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ABSTRACT Antibiotic therapy of infections caused by the emerging pathogen
Mycobacterium abscessus is challenging due to the organism’s inherent resistance to
clinically available antimicrobials. The low bactericidal potency of currently available
treatment regimens is of concern and testifies to the poor therapeutic outcomes for
pulmonary M. abscessus infections. Mechanistically, we demonstrate here that the ace-
tyltransferase Eis2 is responsible for the lack of bactericidal activity of amikacin, the
standard aminoglycoside used in combination treatment. In contrast, the aminoglyco-
side apramycin, with a distinct structure, is not modified by any of the pathogen’s
innate aminoglycoside resistance mechanisms and is not affected by the multidrug re-
sistance regulator WhiB7. As a consequence, apramycin uniquely shows potent bacteri-
cidal activity against M. abscessus. This favorable feature of apramycin is reflected in a
mouse model of pulmonary M. abscessus infection, which demonstrates superior activ-
ity, compared with amikacin. These findings encourage the development of apramycin
for the treatment of M. abscessus infections and suggest that M. abscessus eradication
in pulmonary disease may be within therapeutic reach.
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Nontuberculous mycobacteria (NTM) are ubiquitous environmental organisms com-
prising numerous pathogens that cause chronic pulmonary infections, particularly

among patients with preexisting pulmonary diseases, such as cystic fibrosis (CF), bron-
chiectasis, and chronic obstructive pulmonary diseases (1–4). Of the rapidly growing
members of NTM species, Mycobacterium abscessus complex (MABSC) has evolved as a
major respiratory pathogen in individuals with CF, where it leads to accelerated decline
in pulmonary function and can compromise the success of lung transplantation (5–7).
Pulmonary infections with M. abscessus have become more common, and studies from
several countries worldwide have all reported significant increases in the prevalence of
M. abscessus infections over the past decade (3, 8). It is estimated that 5% to 15% of indi-
viduals with CF in Europe and the United States are infected withM. abscessus (9–11).

MABSC consists of three subspecies, i.e., M. abscessus subsp. abscessus, M. abscessus
subsp. bolletii, and M. abscessus subsp.massiliense (2). Its main threat as a pathogen is not
least due to its high innate resistance to antibacterial agents, which affects a broad range
of commonly used antibiotics (12). Consequently, limited treatment options for MABSC
infections exist, and current recommendations suggest that patients with M. abscessus
pulmonary disease should receive a multidrug regimen that includes at least three drugs
(13–16). Amikacin is considered a cornerstone in the treatment of MABSC infections, par-
ticularly infections involving strains that exhibit inducible [erm(41)-dependent] macrolide
resistance, as most clinical isolates of M. abscessus do (17, 18). Antibiotic treatment for a
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full 12 months after culture conversion is recommended; however, culture conversion is
the exception rather than the rule. Clinical studies of therapeutic outcomes are sparse
and, to date, no standardized antibiotic regimens leading to cure rates of .30% to 50%
have been reported, with some variation among the subspecies (19–21). In addition to
lengthy courses of antimicrobial chemotherapy, surgery may be required to decrease the
burden of disease (19).

In general, antibacterial compounds are categorized as bacteriostatic or bactericidal
antimicrobials. The bactericidal activity of an antibiotic is particularly relevant for treat-
ment of chronic infections, such as endocarditis, because bacteriostatic activity alone
rarely results in resolution of the infection (22). The poor treatment outcomes in pul-
monary infections with M. abscessus are of concern and may be related to the limited
bactericidal activity of available treatment regimens. None of the antibacterials used
currently in treatment, not even the most potent drug classes such as aminoglycosides
and fluoroquinolones, exhibit bactericidal activity (minimal bactericidal concentration
[MBC]/MIC of#4) against MABSC (23–25).

RESULTS AND DISCUSSION

We determined the dose- and time-dependent kill curves for amikacin against a
panel of clinical isolates representing the three MABSC subspecies (Table 1 and Fig. 1
and 2). MICs for amikacin were in the range of 1 to 4 mg/L, and dose- and time-depend-
ent reductions in CFU were found at drug concentrations above the MIC. However, a

FIG 1 Bactericidal activity of amikacin (AMK) and apramycin (APR) on clinical isolates. Values indicate
the percentage of input CFU (x = 100%) following 18 h of incubation in the presence of 4 mg/L
amikacin or 4 mg/L apramycin. For details, see Fig. 2.

TABLE 1MICs and MBCs ofM. abscessus strains

Strain

MIC or MBC (mg/L)a

Amikacin Apramycin

MIC MBC18 MBC36 MIC MBC18 MBC36
Clinical isolates
M. abscessus subsp. abscessus 500043/08 1 .32 .32 0.5 2 1
M. abscessus subsp. abscessus 500042/08 1 .32 .32 0.5 4 2
M. abscessus subsp.massiliense 500044/09 1 .32 .32 0.5 2 1
M. abscessus subsp.massiliense 500446/19 1 .32 .32 0.5 4 2
M. abscessus subsp. bolletii 179709/08 1 .32 .32 0.5 4 2
M. abscessus subsp. bolletii 181739/08 4 .32 .32 0.5 4 2

ATCC type strain and isogenic mutants
M. abscessus ATCC 19977 1 .32 .32 0.5 2 1
M. abscessus Deis2 0.25 1 1 0.5 2 1
M. abscessus Daac(29) 1 .32 .32 0.5 4 2
M. abscessus Daac(29) Deis2 0.25 2 1 0.5 4 2
M. abscessus DwhiB7 0.25 ND ND 0.5 ND ND

a MBC18, MBC at 18 h of drug exposure; MBC36, MBC at 36 h of drug exposure; ND, not done.
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FIG 2 Time-kill curves for amikacin and apramycin against M. abscessus strains. M. abscessus clinical
isolates of the three subspecies, i.e., M. abscessus subsp. abscessus, M. abscessus subsp. massiliense,

(Continued on next page)
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bactericidal effect, defined as 99.9% reduction of the inoculum CFU counts, was not
observed even at the highest amikacin concentration tested (32 mg/L). A concentration
of 32 mg/L amikacin, however, is already 3-fold higher than the tissue, epithelial lining
fluid, and sputum concentrations of about 10 mg/L achieved after intravenous infusion
with therapeutic dosing (26, 27).

The genome of M. abscessus encodes several drug-modifying enzymes (12, 18). We
recently showed that M. abscessus aminoglycoside susceptibility is affected by chromoso-
mally encoded aminoglycoside-modifying acetyltransferases (Mabs_4532c and Mabs_4395)
(28). Mabs_4532c encodes the promiscuous multiacetyltransferase Eis2 and affects suscepti-
bility to, for example, amikacin and the peptide antibiotic capreomycin, while Mabs_4395
encodes an aminoglycoside 29-N-acetyltransferase [AAC(29)] that specifically reduces sus-
ceptibility to 29-NH2-aminoglycosides such as kanamycin B, tobramycin, and gentamicin
but spares the 29-OH aminoglycoside amikacin (28). We hypothesized that eis2may prevent
the bactericidal activity of amikacin. We determined amikacin MIC and time-kill curves for
M. abscessus Deis2 and M. abscessus Daac(29) Deis2 strains. As controls, we used a wild-type
(wt) strain and a genetically engineered M. abscessus Daac(29) strain. As expected, genetic
deletion of aac(29) did not affect amikacin MICs, while the amikacin MICs in the Deis2 and
Daac(29) Deis2 deletion mutants were 4-fold lower than the amikacin MICs in the isogenic
parental strain (28) (Table 1). Similarly, amikacin susceptibility in M. abscessus was affected
by whiB7. A strain with whiB7 deleted showed a 4-fold decreased amikacin MIC (Table 1).
The whiB7 gene encodes a conserved stress response transcription factor that confers
broad-range drug resistance in M. abscessus by acting through various effector mecha-
nisms, e.g., by regulating genes involved in drug modification (eis2), target-modifying genes
[erm(41)], and drug efflux pumps (29–31). No bactericidal activity of amikacin was observed
for the wt strain or the Daac(29) deletion mutant. In contrast, a potent bactericidal
effect at low drug concentrations (MBC of 1.0 mg/L) was found for the Deis2 mutant
and the Daac(29) Deis2 double deletion mutant. No difference in the bactericidal ac-
tivity of amikacin was found between the Deis2 and Daac(29) Deis2 deletion strains
(Table 1 and Fig. 2). These data demonstrate that eis2 is necessary and sufficient to
specifically abolish the bactericidal activity of amikacin in M. abscessus.

Apramycin is an aminoglycoside of unique structure that shows potent MIC activity
against M. abscessus and exhibits minimal cross-resistance to other aminoglycosides,
combined with therapeutic lung exposure and a low toxicity profile (32–35). We deter-
mined time- and dose-dependent apramycin kill curves for various MABSC strains, as
listed in Table 1. In addition to the genetically engineered deletion mutants of M. absces-
sus, this panel of strains includes clinical isolates representative of the three subspecies,
M. abscessus subsp. abscessus, M. abscessus subsp. bolletii, and M. abscessus subsp. massi-
liense. The apramycin MICs for all strains were 0.5 mg/L, independent of the subspecies
or the presence or absence of eis2, aac(29), and whiB7. These findings indicate that apra-
mycin is neither a substrate for acetylation by Eis2 or Aac(29) nor a target for any of the
numerous whiB7-dependent drug resistance mechanisms. Consequently, the efficacy of
apramycin is unlikely to be affected by antagonistic drug interactions, as observed in
clarithromycin-amikacin combination treatment due to macrolide-induced upregulation
of WhiB7 (31). Most importantly, at doses as low as 1 to 2 mg/L, apramycin exhibited
potent bactericidal activity for all strains tested, irrespective of the presence of eis2 or
aac(29) (Table 1 and Fig. 1 and 2). These findings demonstrate that apramycin overcomes
the inherent lack of aminoglycoside bactericidal activity in M. abscessus.

The potent bactericidal activity of apramycin prompted us to test its activity in an in
vivo M. abscessus infection model. SCID mice were infected with 106 CFU of M. abscessus

FIG 2 Legend (Continued)
and M. abscessus subsp. bolletii, as well as M. abscessus ATCC 19977 and its genetically engineered
deletion mutants M. abscessus Deis2, M. abscessus Daac(29), and M. abscessus Daac(29) Deis2, were
exposed for 18 h or 36 h to various concentrations (0 and 0.125 to 32 mg/L) of amikacin (AMK) and
apramycin (APR). Serial dilutions were spotted and incubated at 37°C for 96 h. Bacteria were
counted, and the relative number of CFU, compared to time zero, was plotted. The dashed
horizontal lines indicate the 99.9% killing threshold that defines bactericidal activity.
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and rested for 1 day. Then, groups of mice were treated for 8 consecutive days with ei-
ther a high dose of amikacin (150 mg/kg), three different doses of apramycin (150, 50,
and 15 mg/kg), or vehicle control. CFU counts in lung homogenates were determined at
day 1 (before the start of treatment) to confirm manifestation and 1 day after administra-
tion of the last antibiotic dose (Fig. 3). An amikacin dose of 150 mg/kg reduced CFU
counts in the lungs by approximately 1 log unit. A 10-fold lower apramycin dose of
15 mg/kg resulted in a similar CFU reduction. Upon application of higher doses of apra-
mycin, a dose-dependent CFU reduction of up to 2 log units was observed. Thus, apra-
mycin exceeded the efficacy of amikacin by 1 order of magnitude when the drugs were
administered at equivalent doses.

In summary, we demonstrate here that apramycin is an antibiotic with bactericidal
activity against M. abscessus. Its activity is affected neither by M. abscessus acetyltrans-
ferases nor by the multidrug resistance regulator WhiB7. Our in vitro findings translate
into potent pathogen reduction in an in vivo pulmonary infection model, where apra-
mycin is significantly more potent than amikacin, a drug considered a cornerstone in
the treatment of M. abscessus infections. These findings warrant the consideration of
apramycin for treatment of infections with M. abscessus and suggest that apramycin
may offer the promising prospect of M. abscessus eradication in pulmonary disease. In
particular, chronically infected CF patients may benefit from the potent bactericidal ac-
tivity of this drug candidate.

MATERIALS ANDMETHODS
Mycobacterial strains and culture conditions. Mycobacterium abscessus strains were grown in cat-

ion-adjusted Mueller-Hinton (CAMH) broth. Clinical isolates were obtained from the Institute of Medical
Microbiology, University of Zurich, and the National Reference Laboratory for Mycobacteria (Zurich,
Switzerland). Strains were identified by rrs (16S rRNA) gene sequencing and typed to the subspecies
level by rpoB and erm(41) sequencing (36–38). Genetically engineered derivatives of M. abscessus ATCC
19977 with gene deletions in eis2, aac(29), or aac(29) eis2 have been described previously (28). A targeted
deletion mutant of M. abscessus deficient in whiB7 (MAB_ 3508c) was constructed by electroporation of
competent cells with plasmid pKH-DwhiB7, following the procedure described by Rominski et al. (39). In
brief, plasmid pKH-whiB7 is a suicide vector containing approximately 1.5 kbp of the upstream and
downstream regions of the target gene, facilitating homologous recombination. The upstream-down-
stream region is cloned adjacent to an aac(3)IV resistance cassette and a DsRed2 marker gene for posi-
tive selection and the M. tuberculosis katG gene for negative selection (isoniazid susceptibility) (40).
Transformants were selected on apramycin-containing plates and identified by red fluorescence. Single
crossover transformants were identified by Southern blotting and subjected to isoniazid counterselec-
tion. Single colonies were purified, and deletion of the whiB7 locus was confirmed by Southern blotting.

FIG 3 M. abscessus CFU counts in the lungs of mice. SCID mice were intravenously infected with M.
abscessus. One day later, once-daily treatment with either amikacin or different doses of apramycin
for 8 consecutive days was started. Mice were euthanized 1 day after receiving the last antibiotic
dose. Lungs were homogenized, and extracts were plated on 7H11 agar. A group of three mice was
used to calculate the bacterial load at the start of treatment (SOT). One control group (n = 6) did not
receive antibiotics (vehicle). Statistical analysis was performed using GraphPad Prism version 5
(GraphPad Software). P values were calculated using one-way ANOVA, and Tukey’s multiple-
comparison test. n.s., not significant; **, P , 0.01; ***, P , 0.001.

Apramycin Bactericidal Activity inM. abscessus Antimicrobial Agents and Chemotherapy

February 2022 Volume 66 Issue 2 e01510-21 aac.asm.org 5

https://aac.asm.org


MIC determinations. Amikacin and apramycin were purchased from Sigma-Aldrich. Antibiotics were dis-
solved in water according to the manufacturer’s recommendations, filter sterilized, aliquoted into stock solu-
tions, and stored at 220°C. MIC determinations were performed according to CLSI guideline M24 (41) and as
described (39). Antibiotic stock solutions were prepared in CAMH broth to a concentration of 64 mg/L, and 2-
fold serial dilutions in CAMH broth were prepared using sterile 96-well microtiter plates (Greiner Bio-One,
Switzerland). A positive growth control lacking antibiotic and a sterile negative control containing CAMH broth
only were included in each 96-well microtiter plate. For preparation of the inoculum, three or four colonies
from a bacterial strain grown on LB agar were transferred, using a sterile cotton swab, into a tube containing
2 mL of NaCl. In order to achieve a final inoculum titer of 1 � 105 to 5 � 105 CFU/mL for MIC and 1 �
106 to 5 � 106 CFU/mL for MBC (see below), respectively, all bacterial suspensions were adjusted to
turbidity equivalent to that of a 0.50 McFarland standard and subsequently diluted in CAMH broth.
The final test volume in each well of the microtiter plate was 0.1 mL. The correct titer of each inoculum
was checked by assessing CFU counts on LB agar plates. The microdilution plates were capped with
adhesive sealing covers and incubated at 37°C for 3 days before the MIC values were assessed by vis-
ual inspection. All MIC assays were conducted in triplicate. The MIC was defined as the lowest antibi-
otic concentration that prevented visible bacterial growth.

Time-kill curves and MBC determinations. At the start of the experiment, the bacterial inoculum
was determined by spotting 10-fold serial dilutions of the bacterial suspension from the no-drug control
on agar plates and counting CFU. After 18 h and 36 h of incubation, bacterial cells from the MIC plates
were resuspended by pipetting prior to spotting of 5-ml aliquots of 10-fold serial dilution series on LB
agar plates. The agar plates were incubated for 96 h at 37°C, and CFU were counted. The relative CFU
counts were adjusted to the inoculum at time zero. The MBC was defined as the lowest antibiotic con-
centration that reduced the CFU of the inoculum by $99.9%.

In vivo infection experiments. Female SCID mice (Charles River Laboratories), 7 to 9 weeks of age, were
infected by intravenous tail vein injection with 1 � 106 CFU/mouse of M. abscessus (strain 103, a clinical isolate
from a CF patient) (42). Three mice were sacrificed at day 1 postinfection to determine bacterial manifestation
prior to the start of treatment. Once-daily antibiotic treatment by subcutaneous injection was started 1 day after
infection and continued for 8 consecutive days. The following doses were applied: amikacin, 150 mg/kg/day;
apramycin, 150 mg/kg/day, 50 mg/kg/day, or 15 mg/kg/day. Saline served as a vehicle control. Treated mice
were sacrificed at day 10 postinfection (including 8 days of antibiotic treatment). Whole lungs were extracted,
homogenized in 4.5 mL of 1� phosphate-buffered saline (PBS), and plated in 10-fold serial dilutions on
Middlebrook 7H11 agar. Plates were incubated for 7 days at 37°C prior to CFU counting.

The Colorado State University (CSU) animal care program follows the recommendations of the
National Research Council Guide for the Care and Use of Laboratory Animals (43), the requirements of the
Public Health Service (PHS) grants administration manual, and the Animal Welfare Act as amended. CSU
files assurances with the DHHS Office of Extramural Research, Office of Laboratory Animal Welfare
(OLAW), PHS, and adheres to NIH standards and practices for grantees. The CSU animal welfare assur-
ance number is A3572-01.

Statistical analysis. Bacterial burdens in the untreated control and drug-treated animal organs were ana-
lyzed with GraphPad Prism version 5 (GraphPad Software, San Diego, CA). P values were calculated using one-
way analysis of variance (ANOVA) and Tukey’s multiple-comparison test. Data are presented using the mean
values (n = 6)6 the standard errors of the mean (SEMs). Significance was considered for P values of,0.05.
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