Skip to main content
. Author manuscript; available in PMC: 2022 Feb 15.
Published in final edited form as: Soc Indic Res. 2021 Jun 12;158(3):947–990. doi: 10.1007/s11205-021-02712-9

Table 6.

Regression results on multidimensional poverty incidence and deprivation score

Outcome MPI Poor (poverty incidence)
C vector (deprivation score)
Time points Year 1 – Baseline Year 2 – Baseline Year 3 – Baseline Year 4 – Baseline Year 1 – Baseline Year 2 – Baseline Year 3 – Baseline Year 4 – Baseline
Panel 1: All sample
Bridges −0.141** (0.053) −0.136** (0.052) −0.169** (0.064) −0.028 (0.045) −0.048*** (0.014) −0.042*** (0.011) −0.055*** (0.014) −0.010(0.011)
Bridges PLUS −0.116** (0.049) −0.217*** (0.048) −0.207*** (0.061) −0.107*** (0.034) −0.033** (0.013) −0.055*** (0.011) −0.061*** (0.014) −0.028** (0.011)
Constant −0.046 (0.038) −0.055 (0.036) −0.096* (0.050) −0.191*** (0.029) −0.014(0.011) −0.019** (0.007) −0.023** (0.011) −0.060*** (0.007)
N 1227 1112 1118 1169 1227 1112 1118 1169
Bridges = BridgesPlus (p-value) 0.614 0.109 0.484 0.054 0.192 0.282 0.614 0.124
Bridges = BridgesPlus = 0 (p-value) 0.023 0.000 0.005 0.007 0.003 0.000 0.000 0.053
Panel 2: Sample aged < 18 at a given time point
Bridges −0.142** (0.053) −0.134** (0.054) −0.186*** (0.061) −0.031 (0.052) −0.048*** (0.014) −0.041*** (0.011) −0.059*** (0.014) −0.011 (0.013)
Bridges PLUS −0.115** (0.049) −0.213*** (0.050) −0.221*** (0.059) −0.146*** (0.039) −0.03** (0.013) −0.054*** (0.012) −0.068*** (0.014) −0.039*** (0.013)
Constant −0.046 (0.038) −0.055 (0.038) −0.086* (0.048) −0.152*** (0.029) −0.014(0.011) −0.019** (0.007) −0.019* (0.011) −0.049*** (0.009)
N 1224 1098 1047 866 1224 1098 1047 866
Bridges = BridgesPlus (p-value) 0.587 0.128 0.486 0.026 0.176 0.307 0.442 0.033
Bridges = BridgesPlus = 0 (p-value) 0.023 0.000 0.002 0.001 0.003 0.000 0.000 0.014

School-level cluster robust standard errors in parentheses.

+

p < 0.10;

*

p < 0.05;

**

p < 0.01;

***

p < 0.001

MPI poor = H: Headcount ratio or incidence of multidimensional poverty (MPI); C vector = C vector is a simultaneous deprivation score for each child. It is derived through summing deprivation status of each indicator multiplied by weight (1/12), which is a weighted sum of overlapping deprivations. All models cluster the standard errors at the school level to adjust for intra-school correlations