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BACKGROUND: Diverse toxicants and mixtures that affect hormone responsive cells [endocrine disrupting chemicals (EDCs)] are highly pervasive in
the environment and are directly linked to human disease. They often target the nuclear receptor family of transcription factors modulating their levels
and activity. Many high-throughput assays have been developed to query such toxicants; however, single-cell analysis of EDC effects on endogenous
receptors has been missing, in part due to the lack of quality control metrics to reproducibly measure cell-to-cell variability in responses.
OBJECTIVE: We began by developing single-cell imaging and informatic workflows to query whether the single cell distribution of the estrogen
receptor-a (ER), used as a model system, can be used to measure effects of EDCs in a sensitive and reproducible manner.
METHODS:We used high-throughput microscopy, coupled with image analytics to measure changes in single cell ER nuclear levels on treatment with
∼ 100 toxicants, over a large number of biological and technical replicates.
RESULTS:We developed a two-tiered quality control pipeline for single cell analysis and tested it against a large set of biological replicates, and toxi-
cants from the EPA and Agency for Toxic Substances and Disease Registry lists. We also identified a subset of potentially novel EDCs that were
active only on the endogenous ER level and activity as measured by single molecule RNA fluorescence in situ hybridization (RNA FISH).

DISCUSSION: We demonstrated that the distribution of ER levels per cell, and the changes upon chemical challenges were remarkably stable features; and
importantly, these features could be used for quality control and identification of endocrine disruptor toxicants with high sensitivity. When coupled with or-
thogonal assays, ER single cell distribution is a valuable resource for high-throughput screening of environmental toxicants. https://doi.org/10.1289/EHP9297

Introduction
The human population is constantly exposed to an increasing num-
ber of chemicals and complex mixtures that pose significant health
risks. A subset of these is referred to as endocrine-disrupting chem-
icals (EDCs), because they interfere with actions of natural hor-
mones altering central physiological mechanisms, ultimately
causing disease (De Coster and van Larebeke 2012; Hall and
Greco 2019; Kabir et al. 2015). One of themany potential EDC tar-
gets is the estrogen receptor-a (ER), a transcription factor that reg-
ulates, among other physiological processes, female reproductive
biology and is involved in several diseases, including obesity and
breast cancer (Gibson and Saunders 2014; Heldring et al. 2007).
The ERmechanistic pathway has been extensively studied in terms
of EDC action, with large efforts spearheaded by the U.S. EPA and
National Toxicology Program (NTP) ToxCast and Tox21 pro-
grams, using a battery of in vitro and in vivo assays (Huang et al.

2014; Judson et al. 2015; Mansouri et al. 2016; Richard et al. 2016;
Rotroff et al. 2014; Stossi et al. 2014; Szafran et al. 2017). ToxCast
efforts led to the important demonstration that 18 in vitroER assays
can be used as a substitute for expensive and less reliable animal
models to predict in vivo EDC potential (Judson et al. 2015, 2017).
The majority of high-throughput assays used for EDC screening
measure end points based on a specific part of the ER pathway, usu-
ally in engineered systems (i.e., ER binding, dimerization, DNA
binding, gene transcription changes, etc.). These approaches pay
minimal, if any, attention to the impact on endogenous ER, where
interrelations between multiple pathways occur, or attention to
individual cell responses within the population. Cell-to-cell vari-
ability (here defined as phenotypic heterogeneity) in protein levels,
phenotypes, responses to stimuli, gene transcription, and epige-
netics is a common trait from bacteria to humans (Ackermann
2015; Bintu et al. 2016; Perlman et al. 2004; Raj and van
Oudenaarden 2008; Schreiber et al. 2016; Singh et al. 2010), has
been observed for many years but has rarely been exploited in
high-throughput assays (Gough et al. 2016, 2017, 2014) or studies
of environmental toxicants. Phenotypic heterogeneity is thought to
serve as a “rheostat” for evolutionary processes and adaptive
responses to stimuli (e.g., drugs, lack of nutrients, etc.) of a geneti-
cally homogeneous population (Ackermann 2015; Rubin 1990).

Although phenotypic heterogeneity is an important biological
phenomenon, only a handful studies attempted to use phenotypic
heterogeneity to quantify compound responses or discuss pipe-
lines for quality control (QC) of such experiments. In excellent
work from the Schurdak and Taylor groups (Gough et al. 2016,
2017, 2014), some phenotypic indexes have been proposed for
both quality control and measurement of responses. These
indexes inform on changes in cellular responses, presence of sub-
populations, and response in only a subset of cells.

In this study, using the ER pathway as a test case, we sought
to evaluate the reproducibility of phenotypic heterogeneity across
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multiple experiments (biological and technical replicates) with
variations in sample preparation, acquisition, and analysis. The
choice of ER nuclear levels is in line with the new consensus
statement on key characteristics of EDCs [KC3, which alters hor-
mone receptor expression (La Merrill et al. 2020)]. We used en-
dogenous, nuclear ERa levels in individual breast cancer cells as
a model for phenotypic heterogeneity analysis. ERb, the other
estrogen receptor gene, is not expressed in the cell line used;
hence, mention of ER in this study is always in reference to ERa.
The usefulness of this approach is that ER levels are modulated
by ligands in different ways. For example, the natural agonist
17b-estradiol (E2) reduces ER levels through a negative feedback
loop; the selective estrogen receptor modulator (SERM), 4-
hydroxytamoxifen (4OHT) stabilizes ER; and the selective estro-
gen receptor down-regulator (SERD), Fulvestrant (ICI), immobil-
izes and ultimately degrades ER (Marsaud et al. 2003). The use
of such control compounds allowed us to measure differences
and reproducibility of ER single cell distributions upon treat-
ments and across a large number of biological replicates. These
controls served as basis to develop a two-tiered QC pipeline of
ER distributions that identifies “bad,” i.e., nonreproducible,
experiments. We further tested this pipeline by performing dose–
response experiments with: a) a set of known EDCs (EPA45
from Judson et al. 2015) to determine the accuracy of this analy-
sis method in comparison with the 18 assays in ToxCast; and; b)
a set of 42 toxicants from the Agency for Toxic Substances and
Disease Registry (ATSDR) list that were selected as environmen-
tally relevant by the Texas A&M Superfund group (Chen 2020),
and we identified a number of new toxicants that directly and
indirectly affected ER levels and activity. We envision that simi-
lar approaches will greatly aid researchers venturing in single cell
analysis of environmental toxicant actions.

Methods

Cell Culture
MCF-7 cells were obtained from BCM Cell Culture Core, which
routinely validates their identity by genotyping, or directly from
American Type Culture Collection (ATCC); all culture have con-
stantly tested mycoplasma negative as determined by DAPI
(Sigma-Aldrich) staining, which is evaluated by looking for
extranuclear DAPI signal with a 60× = 1:42 objective on a
Cytiva DVLive epifluorescence deconvolution microscope.
MCF-7 were routinely maintained in phenol-red free DMEM
with the following additions, 10% FBS (Gemini), PenStrep, glu-
tamine, and sodium pyruvate. Three days prior to experiments,
cells were plated in media (DMEM) containing 5% charcoal-
dextran stripped and dialyzed FBS. For 384 multiwell plates,
3,000 cells/well were plated; for other vessels it was proportion-
ally scaled based on the well surface area (96-well plate: 10,000
cells/well, coverslip: 60,000/well).

Quality Control Experimental Design
We performed experiments over 3 y of time, using different cell
passages and thaws (we always used up to eight passages for
each round of thawing; all the thaws were derived from an initial
cell culture stock that was frozen down in multiple vials), media
and two-serum batches, personnel (as listed in Table 1), vessels
(from coverslips to 384 multiwell plates), instruments for acquisi-
tion (manual vs. automated as listed in Table 1), analysis soft-
ware (CellProfiler versions 2.0 and 3.0; https://cellprofiler.org/)
[Carpenter et al. 2006 and mIA–myImageAnalysis (Szafran and
Mancini 2014)], primary antibodies [from different sources with
different epitopes, described below in the “IF and single molecule

RNA FISH (smFISH).” section], secondary antibodies with two
different fluorophores (Alexa488 or Alexa647), and number of
cells acquired [indicated in Table 1 for dimethylsulfoxide
(DMSO) samples as an example]. We specifically kept the mag-
nification and numerical aperture constant (20 × =0:75NA) to
ensure capture of a larger number of cells per run reducing the over-
all time of acquisition (Table 1) (example images in Figure 1A).
From each experimental campaign (n>30 biological replicates,
with some experiments having “technical” replicate plates within
the same biological replicate), we extracted single cell, nuclear ER
mean intensity values, which represent an easy readout that is im-
mediately apparent and biologically relevant, in comparison with
other features obtainable from image analytics (e.g., texture and
morphological features); however, in principle, the proposed frame-
work is applicable to any feature and assay of interest.

Chemicals
All chemicals were provided to us directly from the U.S. EPA
(Dr. Keith Houck) or through the Texas A&M Superfund pro-
gram (Dr. Ivan Rusyn and Dr. Weihsueh Chiu), which acquired
them and provided aliquots arrayed in 96 well plates. A list of the
chemicals and their CAS numbers has been added as Table 2.
The chemicals’ highest tested concentration was 10 lM from

Table 1. Summary of experiments used for quality control pipeline estab-
lishment and testing.

Experiment # Instrument Analysis software Operator # Cells DMSO

EXP01 IC200 mIA RD 11,691
EXP02 IC200 CellProfiler FS 11,997
EXP03 DV CellProfiler FS 2,274
EXP04a DV CellProfiler FS 1,222
EXP05a DV CellProfiler RD 588
EXP06 IC200 CellProfiler FS 8,528
EXP07 IC200 CellProfiler RD 7,202
EXP09 IC200 CellProfiler RD 7,764
EXP10 IC200 CellProfiler RD 7,795
EXP11a IC200 mIA FS 4,527
EXP12 IC200 mIA FS 4,492
EXP13 IC200 CellProfiler HJ 9,744
EXP14 DV CellProfiler FS 1,128
EXP15a DV CellProfiler HJ 785
EXP16 IC200 CellProfiler HJ 30,974
EXP17 IC200 CellProfiler HJ 14,990
EXP18 IC200 mIA HJ 30,055
EXP19 IC200 CellProfiler HJ 2,068
EXP20 IC200 CellProfiler FS 25,728
EXP21a IC200 mIA FS 6,053
EXP22 IC200 mIA RM 37,374
EXP24 IC200 mIA FS 30,489
EXP25 IC200 mIA RM 103,845
EXP26_plate1 IC200 mIA RM 66,568
EXP26_plate2 IC200 mIA RM 52,534
EXP27_plate1 IC200 mIA RM 80,618
EXP27_plate2 IC200 mIA RM 65,046
EXP28 IC200 mIA RM 38,087
EXP29 IC200 mIA RM 45,177
EXP30 IC200 mIA RM 51,161
EXP31_plate1 IC200 mIA RM 31,251
EXP31_plate2 IC200 mIA RM 35,553
EXP32_plate1 IC200 mIA RM 85,953
EXP32_plate2 IC200 mIA RM 86,939
EXP33_plate1 IC200 mIA RM 46,578
EXP33_plate2 IC200 mIA RM 37,113

Note: IC200 refers to the Vala Sciences IC-200 high-throughput epifluorescence micro-
scope with a Nikon PlanApo 20× =0:75 NA objective and a sCMOS camera; DV refers
to Cytiva DVLive epifluorescence image restoration microscope, using an Olympus
PlanApo 60× =1:42 NA objective and a 1:9k× 1:9k sCMOS camera. # cells in DMSO
indicates the number of objects counted by image analysis in vehicle (DMSO) treated
wells in each experiment. DMSO, dimethylsulfoxide; QC, quality control.
aExperiments that failed the QC analysis (Figure 1).
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where the indicated dilutions (either half logs or logs) were
made, as indicated in the figures (range was 10 pM–10 lM,
except for Figure 2E and 3A, where the lower concentration was
10 fM and 10 pM, respectively). All treatments were conducted
for 24 h before immunofluorescence (IF) or smRNA FISH. In
each experiment, the following controls were included: vehicle
(DMSO, 1:1,000), 17b-estradiol (E2, 10 nM), 4-hydroxytamoxi-
fen (4-OHT, 1 lM), and Fulvestrant (ICI 182,780 1 lM). Every
chemical/concentration had a minimum of 4 wells/384 well plate
(technical replicates), per biological replicate. Every ER IF
experiment with chemical treatment was repeated a minimum of
four times.

IF and single molecule RNA FISH (smFISH). IF experi-
ments were completed as previously described (Stossi et al.
2016) after cell seeding in different vessels to test whether vessel
choice would impinge on the results (i.e., Greiner BioOne 384
glass-bottom plates, Aurora 384 optical plastic-bottom plates,
poly D-lysine–coated glass coverslips in a 24-well plate). Briefly,
cells were fixed in 4% EM-grade formaldehyde in phosphate-
buffered saline (PBS) and permeabilized with 0.5% Triton X-100
for 30 min. Cells were incubated at room temperature in Blotto
for 1 h, and then specific antibodies (1:1,000 dilution) were added
overnight at 4�C prior to washing and 30 min of secondary anti-
body (AlexaFluor conjugates; Molecular Probes) at room temper-
ature, followed by DAPI (Sigma-Aldrich, 1 lg=mL for 5 min at
room temperature) staining. The primary anti-ERa mouse mono-
clonal antibody (mAb, clone 127) was generated in house (see
below and Figure S9); the rabbit anti-ER (Millipore 04-820) and
rat mAb (H-222, Santa Cruz Biotechnology) were obtained com-
mercially. The three antibodies were used in a triple IF experi-
ment (results are shown in Figure S1E) using the same protocol
described above. Pairwise correlations between these antibodies
were published in Stossi et al. 2020a.

GREB1 smFISH was performed as described in detailed pro-
tocols on poly D-lysine–coated coverslips (Mistry et al. 2020).
Briefly, after fixation of cells as described for IF, cells were per-
meabilized overnight at 4�C in 70% ethanol, prior to a quick
wash (10% formamide in 2X SSC buffer) and overnight hybrid-
ization (37�C in humidity chamber) with custom GREB1 intron-
and exon-specific probe sets (LGC Biosearch Technologies,
1:300 dilution in LGC Biosearch Technologies hybridization
buffer plus 10% formamide, probe locations are indicated in
Excel Table S17). Next day, coverslips were washed twice, 15
min at 37�C, with wash buffer (10% formamide in 2X SSC
buffer), followed by 5 min of DAPI staining in 2X SSC buffer.
Coverslips were then mounted with Vectashield antifade media
(Vector Labs) and imaged within 48 h.

Table 2. List of chemicals used.

Name of chemical CAS#

17alpha-estradiol 57-91-0
17alpha-ethinylestradiol 57-63-6
17beta-estradiol 50-28-2
17-methyltestosterone 58-18-4
4-(1,1,3,3-Tetramethylbutyl)phenol 140-66-9
4-Cumylphenol 599-64-4
4-Hydroxytamoxifen 68392-35-8
4-Nonylphenol 104-40-5
5alpha-Dihydrotestosterone 521-18-6
Apigenin 520-36-5
Atrazine 1912-24-9
Benzyl butyl phthalate 85-68-7
Bisphenol A 80-05-7
Bisphenol B 77-40-7
Chrysin 480-40-0
Corticosterone 50-22-6
Cycloheximide 66-81-9
Daidzein 486-66-8
Di(2-ethylhexyl) phthalate 117-81-7
Dibutyl phthalate 84-74-2
Dicofol 115-32-2
Diethylstilbestrol 56-53-1
Estrone 53-16-7
Ethylparaben 120-47-8
Fenarimol 60168-88-9
Flutamide 13311-84-7
Genistein 446-72-0
Haloperidol 52-86-8
Hydroxyflutamide 52806-53-8
Kaempferol 520-18-3
Kepone 143-50-0
Ketoconazole 65277-42-1
Linuron 330-55-2
meso-Hexestrol 84-16-2
Methoxychlor 72-43-5
o,p 0-DDT 789-02-6
p,p 0-DDE 72-55-9
Phenobarbital sodium 57-30-7
Procymidone 32809-16-8
Progesterone 57-83-0
Raloxifene hydrochloride 82640-04-8
Reserpine 50-55-5
Spironolactone 52-01-7
Tamoxifen 10540-29-1
Tamoxifen citrate 54965-24-1
Benzo(a)anthracene 56-55-3
Naphthalene 91-20-3
Fluoranthene 206-44-0
DDT, p,p 0- 50-29-3
Dieldrin 60-57-1
Aldrin 309-00-2
Heptachlor 76-44-8
Hexachlorocyclohexane, gamma- 58-89-9
Disulfoton 298-04-4
Endrin 72-20-8
Diazinon 333-41-5
Heptachlor Epoxide 1024-57-3
Pentachlorophenol 87-86-5
Di-n-butyl phthalate 84-74-2
Chlorpyrifos 2921-88-2
2,4,6-Trichlorophenol 88-06-2
Ethion 563-12-2
Azinphos-Methyl 86-50-0
2,4,5-Trichlorophenol 95-95-4
Parathion 56-38-2
Benzo(b)fluoranthene 205-99-2
Trifluralin 1582-09-8
Acenaphthene 83-32-9
DDD, p,p 0- 72-54-8
Benzidine 92-87-5
Endosulfan 115-29-7

Table 2. (Continued.)

Name of chemical CAS#

Methoxychlor 72-43-5
2,4-Dinitrophenol 51-28-5
2,4-Dinitrotoluene 121-14-2
Dicofol 115-32-2
Cresol, para- 106-44-5
DDT, o,p 0- 789-02-6
4,6-Dinitro-O-Cresol 534-52-1
1,2,3-Trichlorobenzene 87-61-6
Lead (Nitrate) 10099-74-8
Cadmium (Chloride) 10108-64-2
Zinc (Chloride) 7646-85-7
Mercuric chloride 7487-94-7
Potassium chromate 7789-00-6
Cobalt (Chloride) 7646-79-9
Nickel (Chloride) 7718-54-9
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Generation and Validation of the anti-ERa Clone 127
Antibody

In collaboration with mAbVista (Houston, Texas, USA) and LGC
Biosearch Technologies (Novato, California, USA), a protein
expression construct was designed based on information from the
National Center for Biotechnology Information (NCBI) protein
database (Gene ID: 2099, Ensembl:ENSG00000091831) and liter-
ature, containing a region of human ERa with conserved domain
structure and predicted to have high protein solubility and antige-
nicity. The resulting construct containing the N-terminal domain
of humanERa (aa 1-180)was expressed as a 6xHis tag C-terminus
fusion and purified by nickel affinity resins plus Hi-TRAP ion
exchange by EZBiolab (Carmel, Indiana, USA). The purified anti-
gen was used to immunize four 6-wk-old BALB/c female mice
(The Jackson Laboratory). After three rounds of immunization
[week 0–82 lg protein in 300 lL of PBS mixed with 300 lL of

Complete Freund’s Adjuvant, subcutaneous injection; week
2–82 lg protein in 300 lL of PBS mixed with 300 lL of
Incomplete Freund’s Adjuvant (IFA), intraperitoneal injection;
week 4–82 lg protein in 300 lL of PBS mixed with 300 lL of
IFA, subcutaneous injection], serum isolated from tail bleeds was
evaluated for antibody titers using enzyme-linked immunosorbent
assay (ELISA) and IF methods by mAbVista. Indirect ELISA was
performed using ERa-coated (100 ng=well in carbonate buffer
[15mM Na2CO3, 35mMNaHCO3, 0:2 g=L NaN3 (pH 9.6)] poly-
styrene 96-well microtiter plates, HRP-conjugated secondary anti-
bodies (Abcam), and plate-based luminometer measuring relative
light units (RLU) at 425 nM. IF labeling performed as described
elsewhere in the “Methods” section using the GFP-ER:PRL-HeLa
cell line that stably expresses ERa with an N-terminal green fluo-
rescent protein (GFP) fusion. (Ashcroft et al. 2011). The mouse
with the highest antibody titer was selected for final boost (100 lg
protein in 300 lL of PBS, intraperitoneal injection) 3 d prior to

C
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Figure 1. Quality control pipeline for ER distribution under control conditions. (A) Random fields of view of ER-immunolabeled, untreated MCF-7 breast cancer cells
automatically imaged at 20× =0:75, shown as maximum intensity projection after image deconvolution. Scale bar: 20 lm. (B) Heat map representation of the binned
distribution of single cell ER levels across the indicated independent biological and technical replicates, with lower ER levels at the top and higher ER levels at the bot-
tom of the heat map. (C) The distance between the ER distributions in two experiments was measured by earth mover’s distance (EMD), and the pairwise EMD distan-
ces were submitted to hierarchical clustering. The three main clusters “C1,” “C2,” and “C3” are indicated at the bottom of the heat map. (D) EMD distances calculated
from the median ER distribution across all experiments in the main cluster from panel C. Experiments that deviated >3× standard deviations from the mean of the
main cluster EMDs are identified according to the cluster map in panel C. The dotted line above EMD=0:1 represents three standard deviations from the mean of the
main cluster (dotted line above approximately 0.05 EMD). Summary data for Figure 1B and D are found in Excel Tables S1 and S2, respectively. Note: EMD, earth
mover’s distance; ER, estrogen receptor-a.
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sacrifice and spleen harvested into RPMI 1640 culture media
(Gibco) supplemented with 10% FBS (VWR) and penicillin
(100 U=mL)/streptomycin (100 mg=L) (Gibco). Splenocytes were
isolated by transferring the harvested spleen and media into a petri
dish, dissecting, andmanually teasing cells from the spleen capsule
using sterile techniques. After washing, cells were transferred to
RPMI 1640 culture media without FBS. Splenocytes were fused
with mouse myeloma SP2/O cells [ATCC, maintained in DMEM
cell culture media (Gibco) supplemented with 10% FBS] using the
using the ClonaCell-HY kit (Stemcell Technologies) following the
manufacturer’s protocol. Fused cells were plated (day 1) into

ClonaCell methylcellulose semisolid media as a single cell suspen-
sion, and hybridoma selection was begun with ClonaCell Medium
D, a DMEM-based media containing hypoxanthine-aminopterin-
thymidine (HAT). On day 14, monoclonal colonies were isolated
using an automated colony picking system (K Biosystems).
Beginning on day 17, hybridoma supernatants were screened for
the presence of ERa-specific antibodies using ELISA and IF
assays as described above for antibody titers. IF labeling was quan-
tified using mIA image analysis software and the amount/specific-
ity of binding to the expressed GFP-ERa and absence of
background signal in GFP negative cells (Figure S9A–E).

Figure 2. Quality control for experiments measuring changes in ER distribution after ligand treatment. (A) Representative random images of ER immunolabel-
ing of MCF-7 cells treated for 24 h with DMSO (vehicle), 17b-estradiol (E2, 10 nM), 4-hydroxytamoxifen (4OHT, 1 lM), or Fulvestrant (ICI, 1 lM). Scale
bar: 100 lm. (B) Quantile plot curves of a representative experiment showing the effects of the indicated compounds on changing the ER distribution in com-
parison with vehicle (DMSO). ER levels are normalized by z-score based on the DMSO median/MAD. (C) EMD measure from the reference distribution
showing the distances of the three control compounds across multiple independent replicate experiments. $ indicates experiments that failed to pass the QC test
for ligand effects, also highlighted by red experiment names. The upper (purple) horizontal line represents three standard deviations from the vehicle (black,
lower horizontal line). (D) Effects of the control ER ligands on several measured phenotypic heterogeneity indexes (CV, KS, and QE) across multiple experi-
ments (every point in the graphs represents a single experiment). *p<0:05 using nonparametric ANOVA using vehicle as comparator. Mean and standard devi-
ation are indicated. (E) Eight-point dose–response curves (mean and standard deviation of n>3 experiments, concentration is in logM) for the indicated
descriptors in MCF-7 cells after 24 h of treatment with the control ligands and DMSO control (D). The table shows the logAC50 (activity concentration 50%)
values in molarity. Summary data for Figure 2B,C,D,E are found in Excel Tables S3-S6. Note: ANOVA, analysis of variance; Cpd, compound; CV, coefficient
of variation; DMSO, dimethylsulfoxide; EMD, earth mover’s distance; ER, estrogen receptor-a; MAD, median absolute deviation; KS, Kolmogorov-Smirnov;
MED, fold median of DMSO control; QE, quadratic entropy.
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Clone 127 was expanded by Baylor College of Medicine’s
Monoclonal Antibody Advanced Technology Core by growth in
IMDM growth media (Gibco) supplemented with 15% FBS
(VWR). Purified antibody was obtained from supernatant media
using protein G purification and ammonium sulfate precipitation.

Cell lysates were obtained from MCF-7 cells using ice-cold
NP-40 lysis buffer, combined with LDS Sample Buffer
(Novex) and boiled for 5min. Samples were then loaded onto
8%–12% acrylamide gels and run at 200V at 4�C for 90min.
Gels were then transferred onto Immobilon transfer membranes
at 4�C for 2 h at 80 V. Nonspecific antibody binding was
blocked with 5% milk in TBS-T. Blots were then probed using
anti-ERa clone 127 supernatant (1:4 dilution) or anti-ERa
clone 60C (Millipore, 04-820, 1:2,000 dilution). Proteins were
visualized using antimouse (Abcam, ab205719; 1:5,000 dilu-
tion) and anti-rabbit (Abcam, ab205718; 1:50,000 dilution)

secondary antibodies conjugated to HRP and a chemilumines-
cence detection system (Figure S9F).

Imaging
High-quality/high-resolution imaging for smFISH was performed
on a Cytiva DVLive epifluorescence image restoration microscope
using an Olympus PlanApo 60× =1:42 NA objective and a
1900× 1900 sCMOS camera. Z stacks (0:25 lm) covering the
whole nucleus (∼ 10 lm)were acquired before applying a conserv-
ative restorative algorithm for quantitative image deconvolution.

High-throughput imaging for the QC analysis and follow-
up experiments was performed on two different instruments: a)
a Cytiva DVLive epifluorescence image restoration microscope
using an Olympus PlanApo 20× =0:75 NA objective and a
sCMOS camera; and, b) a Vala Sciences IC-200 high-

Figure 3. Single cell analysis of three established estrogenic compounds. (A) MCF-7 cells treated for 24 h with six concentrations of diethylstilbestrol (DES,
circles), bisphenol A (BPA, triangles), or genistein (GEN, diamonds) in comparison with DMSO control (D). Changes in single cell ER levels are represented
by three descriptors: fold median of DMSO control, QE, and EMD. (B) The logAC50 (activity concentration 50%) values of the three descriptors in panel A
are ranked together with the ER assays present in ToxCast. Black columns indicate phenotypic index matrixes. Summary data are found in Excel Tables S7
and S8. Note: ER, estrogen receptor-a; EMD, earth mover’s distance; QE, quadratic entropy.
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throughputhigh-throughput epifluorescence microscope using
a Nikon PlanApo 20× =0:75 NA objective and a sCMOS
camera. Z stacks (0:75 lm steps) covering the whole nucleus
(∼ 10 lm) were acquired for all instruments. For the DVLive,
images were deconvolved using a conservative restorative
algorithm. Max intensity projections were generated and used
for image analysis.

Image Analysis
Automated image analyses for the high-throughput microscopy
experiments was performed with previously published methods
(Mistry et al. 2020; Stossi et al. 2020b), either via the open-source
platform CellProfiler (Carpenter et al. 2006) and/or our custom
PipelinePilot (Biovia)-based software mIA [myImageAnalysis
(Szafran and Mancini 2014)]. Briefly, 16-bit grayscale images
were background subtracted; DAPI signal was smoothed by a me-
dian filter; nuclei were segmented using the DAPI channel via a
global minimum cross-entropy algorithm and filtered by size and
intensity to eliminate poorly segmented nuclei (“cell clumps”), de-
bris, dead and mitotic cells. Touching nuclei were separated using
a watershed algorithm.Mean pixel intensity per nucleus for the ER
channel was then extracted and used for downstream analysis.

Single Cell Analysis Quality Control Pipeline Development
The pipeline for quality control of single cell analysis is as fol-
lows. Single cell values were processed in the following manner:
First, data were trimmed at the fourth and 96th percentiles to
reduce the impact of outliers on the distribution range and shape;
then, data was normalized using the median/median absolute
deviation (MAD) values. This is an important step because abso-
lute mean intensity values are highly variable between runs, due
to intrinsic variability of experimental conditions (i.e., vessels,
instrument light source, antibodies, etc.). For each experiment,
we used the median and MAD of the DMSO vehicle control to
normalize each compound including vehicle itself. We obtained
the quantile values (first to 99th) for each compound.

For the second tier QC pipeline, after data normalization, we
applied dynamic time warping (DTW) to warp the quantile curve
of the compound to the quantile curve of the vehicle to mimic the
relation between vehicle and each compound. We used the DTW
to align the quantile curves for the compound and the vehicle and
called this alignment function /. DTW allowed us to approxi-
mately align two signals, or time series together, by finding a
time-warping function that transforms, or warps, time (Sakoe and
Chiba 1978). Next, we used DTW to obtain alignment function w
between the vehicle quantile curve and the quantile curve for the
standard normal distribution. The composition of these two func-
tions ð/οwÞðxÞ=/ðwðxÞÞ provided a closely aligned quantile
curve with respect to the standard normal distribution and main-
taining the relation between the compound and the vehicle. The
original DTW algorithm used dynamic programming to compute
a time-warping path that minimized misalignments in the time-
warped signals while satisfying monotonicity, boundary, and
continuity constraints.

Suppose we are given two time-series X= ðx1, x2, . . . , xNÞ
and Y = ðy1, y2, . . . , yMÞ of lengths N and M, respectively. X and
Y are termed as query and reference, respectively. Assuming that
there is a nonnegative, local dissimilarity function f defined
between any pair of elements xi and yj:

dði, jÞ= f ðxi, yjÞ≥ 0,

for all 1≤ i≤N and 1≤ j≤M. The goal is to find the warping
curve /ðkÞ, k=1, 2, . . . ,T: /ðkÞ= ½/xðkÞ, /yðkÞ� with /xðkÞ 2
f1, 2, . . . ,Ng and /yðkÞ 2 f1, 2, . . . ,Mg such that the average

accumulated distortion between the warped time series X and Y is
minimized. This deformation brings these two time series as
close as possible to each other. We used the implementation of
the algorithm provided by the DTW package in R (Giorgino
2009) with a slight modification of converting the warping curve
to a function by using rounded median value of the indices
f/yðkÞ : ½/xðkÞ, /yðkÞ�with/xðkÞ= ig , corresponding to a fixed i
between 1 and N:

As a last step, we calculated earth mover’s distance (EMD)
for each control compound in comparison with vehicle-treated
cells and the reference distribution described in Figure 1. EMD
was calculated using the R package emdist. EMD was chosen
because it is a cross-bin distance function and is very robust in
comparison with other commonly used metrics, such as
Kullback-Leibler divergence, Kolmogorov-Smirnov distance,
and others. We used the Euclidean dissimilarity along with
complete linkage to obtain the hierarchical clustering of the
EMD (Rubner et al. 2000) distances (hclust function in R).

The phenotypic heterogeneity indexes used were the same as
those described in Gough et al. 2016, 2017, 2014. In brief, the
coefficient of variation (CV) was calculated as the standard devia-
tion (SD) divided by the mean; the Kolmogorov-Smirnov dis-
tance (KS) was defined as maximum distance between the
cumulative distribution functions (CDFs) of the experimental
data and the reference distribution; skewness was a measure of
the symmetry of a distribution; and quadratic entropy (QE) meas-
ured the entropy of the system by subdividing the distribution in
equally separated bins.

The full QC analysis pipeline is available at https://github.
com/pankajmath/SingleCellQC.

Simulations
To estimate the minimum number of experiments needed to gener-
ate a reference distribution that is close to the reference curve
obtained from all the experiments, wemimicked the situationwhere
we consider that we have r experiments out of 31 available to begin
with. For a fixed value of r, we randomly picked N combinations of
r experiments, where N is the minimum of 100,000 and nCr , total
number of possible combinations of r experiments. Next, we com-
puted the functional median quantile curves for these N combina-
tions and obtained the EMDdistances from the reference curve.

For estimating the minimum number of cells required to estimate
the reference curve, we started with all the cells in the reference
experiment (EXP26_1). For each fixed k between 1 and 665, we ran-
domly sampled 100× k cells out of approximately 66,500 total cells
in the reference experiment. We normalized these ER level values
for the cells using median/MAD, obtained the corresponding warped
quantile curve, and computed the EMD from the reference quantile
curve. We repeated this process 1,000 times for each k.

Data Representation and Statistical Analysis
All graphs and analyses were generated in Python (version 3.7.10,
Anaconda Individual Edition) (Figures 1C; 2B,C,D,E; 3A; 4A; 5A),
R (version 3.6.0, R Development Core Team) (Figure 1C, 2B),
Orange (Version 3.0, Orange Developing Team) (Figures 1B, 4A,
5A) (Demsar et al. 2013) and Prism (version 5.0, GraphPad)
(Figures 1D, 2B, 2C, 2D, 2E, 3A, 3B, 4B, 4C, 4D, 5B, 5C, 6B).
ToxCast (version 3.1) data was downloaded from https://www.epa.
gov/chemical-research/exploring-toxcast-data, and the reported
logAC50 (Activity Concentration 50) was used for analysis based
on the data from Judson et al. 2015. Nonparametric analysis of var-
iance (ANOVA) using vehicle as comparator was used when indi-
cated in the figure legends, and groups were considered significant
at p<0:05.
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Figure 4. Evaluation of the EPA45 control set for estrogenic activity by single cell ER analysis. (A) Heat maps for the three indicated descriptors (fold median
of DMSO control, QE, and EMD, n>3 independent biological replicates) after treatment of MCF-7 cells for 24 h with the EPA45 set of compounds, here
shown in alphabetical order. (B) logAC50 (activity concentration 50%) comparison between ER descriptors (fold median, triangles; QE, diamonds; EMD,
squares) in MCF-7 and ToxCast assays (black dots). (C–D) False negative (C) and false positive (D) chemicals shown by logAC50. Summary data are found in
Excel Tables S9-S12. Note: DMSO, Dimethylsulfoxide; ER, estrogen receptor-a; EMD, earth mover’s distance; QE, quadratic entropy.
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Results
Development of a Quality Control Pipeline for ER
Phenotypic Heterogeneity
We used ER IF in breast cancer cells as a case study for reprodu-
cibility and quality control of single cell distributions and to

examine responses of the system to environmental toxicants.
MCF-7 is an established model where cell-to-cell variation in ER
levels was observed more than two decades ago, yet largely
remained unaddressed (Palmari et al. 1997; Resnicoff et al.
1987). Figure 1A shows ER immunolabeling of MCF-7 cells in
random fields of a 384-well plate; imaged automatically on a

Figure 5. Evaluation of 42 chemicals from the ATSDR list for estrogenic activity by single cell ER analysis. (A) Heat maps for the three indicated descriptors
(fold median of DMSO control, QE, and EMD, n>3 independent biological replicates) after treatment of MCF-7 cells for 24 h with the ATSDR 42 set of com-
pounds. (B) Fold median ER dose response data for three classes of chemicals, plus para-cresol, that where hits from the ATSDR 42 set. (C) logAC50 (activity
concentration 50%) comparison between ER descriptors (fold median, triangles; QE, diamonds; EMD, squares) and ToxCast assays (black dots) for the
ATSDR 42 chemicals. Summary data are found in Excel Tables S13-S15. Note: ATSDR, Agency for Toxic Substances and Disease Registry; ER, estrogen
receptor-a; EMD, earth mover’s distance; PAH, polycyclic aromatic hydrocarbons; QE, quadratic entropy.
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high-throughput microscope under DMSO control treatment. It is
visually evident that, in each field, there was cell-to-cell variation
in ER nuclear levels that can be easily quantified by automated
image analysis routines. We first addressed whether the single
cell ER distribution was affected under basal conditions by ex-
perimental variation and then established a QC metric to qualify
each experiment. We randomized several parameters, described
in the “Methods” section, to partially mimic various laborato-
ries performing the same experiment around the world, with
likely access to resources different from our own. After data
normalization, we calculated a frequency distribution plot by
dividing the data into 30 bins, a number that was chosen based
on the square root of the smallest number of data points
acquired across the experiments. Figure 1B shows the fre-
quency plots of ER single cell distributions as a heat map. For
each experiment, the quantile curve was warped to that of the
standard normal distribution. Because we do not know the
ground truth (if it exists) of the distribution of ER levels in a
cell population, we calculated pairwise EMD between the
warped quantile curves for all the experiments and then per-
formed unsupervised hierarchical clustering, followed by plot-
ting them as a pairwise distance heat map (Figure 1C).

We identified an outlier experiment (EXP21, on the far left,
cluster “C1”), a small (four experiments, cluster “C2”), and a
large cluster (“C3”). The identification of these three groups of
experiments was corroborated by performing principal compo-
nent analysis (Figure S1A).

We defined a reference distribution for ER levels that allows
a distance calculation from it for each new experiment as a QC
metric. We considered the largest cluster as the one with the
higher likelihood of containing the ground truth distribution,

identified the functional median distribution of those experi-
ments, and selected it as reference distribution (EXP26_1). We
calculated EMD from such a reference distribution, and the mean
and SD of the EMDs for all the experiments in the large cluster.
We considered experiments with >3× SDs away from the mean
as failing to pass this first QC tier (Figure 1D), which is a com-
mon threshold used in high-throughput screening.

The results obtained across >30 independent runs were very
encouraging because 84% (26/31; Figure 1D) of the experiments
had similar distribution of ER levels, allowing EMD to be used
as a new QC metric. We next ran a simulation analysis to calcu-
late how many initial experiments would be needed to generate a
reference distribution for establishment of a new single cell-
based assay. Figure S1B shows the mean EMD distance from the
reference curve (EXP26_1), and it suggests that a minimum of
five to six experiments would have been sufficient for establish-
ing a reference curve for this specific assay and end point. We
repeated a similar simulation to determine the minimum number
of cells per experiment that need to be acquired to construct a ref-
erence distribution that is close to the ground truth. There were
about 66,500 cells in the reference experiment (EXP26_1).
Figure S1C suggests that a minimum of 1,200 to 1,500 cells
would have been enough to closely approximate the reference
curve. We also measured EMD across 28 replicate wells of
untreated cells in the same plate (Figure S1D). Well-to-well vari-
ation was clearly identified, suggesting that this QC pipeline
would be usable in identifying outlier wells due to procedural or
other errors. We also measured EMD of a single sample using si-
multaneous triple immunolabeling with three different primary
antibodies (Figure S1E), which showed that all three could be
used because all fell in between QC parameters.
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Figure 6. GREB1 single molecule FISH (smFISH) identifies ATSDR 42 hits as potential activators of ER signaling. (A) MCF-7 cells were treated for 24 h
with the indicated compounds (E2, 10 nM; metals, 1 lM; others, 10 lM) and subjected to smFISH using specific probes for GREB1 exons (green) and introns
(red). 60× =1:4 NA deconvolved and max projected images are shown. Scale bar: 20 lm. (B) Stacked bar graphs representing, with each part of the bar the
fraction of cells in the population with the corresponding number of GREB1 active alleles (0–4). Results are from three independent evaluations with >200
cells/treatment. Summary data found in Table S16. Note: E2, 17b-estradiol; ER, estrogen receptor-a. FISH, fluorescence in situ hybridization.

Environmental Health Perspectives 027008-10 130(2) February 2022



QC Pipeline to Assess Effects of Estrogenic Chemicals
Endogenous ER is a good model to study the effect of compounds
because its protein levels are modulated differentially upon ligand
binding. Specifically, as shown by immunolabeling in Figure 2A
and quantified by quantile–quantile curves in Figure 2B, we used
three control compounds at saturating concentrations, that, as far
as we have tested, cover the spectrum and magnitude of responses
in the MCF-7 model system: E2 (lower ER levels after 24 h), 4-
hydroxytamoxifen (4-OHT) (higher ER levels), and Fulvestrant
(ICI, lowest ER levels). The fact that ER levels could bemodulated
by ligands prompted us to develop a second tier QC pipeline,
described in the “Methods” section, for qualifying experiments
where the cells reproducibly responded to the three control com-
pounds. For a compound to be considered significantly different
from vehicle, we chose a cutoff value larger than three SDs from
vehicle samples to pass QC (as determined in Figure 1D). By this
criterion (upper line in Figure 2C), four experiments did not pass
the second tier QC (EXP14, EXP21, EXP24, and EXP29), because
one ormore control compounds failed to respond as expected.

From the experiments that passed both QC tiers, we extracted a
few of the possible indexes that could be used to quantify changes
in ER levels upon ligand treatment. Specifically (Figure 2D), we
measured themedian intensity of ER levels (foldmedian of DMSO
control), the dispersion of single cell data (CV), the normality of
the single cell ER levels distribution (KS), the asymmetry of such
distribution (skewness), the “ecological diversity” (QE), and the
EMD. Of these measurements, apart from the expected fold me-
dian, only QE and EMD showed significant differences across all
compound treatments and experiments (by nonparametric
ANOVA), with EMD having the largest dynamic range (fold dif-
ference between maximum and minimum values; 32.4 average,
range 43.6–11.8, CV 0.26), although it did not discriminate
between 4OHT vs. E2 and ICI because it was always a positive
value, measuring a distance from vehicle control. The dynamic
range of the EMD was higher than both fold median (4.9 average,
6.4–3.3 range, CV 0.13) and QE (4.6 average, range 8.5–3, CV
0.32). All three parameters provided useful information on com-
pound behavior either in magnitude, direction, or distribution of
the response, and as suchwe kept all three for subsequent analyses.

To test the sensitivity of the single cell ER level assay, we per-
formed a nine-point dose response (1 fM to 1 lM) of the three refer-
ence compounds (Figure 2E). The table in Figure 2E shows the
logAC50 values for three indexes (median ER level, QE, and EMD).

We first selected three additional estrogenic compounds
of diverse chemistry, the synthetic estrogen diethylstilbestrol
(DES), the plasticizer bisphenol A (BPA), and the phytoestrogen
isoflavone genistein (GEN). We performed a six-point dose
response (10 pM to 10 lM) for the three compounds and calcu-
lated the three indexes described above (Figure 3A), which
allowed us to estimate and rank their activity concentration, 50%
(logAC50) to compare the results of the MCF-7 assay with the
ToxCast database (Figure 3B). Interestingly, the ranking of the
endogenous ER level assays was vastly different between com-
pounds. In the case of DES, the three MCF-7 indexes ranked the
worst (i.e., less sensitive), which might be a “false negative”
result, because the indexes value at 1 pM were already different
than vehicle-treated samples. For BPA, the three indexes showed
a very different trend, EMD was again the worst; however, QE
and fold median ranked first and third for sensitivity; GEN had a
similar profile as BPA, with QE showing the highest sensitivity.

Analysis of the EPA45 Set of Control Compounds
We treated MCF-7 cells with a six-point dose response (10 pM to
10 lM) of three different batches of 45 compounds provided

directly by the EPA (Judson et al. 2015), using multiple biologi-
cal replicates. The multipoint dose response was designed to
cover AC50 for each compound across a wide concentration range
based on (Judson et al. 2015). In Figure 4A the dose–response
data for all the compounds is shown as a heatmap for the three
indexes, with the lowest dose (10 pM) set to 1. It is important to
note that these dose–response experiments were repeated a mini-
mum of four independent times to investigate reproducibility and
variability of the responses and indexes with heat maps represent-
ing the average results, with full results shown in Figures S2–S4
and Excel Table S19. Moreover, we obtained three different
batches of the 45 chemicals from the U.S. EPA, allowing us to
check for batch-to-batch variations (Figure S5 and Excel Table
S20), which proved that the results were fairly consistent, with
only five chemicals being less-reproducible across batches.
However, four of these nonreproducible or less reproducible
chemicals were “inactive” (less than 20% change in ER levels),
whereas one, hydroxyflutamide, showed some activity (see
below) and would require additional confirmation using a differ-
ent source of the chemical. We compared the logAC50 values for
the three phenotypic indexes with those obtained from 16
ToxCast assays run in a similar agonist mode (i.e., compounds
alone). Figure 4B depicts the logAC50 values for all 16 assays
(black dots) and for the MCF-7 data obtained in this study (repre-
sented as colored shapes: triangle, square, and diamond). Overall,
the MCF-7 data matched well with the ToxCast data, highlighting
the fact that monitoring changes in endogenous ER levels is a rel-
evant quantitative assay. Figure 4C–D shows compounds that
had activity uniquely in the MCF-7 assay or that they have been
missed in comparison with the 16 assays in Figure 4B.

Testing of Environmentally Relevant Chemicals (ATSDR42)
We then tested 42 chemicals (Table 2) selected (Chen 2020)
from a list of ∼ 300 maintained by the ATSDR, hazards fre-
quently found at Superfund sites around the United States, that
cover several pollutant classes: polycyclic aromatic hydrocarbons
(PAHs, n=5), inorganic metals (n=7), phthalates (n=2), pesti-
cides (n=20), and other industrial chemicals (n=8).

As shown in Figure 5A, we performed a six-point dose
response for the ATSDR 42 compounds under same treatment
conditions as those of the EPA45 set. From the three heat maps,
this set of pollutants was considerably less active, with only 9
compounds reducing ER median levels by 30% or more: 2 PAHs
[benzo(a)anthracene and benzo(b)fluoranthene], three heavy met-
als (mercury, chromium, and cadmium), three pesticides (p,p0-
DDT, azinphos-methyl, and disulfoton); and an industrial inter-
mediate (para-cresol). The dose–response curves for these chemi-
cals, grouped by class, for the ER median level, are shown in
Figure 5B. The data for all the chemicals in DRC for the three
indexes is in Figures S6–S8. We compared the MCF-7 data for
36 out of 42 of the compounds that have corresponding results in
ToxCast. Figure 5C shows the logAC50 values for the ToxCast
(circles) and MCF-7 (diamonds, squares, and triangles) assays.
Interestingly, few chemicals were active mostly in MCF-7 cells,
whereas they were not active at all, or with high log AC50 in
ToxCast [i.e., disulfoton, benzo(a)anthracene and benzo(b)fluo-
ranthene], and whereas others were equally active in both sets
(i.e., methoxychlor, o,p0-DDT). Only a handful had activity
exclusively in ToxCast assay, usually at concentrations at or
higher than the highest tested concentration (i.e., ethion, dicofol).

Although measuring ER levels is certainly valuable, it is not
necessarily linked to activity of the receptor, because its levels can
be modulated similarly by agonists and antagonists, as we have
shown above (i.e., E2 vs. ICI). For this reason, orthogonal assays
are needed to ascertain the character of newly identified toxicants.
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We performed single molecule RNA FISH (smFISH) using the
prototypic ER target gene GREB1, which is a good indicator of ER
activity (Nwachukwu et al. 2016; Stossi et al. 2020a).

We treated MCF-7 for 24 h with E2 and several of the ATSDR
compounds that are identified in Figure 5 at their highest non toxic
concentration (1–10 lM) and measured, as a proxy for transcrip-
tional activity, the number of active GREB1 alleles per cell. Figure
6A shows representative images of GREB1 active alleles high-
lighted by the use of exon-specific and intron-specific fluorescent
oligonucleotides (Mistry et al. 2020; Stossi et al. 2020a). In Figure
6B, results are represented as stacked bar graphs illustrating the
fraction of the population of cells (four independent biological rep-
licates, n=200–400=replicate) having 0–4 active GREB1 alleles
per nucleus. From this analysis, coupled with statistical confirma-
tion by two-sample Kolmogorov-Smirnov test, benzo(a)anthra-
cene and p,p0-DDT were clearly the most active, followed by
disulfoton, azinphos-methyl and cadmium, whereas benzo(b)fluo-
ranthene, mercury, and chromium showed no GREB1 activation.
This, or other, orthogonal analysis could thus help discriminate
activities of each new chemical identified as potentially active
through the pipelinemeasuring ER levels.

Discussion
ER can be bound by many ligands possessing diverse chemical
structures, ranging from endogenous and synthetic steroids, to
flavones, phenols, lignans, stilbenes, and many others, of both
man-made and natural origin (Dahlman-Wright et al. 2006).
Most of these chemicals end up in the environment thus posi-
tively and negatively influencing the ER pathway in humans
and other fauna, often leading to disease (De Coster and van
Larebeke 2012; Hall and Greco 2019; Kabir et al. 2015). One of
the more interesting aspects of ER is that, upon interacting with
its ligand binding pocket, each chemical structure elicits a unique
conformation as a means to modulate its biological responses
(Nwachukwu et al. 2017, 2016). Traditionally, the way to test es-
trogenic chemicals has been by either virtual screening sans bio-
logical context or engineered assays (i.e., ligand binding, reporter
genes etc.). Although these approaches have proven to be effec-
tive in classifying chemicals and predicting in vivo uterotrophic
data, there has been a paucity of studies looking at effects of
chemicals on the endogenous receptor and especially at the single
cell level.

Single cell analytics have been increasing in popularity
because they can facilitate discovery of outlier effects or rare sub-
populations and overall describe more accurately a biological
response of a population to a stimulus vs. the use of bulk cellular
assays. However, there have been only a few efforts to use single
cell end points in high-throughput screening, environmental anal-
ysis and/or quality control metrics to establish robustness of sin-
gle cell biological responses (Gough et al. 2016, 2014). In this
study, we set out to elaborate on these concepts by defining a
novel pipeline for QC of single cell features extracted by image
analysis across technical and biological replicates. We then estab-
lished a second level of QC for studies that are based on meas-
uring response to chemicals; and finally, we tested the utility of
such approach as an orthogonal way to quantify potential endo-
crine disruptor activity of environmentally relevant chemicals.

In the process of establishing our QC pipeline over several
years and across >30 independent biological replicates, we
learned interesting lessons regarding ligand-dependent changes
in the single cell distribution of ER. We found that ER pheno-
typic heterogeneity was a reasonably stable metric across the ex-
perimental conditions tested. This finding was exemplified by the
fact that only one experiment had a completely different ER dis-
tribution (EXP_21), due to unknown reasons. Overall, this

finding is suggestive of the fact that ER distribution was not only
quantifiable, but also can be used to assess the quality of an
experiment. The biological ramifications of this observation are
still unclear because we have not yet found a chemical perturba-
tion that would change the distribution of ER into a more uniform
one (i.e., all cells with similar amounts of receptor) and the rami-
fications will be pursued in the future. One possible explanation
may be that the population used in the study behaves similarly to
bacterial colonies, because phenotypic heterogeneity is a hall-
mark supporting their adaptability to the environment and evolu-
tion. A second observation is that the cellular population also
responded to ligands in a reproducible manner that could be
quantified similarly by several metrics describing various aspects
of the ER distribution (e.g., median, diversity, distance from ve-
hicle). However, few experiments failed to pass our second tier
QC; the reasons for this could be human error (i.e., researcher
forgot to add one of the compounds to the wells), other experi-
mental mistakes during processing (probably EXP21 falls into
this category because it failed both QC tiers), or lack of cell
responsiveness (Figure 2C), but the findings highlight the fact
that controlling an experiment only by the distribution of ER
under basal conditions is not enough to qualify an experiment as
good or bad. Because no clear error pattern emerged (i.e., multi-
ple ligands failing in the same experiment or always the same
ligand failing, operator etc.), it is unlikely that the cause of our
QC failure resides in compounds degradation, systematic errors,
or complete lack of cell responsiveness.

When we examined the sensitivity of our assay in comparison
with results in ToxCast on a set of well-established control com-
pounds [EPA45 (Judson et al. 2015)], we found that, overall, the
MCF-7 assay using endogenous ER was at least comparable. For
example, the AC50 value for E2, in this assay, was 90 pM (SD of
59 pM), whereas the one across the 16 ER specific agonistic
assays present in the ToxCast library (Judson et al. 2015) was
26 nM (32 nM SD). Interestingly, if we rank the AC50 metrics for
endogenous ER (fold median of DMSO control, QE, and EMD)
and then compare them to 16 ER agonist assays in ToxCast, at
least for the compounds defined as strong/moderate agonists
(Judson et al. 2015), the ER quadratic entropy ranked first
between all assays. Although the fold median and EMD values
were in the middle for weak and very weak agonists, the ER
indexes performed even better, with QE ranking first and fold
median third. This finding indicates that endogenous assays can
be as sensitive as other engineered assays while being contextual.
One caveat in these results was that, for very potent compounds
(i.e., DES), a lower starting concentration should be tested; other-
wise, the estimated logAC50 will not be precise. As with every
high-throughput assay, false positive and false negative results
are expected; in the endogenous ER assay the false negatives
were few, mostly linked to compounds with AC50 in the high
micromolar range, which was close or above the upper limit of
our testing concentrations. In terms of false positives, the ER en-
dogenous assay is certainly prone to them; however, they can
also be quite informative because they will often involve indirect
ways to affect ER levels without directly binding to the receptor.
Classical examples would be inhibitors of central molecular
mechanisms (protein translation and degradation, gene transcrip-
tion), crosstalk with other transcription factors (notably other ste-
roid receptors and AhR), and modulators of intracellular/
epigenetic signaling pathways [for example, histone deacetylase
inhibitors (Stossi et al. 2020a)]. In the current study, eight chemi-
cals that had low/minimal effect in ToxCast did show activity in
MCF-7 cells (Figure 4C–D). Of the eight, cycloheximide is easily
explainable as a product of assay interference because it is a pro-
tein translation inhibitor and as such will reduce ER levels
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through an ER independent pathway. Two steroids, corticoster-
one and progesterone, were also positive in few ToxCast assays
(as were dicofol and atrazine), and this can be explained by very
low affinity receptor binding, and/or cross-talk between path-
ways. The results for the antiandrogens flutamide and hydroxy-
flutamide are more puzzling because they had opposite effects on
ER levels and only appeared active in the MCF-7 assay; because
there is no evidence in the literature of flutamide and hydroxyflu-
tamide binding to the ER, further studies will be needed to vali-
date compound chemistry and their activities; phenobarbital is a
similar case, even though a recent study (Xu et al. 2019) found it
active in a transcriptional reporter assay. Only two chemicals
(kaempferol and p,p0-DDE) appeared as false negatives; how-
ever, they have low activity in 10 and 7 individual ToxCast
assays, out of 16, respectively. For kaempferol, the average
logAC50 in ToxCast was ∼ 4 lM, whereas for DDE the average
was 20 lM. Because the upper limit of the tested dose response
in MCF-7 was 10lM, this is the likely reason for missing DDE
as a potential active chemical. Looking carefully at the data for
kaempferol, we did see a small effect on fold median (0:83× ) at
the highest tested concentration (Figure S2). Another limitation
of this assay is that changes in ER level do not always directly
relate to receptor activity and/or its being in an agonist or antago-
nist conformation, even though it was quite encouraging to see
that in comparison with the 16 ToxCast agonist assays, we
missed only two compounds that were classified as very weak
(Judson et al. 2015). With the demonstration of testing 42 chemi-
cals from the ATSDR list (Chen 2020), the ER assay was also ca-
pable of identifying potential new or less-established EDCs that
we validated for transcriptional activity by single molecule RNA
FISH. In a general sense, the largest limitation for this assay is
that it would miss compounds that fail to alter ER levels but still
affect its transcription activity. The number of compounds that
exhibit this behavior in the chemical space is currently unknown.
To move toward single cell methods reporting ER levels and
transcriptional activity, we are currently validating a larger-scale
IF/FISH screening platform to simultaneously measure ER levels
and activation of its prototypical target gene, GREB1 (Mistry
et al. 2020; Nwachukwu et al. 2016; Stossi et al. 2020a). As a
proof of principle, we can already show that this method is effec-
tive because we recently published the results of the first small
screen (Stossi et al. 2020a). In conclusion, this study highlights
the efforts to quantify changes in endogenous receptors at the sin-
gle cell level should be considered as an important complement
to current assays.
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