniques, is one of the main sources of 

information for computing the visual features that represent a video. Object detection has 

been a well-studied topic for the past decade [42]. YOLO is one of the widely used object 

detection frameworks [10, 32–34], so we leverage this framework to compute many of the 

visual features (see Table 1) in our work. We also leverage a cloud-based service as a 

secondary source[6], as detailed in Section 3.

2.3.2 Audio Event Detection.—Audio event detection is a vital part of our system 

pipeline for understanding the relationship between the video and audio modalities. Stowell 

et al. [36] provide a survey of pre-deep learning era work on audio event detection and 

datasets. Deep learning advancement has led to increased use of neural network models for 

audio event detection, typically using convolutional layers. In our work, we leverage a recent 

model proposed by Kong et al. [25] to extract audio events from videos.

3 DESIGN

Our accessibility analysis and the proposed rating system leverage existing techniques 

in computer vision, audio analysis and natural language processing. Our system focuses 

on short scenes instead of full-length videos, as scene level analysis captures detailed 

fine-grained information, that could be then generalized in a bottom-up manner to cover the 

entire duration of a video.

3.1 Techniques for Video Analysis

3.1.1 Object Detection.—One of the main components of our video analysis toolkit is 

object detection. Since object detection is a well-studied problem in computer vision, there 

are many publicly available solutions that we can leverage in our system, even in the form 

of cloud-based services. Our object detection pipeline processes videos frame-by-frame. 

Specifically, let a video? be a collection of individual frames, V = I0, I1, …, IN where 

N is the number frames. The object detector generates object proposals for each frame in 

the video, resulting in zero or more bounding box coordinates, with each bounding box 

having an associated object class label. For our analysis, this predicted object class label is 

of more interest than the bounding box coordinates. In our analysis, we used two existing 

tools for object detection: 1) YOLO [34] object detector, trained on COCO dataset [26], and 

2) Amazon Rekognition, a cloud-based image and video labelling service [6]. We used the 

object detection information from these sources to compute features that capture the nature 

and variety of objects that appear in a video, which we explain later in Section 3.2.
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3.1.2 Audio Event Detection.—Detection of audio events in a video facilitates a better 

understanding of the video. For example, if the only audio event in a documentary scene is 

music, the non-visual accessibility of the video will likely be very low, since all information 

in the scene is visual. On the other hand, the presence of different speech events in a 

video could enhance the accessibility of a video as the speech could contain cues about the 

visual information in the video. Having an understanding of audio events requires the use 

of an audio event detection model. In our work, we use the model proposed in [25]. This 

model generates audio class predictions for each time point of the video. Also, the model 

was trained on [20] dataset, which supports 527 output classes, thereby enabling a detailed 

analysis of the audio events in the videos. We utilize the model predictions for computing 

audio features such as event types that involve manually determined meta-class labels (i.e., 

audio events pointing to a person, such as speech) and also features that provide cumulative 

descriptive statistics such as the total number of audio events belonging to different classes.

3.1.3 Optical Flow.—Optical fow captures the nature of movement in a video, and it 

has found use in numerous applications[18]. We utilized optical flow to quantify the total 

amount of movement in a video. Specifically, we computed optical flow maps for each 

frame in a video using Farneback method [16], which allowed us to derive features related to 

the extent of movement in the video.

3.1.4 Transcription.—Although finding associations between the different classes may 

potentially provide us with a general understanding of the co-occurrences of the audio 

and object classes, the information provided by these associations does not often provide 

a complete picture. For example, it is a very common occurrence that a video contains a 

narrator who may never actually appear in the video, but provides informative content about 

the visual content in the video. To better understand the relationship between the speech 

content and the visual content, we transcribed the videos in our dataset and used features 

derived from these transcriptions. For transcription task, we used Amazon Transcribe [7], 

which is an automated service for video and audio transcription.

3.1.5 Text Analysis.—Analysis of speech content could reveal details about the 

relationship between the audio and the visual content. For example, if the detected objects 

in a video are also described in the speech, it may lead to higher accessibility. To extract 

features related to speech content, we used Natural Language toolkit – NLTK [28]. We 

utilized NLTK specifically for part-of-speech tagging, which assigns part-of-speech tags 

(e.g., singular noun, verb) to all the words in the transcribed speech content.

3.2 Handcrafting Features for Assessing Video Accessibility

To understand the extent to which various visual and audio aspects of a video impact 

its accessibility, we handcrafted different features (see Table 1) and then examined the 

correlations between these features and the accessibility scores (obtained from sighted 

users in a study described later in Section 4.3), so as to uncover the reasons impacting 

these scores, and also identify potential sources of accessibility issues. In contrast, using 

embedding features (such as the ones from residual networks[22]) extracted from the visual/

sound modalities of a video could result in better model performance for a sufficiently large 
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dataset, but it would be challenging if not impossible to leverage these features for providing 

justifications or explanations for the model predictions. In sum, an explainable model for 

predicting video accessibility is essential and more useful than a blackbox model that only 

outputs the accessibility ratings.

The design of features shown in Table 1 was based on manual exploratory analysis of the 

videos in a custom built video dataset (described later in Section 4.1). This set of features 

provides us the means to analyze the accessibility of videos from various aspects. For 

example, the positive correlation between the transcript length and the accessibility could 

suggest ample speech content in a video is more likely to result in more accessible videos. 

On the other hand, a negative correlation between the number of detected object types and 

the accessibility score could mean that more object types in a video could imply more 

entities that need to be mentioned and explained in a video, possibly leading to greater 

accessibility challenges than having a lower number of object types.

Some of the features described above share similarities with those proposed in a very recent 

contemporary related work [27]. Specifically, features f1, f2, f3, f6, f9 and f13 are similar to 

some of the metrics proposed in that prior work [27], however exact implementation and 

representation of many of these features differ significantly between the two works. Also 

notice that some of the features described in Table 1 capture similar information (e.g f1 and 

f4), hence are highly likely to be correlated.

Lastly, note that Table 1 does not include all the features we initially considered as 

some of these features did not exhibit a strong or significant relationship with the user-

generated accessibility ratings, and therefore have been excluded from the table for brevity. 

Specifically, in addition to the features in Table 1, we had also considered features based on 

video saliency and motion vector information. However, in a correlation test, we did not find 

any meaningful relationships between these features and the assigned accessibility scores, 

and therefore these features were removed from further consideration.

4 EXPERIMENTS

In this section, we describe (i) the dataset we built by selecting videos from two other 

commonly used datasets for visual saliency prediction[23] and action recognition[29] 

respectively; (ii) the accessibility evaluation annotation procedure with sighted users; (iii) 

observations related to our handcrafted features; and (iv) a user study with users having 

visual impairments to understand the relationship between their perceptions of accessibility 

and the accessibility evaluations previously obtained from sighted users.

4.1 Video Dataset

In order to perform a statistical analysis to determine the associations between handcrafted 

features and video accessibility, it is imperative to first quantify accessibility over a 

representative sample of videos. Non-visual accessibility of videos can be highly subjective 

to quantify, hence we conducted a data-collection study to obtain aggregate ratings of video 

accessibility.
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We first compiled a dataset by sampling videos from LEDOV dataset[23] and AviD 

dataset[29], which were originally collected for benchmarking video saliency detection 

and action recognition tasks respectively. The diverse topics of the videos and presence 

of audio made LEDOV dataset a suitable choice for this task. The videos chosen from 

this dataset depict a wide range of scenarios including nature scenes, sports/artistic 

performances, playing instruments, interviews, conversations and other similar settings. 

To make annotations feasible, we restricted our focus to videos in English language. 

Furthermore, we removed videos that do not contain any sounds (i.e., no audio channel). 

We also removed videos longer than 20 seconds to remove outliers and be consistent with 

other sources. In total, we collected 399 videos from LEDOV dataset.

AviD dataset [29] contains a diverse set of action videos. Since the dataset contains around 

450k videos, we randomly sampled videos from this dataset subject to a few constraints. 

First, we filtered out long videos, and as in case of LEDOV dataset, we focused on videos 

containing English speech. Sampled videos from AviD dataset belonged to action classes 

such as playing an instrument, playing sports, outdoor events, and instructional videos. In 

total, we sampled 201 videos from AviD dataset, which along with 399 videos from LEDOV 

dataset resulted in a total of exactly 600 videos in our dataset. Overall, the combined dataset 

consisted of videos that have 10 seconds duration on average (Max: 20 seconds, min: 3 

seconds, standard deviation: 3.2 seconds). Majority of the videos in the combined dataset 

consisted of single scenes, with some videos containing more than one scene with the same 

theme (e.g., a snow-boarding performance shown at different angles).

4.2 Accessibility Annotation of the Dataset

We conducted a user study with 9 sighted participants to obtain accessibility ratings for 

videos in our dataset. First, the users were introduced to the task of interest, which is 

answering the following question: If you were only hearing this video, how well would you 
understand this video?. The participants were then introduced to sample videos that belong 

to both extremes with regard to accessibility (i.e., full narration vs. no narration, e.g., a video 

that depicts a natural scene and the music played vs. a video where the scene is perfectly 

described by the narrator in a detailed manner), and video(s) that fall in between these 

extremes. Next, the users were introduced to the annotation interface, where pairs of videos 

were shown to user for making comparisons with aforementioned question. The users had to 

choose between the following three options to make this comparison: (i) first video, meaning 

first video had higher accessibility, (ii) second video, meaning second video had higher 

accessibility, or (iii) equal, denoting an inconclusive comparison. Pairwise comparisons have 

been previously used for similar annotation tasks, such as predicting video interestingness 

[24], and visual quality assessment [30, 31].

One crucial aspect of this annotation process is the cost of annotation with videos. Video 

annotation is hard to scale even when the video duration is limited, mainly due to the 

time overhead involved in annotating a large number of videos. Ideally, we would like to 

minimize the number of comparisons while obtaining reliable ratings. Therefore, for the 

purposes of our data annotation study, we decided to use the Swiss system [17], which 

has been widely used in dataset construction for visual quality assessment [30, 31]. Swiss 
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system considers the ranking process as a tournament, where each comparison between 

pairs of samples is a match. We start with randomly chosen pairs, after which the winner 

samples are paired together and losing samples are paired together for consecutive rounds. 

This allows for an approximate ranking to be obtained in significantly lower number of steps 

compared to O(n2) approach of comparing all pairs of videos. In our study, we added 1 point 

to the score of the winning video and 0.5 to each videos for a draw, and compared each 

video 4 times (except in the cases of bye, where such videos are automatically given a score 

of 1 for the round), resulting in accessibility scores between 0 and 4, with increments of 0.5. 

Figure 3 shows the histogram of accessibility scores at the end of the labeling.

4.3 Accessibility Analysis

The correlations between handcrafted features and the accessibility ratings are shown in 

Table 1. Based on these correlations, below are some of the key relationships that we 

observed to be important in assessing the accessibility of a video from our dataset.

Object Detection.—We found out object detection results are linked to the accessibility 

ratings in various ways. For instance, we found out that having more object types in a video 

correlated with a lower corresponding accessibility rating. This could likely be due to the 

increase in the quantity of visual information that cannot all be explained via audio for 

ensuring accessibility of the video content. Also, we observed that increased references to 

the video objects in the transcribed speech positively affected the accessibility ratings, which 

presumably is due to more visual information being made available via audio to blind screen 

reader users.

Speech Event-Person Co-Occurrence.—We found out that accessibility of a video 

was higher when a speech-related audio event coincided with the presence of a person 

(determined using object detection) in the video. This is best explained by the positive 

correlation value (0.173) between the feature f14 and accessibility score as shown in Table 1.

Motion.—Average sum of optical flow magnitude was found to be negatively correlated 

with the accessibility score. More movement in a video could indicate that more actions will 

need to be explained in audio for accessibility. However, note that this by itself is not a very 

strong inference – it needs to be supplemented with a higher level information source, such 

as results from an action recognition model.

Audio Recognition.—Existence of a detected speech event was found to be a major 

signal that predicts accessibility, as suggested by the high corresponding correlation value 

(0.4147) in Table 1. This is in a way an unsurprising observation – unless the point of 

interest in a video is also expressed in the audio stream with a well-known sound(e.g., piano 

sound for a video where the main event is a piano being played), it is hard for the listener to 

understand the video with the remaining audio information.

Speech Analysis.—We found a strong relationship between the length of the transcribed 

speech, both in terms of number of characters and words, and the accessibility ratings 

provided by the users. This implies that more speech content generally captures more 
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context about the visual content of the video, which makes it easier for blind users to 

comprehend the events in the video.

Part-of-Speech Tagging Analysis.—Part-of-Speech tagging revealed several signals 

that could be used to predict accessibility, which is expressed via f9, f10 and f11 features in 

Table 1. For example, we found a positive relationship between the frequency of nouns and 

the accessibility score, regardless of the relevance of these nouns to the objects detected in 

the video. Although it does not establish a causal relationship, this suggests that more nouns 

could mean higher number of entities being referred to in a video, hence a higher chance 

of visual content or related entities being explained via audio. Similarly, higher number of 

counts and pronouns could also possibly capture several entities or persons in the visual 

content, thereby increasing the accessibility of the video.

Music.—Both the existence of music (f7) and the proportion of the video covered by a 

music event (f8) features were found to be negatively correlated with the accessibility score. 

We found many examples in our dataset where the videos had background music that was 

completely unrelated to the visual content, thereby lowering the accessibility of these videos. 

In fact, this was one of the main motivations that led us to consider features related to 

background music in our analysis. An exception to this scenario comprised instances where 

the music event detected was accompanied by an instrument or instruments being played in 

the video.

Comparison with Contemporary Video Accessibility As- sessment [27]: We 

remark the above findings from our analysis share many similarities with those of a 

contemporary related research work [27]. For instance, the positive impact of feature f1 

(Speech ratio) on video accessibility was also observed in that prior work although by a 

different approach – by showing that the % Non-Speech feature that captured the proportion 

of non-speech duration in the video was negatively correlated with video accessibility. 

Similarly, the positive correlation between the feature f9 (Nouns ratio) and f13 (Object-

transcription match) and accessibility rating too was also equivalently captured as negative 

correlations between the features low lexical density speech and % visual entities not in 
speech in the prior work [27]. However, as the ground truth accessibility ratings in that work 

were obtained from people with visual impairments, they were unable to determine (with 

statistical significance) the type of correlation between the number of visual entities/min 
feature and the accessibility ratings, although their initial model suggested a negative 

correlation. In our work however, as the ratings were obtained from sighted users, we did 

not face this problem; we instead observed that there was a positive correlation between 

f2 (Number of object predictions) and accessibility ratings. However, we observed that the 

feature f3 (number of object prediction types) exhibited a negative correlation with the 

ratings.

4.4 Videos with High/Low Accessibility

In this section, we provide and discuss examples of a few videos in our dataset that were 

assigned high and low accessibility scores respectively by sighted users.
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4.4.1 Videos with High Accessibility.—We report the findings of a qualitative 

analysis of the videos in our dataset that were rated high (i.e., 3.5 or 4.0) by the sighted 

users. One of the common aspects we observed regarding the highly-rated videos was the 

existence of speech. Examples of this ilk included speech videos, where the videos contain a 

single person speaking with a constant background. Similarly, videos where the scenes were 

vividly and accurately described by a narrator in detail, also had high accessibility ratings.

Figure 4a and 4b depict a couple of example videos that were rated as highly accessible. The 

video in Figure 4a was taken from a scene where two pandas are shown with a background 

narrator speaking about the pandas. Although the exact scene itself is not described, the 

audio content being closely related to the visual content is presumably why the sighted 

raters concluded that the video is highly accessible. Figure 4b is from a scene where snow 

shoveling tips are being instructed by a background narrator while a man is shown shoveling 

snow in the video. The speech content, along with the shoveling sound together convey 

the visual content of the video via its audio, which may have led users to provide a high 

accessibility rating for this video.

4.4.2 Videos with Low Accessibility.—Similar to the videos with high accessibility 

scores, we also observed certain patterns among the videos with low accessibility rating (i.e., 

videos with 0 or 0.5 score). For example, one class of videos had background music that was 

totally unrelated to the video content. Another type of videos in this category where those 

where the background sound was not discernible enough to be associated with a particular 

source.

Two examples of videos with poor accessibility ratings are shown in Figure 4c and Figure 

4d. The video for Figure 4c is from a scene where background sound could be interpreted 

as coming from various sources, which possibly led users to provide low ratings to these 

videos. Figure 4d contains background music as the only audio theme, which makes it 

impossible for the user to comprehend the visual content just from the audio.

Overall, the examples we have seen in Figure 4 highlight the importance of the concordance 

between the audio and the visual channels of a video for improved accessibility. Notice how 

the example videos although of similar nature, as in the case of Figure 4a and Figure 4c, had 

contrasting accessibility scores, purely due to the nature of their audio content.

4.5 Evaluation with Visually-Impaired Users

We conducted a pilot study to better understand the video listening experience of users with 

visual impairments. Towards this, we recruited 6 users with visual impairments (3 male, 

3 female) to better understand their habits of video interaction (See Table 2). All users 

except P1 relied on listening as the only way to consume videos. In the study, we asked 

the participants to listen to recordings of 30 randomly chosen videos from the dataset. The 

videos were presented to users in random order. For each video, the users were asked to 

describe the video, and their perception of how well they understood the video (On a Likert 

scale from 1 to 7). Below are some of our findings from this study:
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Findings.—Due to the differences between the methodology of collecting the ratings (i.e., 

pairwise comparisons vs Likert scale), we do not report correlation information between 

the ratings. We however observed significant differences between the ratings provided by 

sighted and visually-impaired users in certain specific videos. For example, a participant 

misinterpreted the sound of the wind outdoors in a kite running video as the sound of fire 

and gave a high accessibility score of 7. In another example, an interview video where 

only a person is shown speaking (which received a high accessibility score of 3.5/4 in 

our earlier evaluation with sighted users) was instead deemed inaccessible by two visually-

impaired participants in this study – the video received low scores of 2 and 3 respectively. 

Lastly, the video that received the lowest score by the sighted participants (0.5/4) was 

instead considered average in terms of accessibility ratings given by the visually-impaired 

participants.

We observed during the study the participants were indeed aware of the fact that they were 

missing some information when the main audio theme in a video was music. However, 

in some cases, the participants were also able to distinguish between the cases where an 

instrument was being played in a video (hence possibly high-accessibility) and the cases 

where music was being played in background which was unrelated to the visual content of 

the video. When asked, one participant P4 stated that ambient noise in the video was helpful 

in distinguishing between such cases.

4.6 Automatic Evaluation of Video Accessibility

We formulated the video accessibility evaluation task in two ways: (i) As a classification 

task by binarizing the accessibility scores into two classes; and (ii) As a prediction task by 

learning a regression model and computing the mean absolute error (MAE).

4.6.1 Accessibility Evaluation by Classification.—In the binary classification task, 

the accessibility ratings were collapsed into two groups – accessible and inaccessible. 

Specifically, all videos which had an accessibility rating of at least 2.5 were labelled as 

accessible, and those with ratings below 2.5 were treated as inaccessible. This binning 

scheme resulted in 37.8% of the videos being labeled as accessible, and the remaining 

62.2% as inaccessible. We trained several classifiers to learn this binary classification task 

with different combinations of our handcrafted features, and found out that a support vector 

machine (SVM[12]) classifier with RBF kernel and C = 3.5 yielded the highest F1 score 

of 0.675 (precision=0.746, recall=0.550) for the positive class (i.e., accessible) after 5-fold 

cross validation, averaged over 10 runs. This shows that there is still scope for improvement 

in this classification task, and it could benefit from a larger annotated dataset and more 

expressive features.

4.6.2 Accessibility Evaluation by Regression.—For this task, we trained a multi-

layer neural network (3 fully connected layers with ReLU nonlinearities in between) as 

the regression model that can predict an accessibility score for a given video. This model 

accepts input in the form of a vector of handcrafted features, which were previously 

described in Section 3.2. For ground truth, we leveraged the accessibility ratings produced 

by sighted users. 5-fold cross validation averaged over 10 runs resulted in a Mean absolute 
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error (MAE) of 0.53. Note that most ground truth ratings were between 0 and 4, while only 

10 videos had a rating of exactly either 0 or 4.

Note that prior related work [27] also trained and evaluated a prediction model based on 

regression to assess video accessibility. However, in their work, they used a linear regression 

model whereas we performed both a neural regression task and a classification task.

5 DISCUSSION

5.1 Video diagnostics

An advantage of handcrafted features is the possibility of deducing the causes underlying 

the predictions made by either the classification or the regression model. In our approach, 

providing explanations for the predictions is as important as providing an accessibility rating 

or class, since the underlying reasons could have implications for both consumers and 

creators of videos. For example, accurately predicting a video as inaccessible while also 

explaining to the video creator that a particular video scene does not contain any speech 

event, can immensely help the creator ‘fix’ the accessibility issues by supplementing that 

scene with video descriptions.

Our approach is simply based on comparing handcrafted features computed for a particular 

video against the distribution of the overall dataset. A similar comparison approach was 

used in [27].From this comparison to the overall distribution, we can identify sources of 

accessibility issues by detecting undesirable values for the various features. For instance, 

for features that positively correlate with accessibility rating, a low value may indicate a 

potential reason for accessibility problems. Similarly, a high value for a negatively correlated 

feature can also point to a potential source of the accessibility problems. This insightful 

knowledge will enable both video content creators and consumers to be informed about the 

potential reasons behind a prediction, thereby permitting better allocation of resources for 

improving accessibility (e.g., adding video descriptions).

5.2 Limitations & Future Work

We discuss some of the aspects of our work which can be further improved, and future 

directions that can be explored next.

Dataset size & variety.—Although the two datasets we used for labeling consisted of 

diverse sets of scenes and actions, the cost of manual filtering and annotation limited the 

number of videos that made their way into our final dataset. This created an inevitable 

dataset bias. For example, although we believe the features described in Table 1 will 

generalize to many videos outside our dataset, the exact correlation values are still highly 

dependent on the videos included in the dataset. A more general analysis and accurate model 

for evaluating accessibility will require larger and diverse datasets from which complex 

relationships can be derived, an observation that was also made by prior related work [27]. 

Also, more comparisons per video in the dataset will result in more fine-grained and reliable 

scores.
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Dataset Artifacts.—Some of the videos included from the AViD dataset contained blurred 

faces to preserve anonymity. Even though we observed that a lower confidence threshold for 

object detection mitigates this problem, this could have still impacted the performance of 

person detection in our work as it is possible that fewer than actual number of persons were 

detected during our analysis. Second, due to pre-processing, some of the videos have a still 

frame at the end. The still frame appears longer than a second for 16% of the videos, and 

more than two seconds for 1% of the videos. For these videos, we computed the audio and 

video features for the duration only when both video and audio are present and changing.

Better understanding of audio-video relationship.—The analysis of relationship 

between the visual content and the audio in our approach was limited to explicit signals such 

as transcribed speech and detected audio events. While this approach has been demonstrated 

to be useful, it is not as powerful as a thorough analysis of understanding how much of the 

visual content is explained by the accompanying audio, which can be a research problem 

in itself. Further work in this regard can potentially result in better handling of the video 

accessibility evaluation task.

On-screen text.—We did not attempt to analyze text that may sometimes appear in videos 

(e.g., subtitles), which is another source of inaccessibility that we (and also prior work [27]) 

discovered during the study with users having visual impairments. One way to incorporate 

such text content into accessibility evaluation is to assess whether text content exists or 

not, and to analyze the relationship between the on-screen text and the speech/audio events, 

similar to that suggested in [27].

Improved feature extraction.—Features extracted in our model were handcrafted 

and targeted at finding specific properties based on our manual observations regarding 

accessibility of videos. While these features indeed facilitate diagnostics, an accurate 

predictive model does not necessarily have to rely only on handcrafted features. Visual 

information that is not captured by our handcrafted features can possibly be captured by 

state-of-the-art deep learning methods and is very likely to boost the prediction performance.

6 CONCLUSION

In this paper, we analyzed a diverse set of handcrafted features that characterize accessibility 

of videos, and built prediction models for quantifying accessibility of videos. Towards this, 

we collected a labeled dataset of accessibility evaluations from sighted users, and then used 

handcrafted features, some of which exist in the literature, extracted from the videos in this 

dataset to find features that correlate either positively or negatively with video accessibility. 

These handcrafted features can not only be used as a means for predicting accessibility 

scores of videos, but also provide users with explanations regarding the factors that impacted 

the predicted accessibility score. Through a user study with 6 participants who were visually 

impaired, we found cases where the participants’ perception of accessibility differed from 

the annotations provided by the sighted users. This work could pave the way for future 

video accessibility research with more data and use of more sophisticated machine learning 

models to understand in-depth the accessibility relationships between the visual and speech 

aspects of a video.
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CCS CONCEPTS

• Human-centered computing → Accessibility theory, concepts and paradigms; 

Accessibility systems and tools.
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Figure 1: 
Accessibility analysis using handcrafted features. From left to right: (i) Two main sources of 

information, namely the video and the audio. (ii) Handcrafted feature computation. (iii) Use 

of features for predicting accessibility scores.
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Figure 2: 
Annotation pipeline. The participants are shown pairs of videos chosen from the dataset, for 

which they provide one of the three options (A, B or equal). The videos with the same scores 

are paired together in the next round.
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Figure 3: 
Number of samples with respect to accessibility scores.
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Figure 4: 
Sample videos from the dataset. (a) and (b): sample videos with high rating, with both have 

4/4 score. (c) and (d): sample videos with low ratings, with both having 0.5 score.
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