
Weakly supervised individual ganglion cell segmentation 
from adaptive optics OCT images for glaucomatous damage 
assessment

Somayyeh Soltanian-Zadeh1, Kazuhiro Kurokawa2, Zhuolin Liu3, Furu Zhang3, Osamah 
Saeedi4, Daniel X. Hammer3, Donald T. Miller2, Sina Farsiu1,5,*

1Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA

2School of Optometry, Indiana University, Bloomington, Indiana 47405, USA

3Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver 
Spring, Maryland 20993, USA

4Department of Ophthalmology and Visual Sciences, University of Maryland Medical Center, 
Baltimore, Maryland 21201, USA

5Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina 27710, 
USA

Abstract

Cell-level quantitative features of retinal ganglion cells (GCs) are potentially important biomarkers 

for improved diagnosis and treatment monitoring of neurodegenerative diseases such as glaucoma, 

Parkinson’s disease, and Alzheimer’s disease. Yet, due to limited resolution, individual GCs 

cannot be visualized by commonly used ophthalmic imaging systems, including optical coherence 

tomography (OCT), and assessment is limited to gross layer thickness analysis. Adaptive optics 

OCT (AO-OCT) enables in vivo imaging of individual retinal GCs. We present an automated 

segmentation of GC layer (GCL) somas from AO-OCT volumes based on weakly supervised 

deep learning (named WeakGCSeg), which effectively utilizes weak annotations in the training 

process. Experimental results show that WeakGCSeg is on par with or superior to human experts 

and is superior to other state-of-the-art networks. The automated quantitative features of individual 

GCLs show an increase in structure–function correlation in glaucoma subjects compared to using 

thickness measures from OCT images. Our results suggest that by automatic quantification of GC 

morphology, WeakGCSeg can potentially alleviate a major bottleneck in using AO-OCT for vision 

research.

*Corresponding author: sina.farsiu@duke.edu. 

Disclaimer. The mention of commercial products, their sources, or their use in connection with material reported herein is not to be 
construed as either an actual or implied endorsement of such products by the U.S. Department of Health and Human Services.

Disclosures. O. Saeedi received personal fees and nonfinancial support from Heidelberg Engineering, and a grant from Vasoptic 
Medical Inc. outside the scope of this work. D. T. Miller, K. Kurokawa, F. Zhang, and Z. Liu have a patent on AO-OCT technology 
and stand to benefit financially from any commercialization of the technology. Otherwise, none of the authors is aware of any 
affiliations, memberships, funding, or financial holdings that might be perceived as affecting the objectivity of this paper.

Supplemental document. See Supplement 1 for supporting content.

HHS Public Access
Author manuscript
Optica. Author manuscript; available in PMC 2022 February 15.

Published in final edited form as:
Optica. 2021 May 20; 8(5): 642–651. doi:10.1364/optica.418274.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. INTRODUCTION

Ganglion cells (GCs) are one of the primary retinal neurons that process and transmit visual 

information to the brain. These cells degenerate in optic neuropathies such as glaucoma, 

which can lead to irreversible blindness if not managed properly [1]. In clinical practice, 

measuring the intraocular pressure (IOP) and monitoring for functional and structural 

abnormalities are routinely used, either alone or in combination, to diagnose and manage 

glaucoma [1]. Visual function is measured through standard automated perimetry, and 

structural testing commonly consists of evaluating conventional ophthalmoscopy images. 

Although elevated IOP is considered a major risk factor, only one-third to half of glaucoma 

patients exhibit elevated IOP at the initial stages of the disease [2,3]. Thus, measuring 

IOP alone is not an effective method for screening populations for glaucoma. The visual 

field test is subjective, has poor sensitivity to early disease [1,4], and its high variability 

limits reliable identification of vision loss [5,6]. Optical coherence tomography (OCT) 

has been increasingly incorporated into clinical practice to improve disease care, with 

the thickness of the nerve fiber layer (NFL) a widely used metric [7,8]. While the 

NFL is composed of GC axons, it also contains significant glial tissue, which varies 

across the retina [9], and at advanced stages of glaucoma, the NFL thickness reaches a 

nadir despite continued progression of the disease [10,11]. Alternatively, the GC complex 

(GCC) thickness [comprising the NFL, GC layer (GCL), and inner plexiform layer] or 

its components have been suggested as alternative and complementary candidates for 

monitoring glaucoma progression [12]. Although the GCC thickness measured through OCT 

is promising, it reflects the coarse aggregate of underlying cells, and therefore does not 

finely capture soma loss and morphology changes at the cellular level. Since using one of 

the aforementioned data alone does not provide a complete picture of glaucomatous damage, 

more recent studies have employed different combinations of these structural and functional 

datasets—some with machine learning approaches—to assess disease damage [13-15]. The 

study of these methods remains ongoing.

In principle, quantifying features of individual GCs offers the potential of highly 

sensitive biomarkers for improved diagnosis and treatment monitoring of GC loss in 

neurodegenerative diseases. The incorporation of adaptive optics (AO) with OCT [16-18] 

and scanning light ophthalmoscopy (SLO) [19] allows visualization of GC somas in the 

living human eye. While successful, the current standard approach for quantification—

manual marking of AO-OCT volumes—is subjective, time consuming, and not practical for 

large-scale studies and clinical use. Thus, there is a need for an automatic technique for 

rapid, high-throughput, and objective quantification of GCL somas and their morphological 

properties.

To date, many automated methods for localizing various retinal structures [20-26] and cell 

types [27-30] from ophthalmic images have been proposed. Previous methods range from 

mathematical model-based techniques to deep-learning-based algorithms. In deep learning, 

convolutional neural networks (CNNs) have become a staple in image analysis tasks due to 

their exceptional performance. Previous deep-learning-based ophthalmic image processing 

studies used mainly CNNs with two-dimensional (2D) filters to segment different retinal 

structures. However, depending on the imaging system resolution and sampling scheme, 
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some structures such as GCs cannot be summarized into a single 2D image. Therefore, 

CNNs that use 3D information, e.g., by using 3D convolutional operations [31-34], can 

outperform 2D CNNs when processing volumetric data.

Fully supervised training of CNNs usually requires large training datasets to achieve 

acceptable performance. To circumvent this when detecting photoreceptors—light-sensitive 

cells that form a 2D mosaic—from AO-OCT images, Heisler et al. [29] took advantage of 

existing manually labeled AO-SLO datasets. Unfortunately, a dataset of manual volumetric 

segmentation for GCs from any imaging system does not currently exist. Adding to the 

difficulty of training CNNs, the pixel-level annotations needed for semantic segmentation is 

a strenuous task for densely packed GCs in AO-OCT volumes.

Currently, there is growing interest in weakly supervised segmentation schemes using 

different levels of weak annotation. Studies that use image-level labels often utilize class 

activation maps [35] to localize objects and a segmentation proposal technique to obtain the 

final object masks. In other studies, graphical models are combined with bounding boxes 

or seeds to obtain initial object masks for fully supervised training. Although segmentation 

masks are iteratively updated during training, errors in the initial steps could negatively 

affect the training process. To avoid this problem, criteria from unsupervised segmentation 

techniques have been incorporated into the training loss function [36]. Such intricate 

measures are often necessary for weakly supervised segmentation of objects with complex 

structures frequently present in natural images. In contrast, CGL somas are sphere-shaped 

structures.

Previous weakly supervised methods, if not supervised through bounding boxes, often do 

not account for separating touching instances of the same class. In our application of densely 

packed GCL somas, collecting the 3D bounding boxes of all somas for training is extremely 

prohibitive and requires significant human effort. Additionally, there has been little work on 

weakly supervised instance segmentation in the context of volumetric medical images.

In this paper, we designed a fully convolutional network for localizing GCL somas and 

measuring their diameters from AO-OCT scans. Our main contributions are as follows.

(1) Our work is the first to automatically detect and segment individual GCL somas in 

AO-OCT volume image datasets. We used weak annotations in the form of human click-

points in the training process to obtain the soma segmentation masks, requiring minimal 

annotation effort. Based on how our method works, we refer to it as WeakGCSeg. (2) 

We comprehensively evaluated the performance of WeakGCSeg on data acquired with two 

different imagers from healthy and glaucoma subjects across various retinal locations. We 

directly compared our method with state-of-the-art CNNs. (3) We demonstrated the utility 

of our automatic method in segregating glaucomatous eyes from healthy eyes using the 

extracted cellular-level characteristics. We also showed that these characteristics increased 

the structure–function correlation in glaucoma subjects.
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2. MATERIALS AND METHODS

A. AO-OCT Datasets

We used two separate datasets acquired by the AO-OCT systems developed at Indiana 

University (IU) and the U.S. Food and Drug Administration (FDA), previously described 

[16,17]. Briefly, IU’s resolution in retinal tissue was 2.4 × 2.4 × 4.7 μm3 (width × length 

× depth; Rayleigh resolution limit). The dataset consisted of 1.5° × 1.5° AO-OCT volumes 

(450 × 450 × 490 voxels) from eight healthy subjects (Table S1) at 3°–4.5°, 8°–9.5°, and 

12°–13.5° temporal to the fovea. Since the 3°–4.5° and 8°–9.5° retinal locations are densely 

packed with somas (Text Section 1 of Supplement 1), the volumes from these locations were 

cropped to 0.67° × 0.67° (centered at 3.75°; 200 × 200 × 250 voxels) and 0.83° × 0.83° 

(centered at 8.5°; 250 × 250 × 130 voxels), respectively, to facilitate manual marking. For 

brevity, we refer to these three retinal locations as 3.75°, 8.5°, and 12.75°.

The FDA dataset consisted of 1.5° × 1.5° volumes (297 × 259 × 450 voxels) at 12° temporal 

to the fovea, 2.5° superior and inferior of the raphe (for brevity, we refer to both locations 

as 12°) from five glaucoma patients with hemifield defect (10 volumes; Table S2) and four 

healthy age-matched subjects (six volumes; two subjects were imaged at one location). 

These volumes were acquired by the multimodal AO retinal imaging system with a retinal 

tissue resolution of 2.5 × 2.5 × 3.7 μm3 (Rayleigh resolution limit). Volumes from both 

institutions were the average of 100–250 registered AO-OCT volumes of the same retinal 

patch. All protocols adhered to the tenets of the Helsinki declaration and were approved by 

the Institutional Review Boards of IU and the FDA. Text Section 2 of Supplement 1 provides 

details on the ophthalmic examination of the subjects.

B. GCL Soma Instance Segmentation with Weakly Supervised Deep Learning

The overall framework, named WeakGCSeg, is shown in Fig. 1A. The input to the 

framework is the entire AO-OCT stack. First, we narrowed the search space for GCL somas 

by automatically extracting this retinal layer. The extracted volumes were then used for 

further processing. During the network training phase, instead of directly training our CNN 

(Fig. 1B) to learn the instance segmentation task, the CNN was trained to localize GCL 

somas using manually marked soma locations. Thus, the network’s output was a probability 

volume indicating the locations of potential somas. With additional post-processing steps 

applied to the CNN output, we segmented individual somas (Fig. 1C).

1. Data Pre-Processing—We performed retinal layer segmentation as a pre-processing 

step to narrow the search space for GCL somas. For each volume, we identified the vitreous-

NFL and GCL-inner plexiform layer boundaries using the graph theory and dynamic 

programming method described previously [37]. Details of this step can be found in 

Supplement 1 and Fig. S1.

2. Neural Network and Training Process—Our neural network is an encoder–

decoder CNN with 3D convolutional filters, with its encoder path computing feature maps 

at multiple scales with skip connections to a single-level decoder path (Fig. 1B). Similar 

to VNet [32], we used convolutional layers with a stride of two for down-sampling and to 
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double the number of feature channels. We incorporated residual learning into the encoder 

path. To upscale the feature maps to the input resolution, we used the nearest neighbor 

up-sampling followed by a single convolutional layer. After concatenating the up-sampled 

feature maps, a final convolutional layer with two filters and Softmax activation estimated 

probabilities for the background and soma classes for each voxel. All convolutional layers 

used filters of size 3 × 3 × 3 and, except for the last layer, were followed by batch 

normalization and rectified linear unit activation.

Our network differs from the commonly used UNet3D [31] in that (1) instead of 

maxpooling, we used convolutional layers with stride two for downsampling, (2) we used 

interpolation for upsampling the feature maps instead of deconvolution, which reduces the 

number of network parameters, (3) our network has a single decoder level, and (4) we 

used residual connections. Overall, our network’s trainable parameters are about one-third of 

UNet3D’s parameters.

We formulated the localization problem as a segmentation task by creating training labels 

containing a small sphere (radius of 2 μm) at each manually annotated soma location. Small 

spheres were used to ensure the labels were entirely positioned within each soma body. 

In these training labels, most pixels belonged to the background class. We thus used the 

weighted binary cross-entropy loss to account for this class-imbalanced problem. The loss, 

L, is defined as

L = − ∑
i

[w posyi log(pi) + wneg(1 − yi) log(1 − pi)], (1)

where yi is the true class label (zero for background, one for soma) of voxel i, pi is the 

predicted probability for voxel i to be located on a soma, and wneg and wpos are the 

weights for the background and soma classes, respectively. To reduce the bias towards the 

background class with its higher number of samples, we set wneg to a lower value than wpos. 

Specifically, we set wpos = 1 and wneg = 0.008 for the IU dataset and wpos = 1 and wneg = 

0.002 for the FDA dataset, determined based on the ratio between the number of voxels in 

the soma and background classes.

During training, we sampled random batches of two 120 × 120 × 32 voxel volumes. To 

improve the generalization abilities of our model, we applied random combinations of 

rotations (90°, 180°, and 270° in the lateral plane) and flips (around all three axes) over 

the input and label volumes. In addition to these data augmentations, we applied additive 

zero-mean Gaussian noise with a standard deviation (SD) of 1.5 to the input volume. We 

used the Adam optimizer with learning rates of 0.005 and 0.001 for the IU and FDA 

datasets, respectively. We trained the network for a maximum of 100 epochs with 100 

training steps per epoch, during which the loss function converged in all our experiments. 

We used the network weights that resulted in the highest detection score (see Section 2.D) 

on the validation data for further analysis.

During the CNN training on the 3.75° and 12.75° volumes, we accounted for the different 

size distributions of somas (i.e., midget and parasol GCs are more homogenous in size at 3° 

than at 12°–13°) by exposing the CNN to the 12.75° volumes more often than to the 3.75° 
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location. Specifically, we set the probability of selecting the 12.75° volumes to be five times 

higher than the 3.75° volumes.

3. Soma Localization and Segmentation—We post-processed the output probability 

map to localize and segment individual GCL somas. We input AO-OCT volumes into the 

trained network using a 256 × 256 × 32 voxel sliding window with a step size equal to 

half the window size. In the overlapping regions, we averaged the output probabilities. 

Additionally, we considered using test-time augmentation (TTA) to potentially improve 

performance, which consisted of averaging network outputs for eight rotations and flips in 

the en face plane of the input volume. Next, we applied a median filter of size 3 × 3 × 

3 to the probability maps to remove spurious maxima. We then located somas from the 

filtered maps by finding points that were local maxima in a 3 × 3 × 3 (3 × 3 × 7 for FDA) 

window with values greater than T. The validation data were used to find the value of T that 

maximized the detection performance (see Section 2.D).

To segment individual cells, we used the network’s probability map for the soma class (Fig. 

1C). First, we applied self-guided filtering [38] to each en face plane of the input probability 

volume using MATLAB’s (MathWorks) imguidedfilter function. Next, after smoothing the 

filtered map in the axial direction using an elongated Gaussian filter, denoting the result as 

Fmap, we inverted the intensities (zero became one and vice versa). We set the Gaussian 

filter’s SD to (0.1, 1) pixels (en face and axial planes, respectively) and (0.1, 1.6) pixels 

for the IU and FDA datasets, respectively. We ultimately used the 3D watershed algorithm 

to obtain individual soma masks. To further prevent over-segmentation by the watershed 

algorithm, we applied the H-minima transform using MATLAB’s imhmin function with 

parameter 0.01 to the inverted Fmap. We removed voxels with intensity values greater than 

TH = 0.96 in the filtered Fmap from the set of watershed masks. As we are interested 

only in the segmentation masks of the localized somas in the previous step, we kept only 

the watershed masks that overlapped with the identified cell centers. To measure soma 

diameters, we used the en face image of each individual soma mask at its predicted center. 

We estimated soma diameter as the diameter of a circle with area equal to that of the soma’s 

en face mask image. In practice, we used information from one C-scan below to one C-scan 

above the soma center to obtain more accurate estimates. Eye length was used to scale the 

results to millimeters [39].

C. Study Design

We conducted four main experiments to evaluate the performance of our algorithm in: (1) 

healthy subjects at two trained retinal locations, (2) healthy subjects at an untrained retinal 

location (generalizability test), (3) glaucomatous subjects at trained retinal locations, and 

(4) healthy subjects imaged by two different AO-OCT imagers with training on one and 

testing on the other (generalizability test). The number of training and test samples for each 

experiment are summarized in Table S3.

In the first experiment, we used IU’s 3.75° and 12.75° volumes to train and validate 

our algorithm through leave-one-subject-out cross-validation and compared it against expert-

level performance. In each fold of cross-validation, we separated the data of one subject 
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as the test data, selected one 12.75° volume from the remaining subjects as the validation 

data for monitoring the training process and optimizing the post-processing parameter, and 

used the remaining data for training the CNN. Thus, there was no overlap among the test, 

validation, and training data. To attain the gold-standard ground truth GCL soma locations, 

two expert graders sequentially marked the data. After the first grader marked the soma 

locations, the second grader reviewed the labeled somas and corrected the markings as 

needed. To obtain expert-level performance, we performed an inter-grader variability test 

in which we obtained a second set of manual markings by assigning graders to previously 

unseen volumes. In total, nine graders were involved in the creation of the manual markings 

(Table S1). In the second experiment, we used the trained CNNs from the first experiment 

and tested their performances on the 8.5° volumes of the corresponding test subjects without 

any modification.

For the third experiment, we used the FDA dataset to evaluate performance on glaucomatous 

eyes. To create the gold-standard ground truth, two expert graders sequentially marked the 

soma locations, with the second grader reviewing the first grader’s labels and correcting 

them as needed. A third independent grader created the “2nd Grading” set, serving 

as the expert-level performance. We optimized our method for the two subject groups 

independently through leave-one-subject-out cross-validation in which we separated the data 

of one subject as the test data, and selected one volume from the remaining subjects as the 

validation data and the rest for training the CNN. To test the generalizability of the method 

between healthy and diseased eyes, we applied the CNN trained on all subjects of one group 

(healthy or glaucoma) to the other set.

In the last experiment, we tested generalizability between different devices through three 

studies. In the first two cases, we applied the optimized pipeline on data from one device 

to data from the other device. Specifically, we used the 3.75° and 12.75° volumes from IU 

and the 12° healthy subject volumes from FDA. In the third case, we trained and tested our 

network on the mixture of data from the devices. Subjects were divided into four groups, 

each group containing two subjects imaged with IU’s system and one subject with FDA’s 

device. We trained and tested performance through four-fold cross-validation. Since the 

devices had different voxel sizes (IU: 0.97 × 0.97 × 0.94 μm3, FDA: 1.5 × 1.5 × 0.685 μm3), 

we quantified performance with and without test data resized to the training data voxel size 

(through cubic interpolation).

In addition to these four main experiments, we conducted ablation tests, which are explained 

in Methods Section 2 of Supplement 1.

D. Performance Evaluation—We applied the trained network to the hold-out data for 

testing the performance. We evaluated the detection performance using recall, precision, and 

F1 score, defined as

Recall = NTP
NGT

, (2)
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Precision = NTP
Ndetected

, (3)

F1 = 2 Recall×Precision
Recall+Precision . (4)

In the above equations, NGT is the number of manually marked GCL somas, Ndetected 

denotes the number of detected somas by our automatic algorithm, and NTP is the number 

of true positive somas. To determine the true positive somas, we used the Euclidean distance 

between the automatically found and manually marked somas. Each manually marked soma 

was matched to its nearest automatic soma if the distance between them was smaller than 

D. We set the value for D to half of the previously reported mean GCL soma diameters 

in healthy eyes for each retinal location [16]. For the glaucoma cases, we used 0.75 times 

the median spacing between manually marked somas for D. This yielded D values of 5.85 

μm and 8.78 μm for the 3.75° and 12°–12.75° volumes for healthy subjects, respectively, 

and 10.78 μm for the 12° volumes from glaucoma patients. To remove border artifacts, we 

disregarded somas within 10 pixels of the volume edges. For inter-observer variability, we 

compared the markings of the second grading to the gold-standard markings in the same 

way.

To compare the performance of different CNNs, we used the average precision (AP) score, 

defined as the area under the precision-recall curve. AP quantifies the overall performance 

of any detector (CNNs in our case) in localizing GCL somas and is insensitive to the exact 

selection of the hyperparameter T. We also compared our estimated cell densities to gold-

standard values. We measured cell density by dividing the cell count to the image area after 

accounting for large blood vessels and image edges. Finally, we compared our predicted 

soma diameters to data from previous histological [40-44] and in vivo semi-automatic 

studies [16,19], and to the 2D manual segmentation of a subset of the somas.

E. Implementation

We implemented our network in Python using Keras with Tensorflow backend. The 

soma localization and performance evaluation were implemented in Python, and the pre-

processing and segmentation were coded in MATLAB (MathWorks). We used a Windows 

10 computer with Intel Core i9-9820X CPU and NVIDIA GeForce GTX 1080TiGPU.

3. RESULTS

A. Achieving Expert Performance on Healthy Subjects and Generalizing to an Unseen 
Retinal Location (Experiments 1 and 2)

Using the characteristically different 3.75° and 12.75° volumes (in terms of GCL soma sizes 

and size distributions), we trained our CNN through leave-one-subject-out cross-validation. 

The layer segmentation step of our method cropped the original AO-OCT volumes in 

the axial direction to 69–85 pixels and 30–40 pixels for the 3.75° and 12.75° volumes, 

respectively. The results in Table 1 show that WeakGCSeg surpassed or was on par with the 
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expert performance in detecting GCL somas (p—values = 0.008 and 0.078 for 3.75° and 

12.75° volumes, respectively; two-sided Wilcoxon signed-rank test over F1 scores of eight 

subjects).

Next, we used the optimized WeakGCSeg (on the 3.75° and 12.75° data) and tested its 

performance on the unseen 8.5° data. The layer segmentation step axially cropped the 8.5° 

volumes down to 46–52 pixels. On the 8.5° data, WeakGCSeg achieved the same F1 score as 

the former locations (Table 1) and was on par with expert performance (p — value = 0.063; 

two-sided Wilcoxon signed-rank test over five subjects). The average precision-recall curves 

of WeakGCSeg compared to the average expert grading in Fig. 2A provide a more complete 

picture of the performance. The average curves were obtained by taking the mean of the 

precision and recall values of all the trained networks at the same threshold value T. At the 

average expert grader precision score, WeakGCSeg’s average recall was 0.16, 0.08, and 0.08 

higher at the 3.75°, 8.5°, and 12.75° locations, respectively. WeakGCSeg’s generalizability 

and expert-level performance persisted with whitening the input data or disregarding TTA 

[Table S4 and Fig. S2(A)] and was superior to other variations of the network architecture 

(Table S5 and Fig. S3).

Using WeakGCSeg’s soma segmentation masks, we estimated the GCL soma diameters. 

The histograms of soma diameters in Fig. S4 reflect the trend of gradual increase in soma 

size from 3.75° to 12.75°, which is consistent with the GC populations at these locations. 

Figure 2B indicates that our predicted values (mean ± SD: 11.9 ± 0.4 μm, 12.9 ± 0.5 μm, 

and 14.0 ± 0.5 μm for 3.75°, 8.5°, and 12.75°, respectively) were in line with histological 

and in vivo semi-automatic measurements and outperformed simple thresholding of the 

CNN output [Section 2.B.1 of Supplement 1 and Fig. S5(A)-(B)]. To further validate 

the segmentation accuracy, we manually segmented 300–340 randomly selected somas 

in 2D from the 8.5° and 12.75° volumes of three subjects. The automatic segmentation 

masks agreed with the manual masks for both retinal locations [mean (95% confidence 

interval) Dice similarity coefficients at 8.5°/12.75° = 0.83 (0.82, 0.84)/0.84 (0.83, 0.85), 

0.81 (0.80, 0.82)/0.82 (0.80, 0.83), and 0.84 (0.83, 0.85)/0.85 (0.83, 0.86) for subjects S1, 

S4, and S5, respectively; Fig. S6(A)]. Furthermore, the results of the ablation experiments 

(Methods Sections 2.B.2-3 of Supplement 1) showed that the thresholding and Gaussian 

smoothing steps of our post-processing framework were effective in accurately estimating 

the soma diameters. Specifically, the inclusion of the thresholding step (parameter TH) in 

our framework reduced the difference between the estimated diameters from manual and 

automatic segmentation masks (average difference of −0.005 μm versus −0.795 μm for TH = 

0.96 and 1, respectively; TH = 1 corresponds to no thresholding, as the maximum value in 

the output maps is one). The smoothing step also improved the soma estimates for the less 

frequent larger GCL somas [Fig. S5(C)].

Example results with comparison to manual markings are illustrated in Fig. 3 and 

Visualization 1, Visualization 2, and Visualization 3. The cyan, red, and yellow markers 

indicate correctly identified (true positive; TP), missed (false negative; FN), and incorrectly 

identified (false positive; FP) somas, respectively. A 3D flythrough of the segmented somas 

for the 3.75° data in Fig. 3 is illustrated in Visualization 4 . The prediction times were 2.0 ± 

0.5, 1.3 ± 0.1, and 3.2 ± 0.5 min/volume for the 3.75°, 8.5°, and 12.75° data, respectively, 
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which were at least two orders of magnitude faster than that of manual grading (7–8 h/

volume).

B. Achieving Expert Performance on Glaucoma Patients (Experiment 3)

We next applied WeakGCSeg to images taken from glaucomatous eyes. We whitened each 

extracted NFL + GCL volume (42–55 pixels and 25–53 pixels in the axial direction for the 

healthy and glaucoma volumes, respectively) by subtracting its mean and dividing by its 

SD. We then trained our method separately on the two groups of subjects. WeakGCSeg’s 

automatically estimated cell densities were similar to the gold standard for both groups (p 
– values = 0.125 and 1 across n = 4 and 5 healthy and glaucoma subjects, respectively; two-

sided Wilcoxon signed-rank test). Table 2 summarizes the detection performance and the 

inter-observer test results. For both groups, our results were on par with expert performance 

based on the average F1 scores of each subject (p – values = 0.125 and 0.063 over n = 4 and 

5 healthy and glaucoma subjects, respectively; two-sided Wilcoxon signed rank test).

Figure 4A depicts the average precision-recall curves of our trained networks compared 

to the average expert grader performance; at the same level of average grader precision, 

our method achieved 0.04 and 0.03 higher average recall scores for the healthy and 

glaucoma subjects, respectively. Our method achieved high detection scores even without 

data whitening or TTA [Table S6 and Fig. S2(B)] and was superior to other variations of 

the network (Table S5 and Fig. S3). Moreover, the method retained expert-level performance 

when tested on a group not used during training [Table S7 and Fig. S2(C)], reflecting its 

generalizability between healthy and diseased eyes. Example results are illustrated in Fig. 

4B.

Using the soma segmentation masks, we estimated cell diameters. As Fig. 5A shows, the 

estimated diameters on the healthy cohort (mean ± SD: 14.8 ± 0.8 μm) agreed with the 

estimates from the IU dataset and previous studies at 12°–13°. The results also reflect an 

increase of 2.1 μm (p – value = 0.03, Wilcoxon rank-sum test, five glaucoma and four 

healthy subjects, respectively) in the average soma size of glaucoma subjects (mean ± 

SD: 16.9 ± 1.1 μm) compared to healthy individuals, which is in line with recent reports 

[45]. Figure 5B illustrates soma size against cell densities for all volumes, reflecting that 

glaucoma subjects exhibited larger somas at lower cell densities than the controls.

C. Structural and Functional Characteristics of Glaucomatous Eyes Differ from Control 
Eyes

AO enables cellular-level examination of GCL morphological changes and their relation 

to vision loss in glaucoma [45]. Our automatic method makes this possible clinically. 

To demonstrate this, we examined the cellular-level characteristics and clinical data of 

glaucomatous eyes. To remove potential bias in analysis, one subject was omitted from 

the structure–function study because imaging of this subject was done with an instrument 

(Optovue, Fremont, CA, USA) different from the predefined protocol used for all other 

subjects. The automatically determined cell densities exhibited stronger correlation with 

GCL thicknesses measured from AO-OCT [Pearson correlation coefficient, ρ = 0.851, p 
– value < 0.001; Fig. S7(A)] compared to measurement from clinical OCT (ρ = 0.668, 
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p – value = 0.009). When comparing local functional measures [total deviation (TD) and 

pattern deviation (PD); Table S2] with the local structural characteristics [Fig. 5C and Fig. 

S7(B)], the soma density in log-scale strongly correlated with TD (ρ = 0.743, p — value = 

0.035) and PD (ρ = 0.806, p — value = 0.016) for glaucoma subjects. The log-scale GCL 

thickness from AO-OCT correlated moderately with these measures (ρ = 0.624 and 0.699, 

p – values = 0.099 and 0.054 for TD and PD, respectively), while the measurements from 

clinical OCT had low correlation with the functional data (ρ = 0.404 and 0.310, p – values = 

0.320 and 0.454 for TD and PD, respectively). Including the soma diameters as an additional 

independent variable to the AO-OCT measured GCL thickness and soma density (all in 

log-scale) increased the structure–function correlation (coefficient of multiple correlations = 

0.892 and 0.975 for TD and PD, respectively).

D. Generalization Between Imaging Devices (Experiment 4)

Previous results were obtained by separately training models for two imagers with different 

scan and sampling characteristics. To evaluate the generalizability between these devices, 

we applied the trained and optimized method on data from one device to volumes acquired 

by the other system (rows 2 and 4 in Table S8). After resizing the test volumes to the 

same voxel size as the training data, the detection performance of the inter-device testing 

scheme was similar to that of the intra-device framework (rows 1 and 5; p — values = 0.547 

and 0.125 over n = 8 and 4 subjects, respectively; two-sided Wilcoxon sign rank test on 

the average F1 scores of each subject) without additional parameter optimization. Without 

test volume resizing and parameter tuning, the trained method on one device could not 

necessarily generalize to the other imager (p — values = 0.008 and 0.125 over n = 8 and 4 

subjects, respectively).

In addition to the above experiments, we evaluated the detection performance when training 

and testing on the mixture of data from both devices. To this end, we resized the data from 

IU’s system to have the same pixel size as FDA’s data. The results in rows 3 and 6 in Table 

S8 show that we achieved the same level of cell detection performance as the intra-device 

scheme (p — values = 0.313 and 0.250 over n = 8 and 4 subjects for IU and FDA datasets, 

respectively).

E. Comparison with State of the Art

Finally, we compared the detection performance of our network to other state-of-the-art 

CNNs, which included UNet3D, VNet, and a nested version of UNet3D with the redesigned 

skip connections of Zhou et al. [46], which we call Unet3D++. We implemented the 

redesigned skip connections into the Unet3D backbone using the source code at [47] 

and using all 3D operations. For a fair comparison, we used the same training and soma 

localization procedures as WeakGCSeg for these CNNs. For VNet and Unet3D++, based on 

the original publications, we used learning rates of 10−6 and 3 × 10−4, respectively. We used 

the same learning rate for UNet3D as WeakGCSeg.

As the AP scores in Table 3 and the precision-recall curves in Fig. S8 show, WeakGCSeg’s 

performance was higher than these architectures. We used the Friedman ranking test 

with the Holm’s post-hoc procedure to conduct non-parametric multiple comparison tests 
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[48] using the open-source JAVA program developed in [49]. We analyzed the overall 

performances by pooling the data in Table 3 at the subject level (17 subjects). Specifically, 

for each subject with multiple measurements, we averaged the AP scores. Thus, the null 

hypothesis here states that all methods perform equally over the entire dataset presented 

in this study. For completeness, we also included the two-sided Wilcoxon signed rank test 

between WeakGCSeg and every other CNN. We used α = 0.05 as the significance level. 

The Freidman test yielded p-value of 6.4 × 10−8, thus rejecting the null hypothesis. The 

adjusted p-values for the Holm’s 1 × N comparisons and the p-values from the Wilcoxon test 

additionally show that overall, WeakGCSeg’s performance is significantly better than other 

CNNs.

4. DISCUSSION

Our work provides the first step toward automatic quantification of GCL somas from 

AO-OCT volumes. We developed a weakly supervised deep learning-based method to 

automatically segment individual somas without manual segmentation masks. Compared 

to manual marking, which took between 7–8 h/volume, WeakGCSeg was at least two orders 

of magnitude faster with a speed of less than 3 min/volume.

Our method achieved high detection performance regardless of retinal eccentricity, imaging 

device, or the presence of pathology, which matched or exceeded that of expert graders. 

Our method outperformed other state-of-the-art CNNs as well. Also, WeakGCSeg’s 

segmentation masks agreed with manually labeled masks, and the estimated soma diameters 

were comparable to previously reported values.

Although our method’s performance on the glaucoma dataset was lower than that on the 

healthy group, the expert performance on these data was even lower. This reflects the 

inherent differences between the data from the two groups and the difficulty of identifying 

cells within glaucoma volumes. Additionally, when trained on the glaucoma dataset and 

applied to the data from the healthy group, WeakGCSeg retained expert-level performance 

even if the post-processing parameter T was set by the glaucoma data. However, when 

trained on healthy individuals, WeakGCSeg could achieve human-level performance on 

the glaucoma dataset only if labeled glaucoma data were used to optimize T (Table S7). 

Future work could incorporate semi-supervised or unsupervised learning techniques into our 

framework to further remove the need of labeling AO-OCT images from diseased eyes.

Our estimated soma diameters differed from previous studies in two aspects. First, the 

inter-subject SD of mean soma diameters for individuals involved in this study (error bars 

in Fig. 2B) were smaller than the values reported by Liu et al. [16], which were derived 

from a subset of our IU dataset. This dissimilarity could be due to differences between the 

approaches taken by us and this study. We approximated soma diameters using automatic 

segmentation masks, whereas Liu et al. used the circumferential intensity averaged trace 

around the soma center. The other in vivo diameter measurement study by Rossi et al. 
[19] measured soma diameters from AO-SLO images, which are different from AO-OCT 

images in terms of image quality. The inherent inter- and intra-variability of human graders 

in marking images due to the subjective nature of the task, as has been demonstrated for 
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OCT and AO-SLO images [23,30,50], could also contribute to the higher SD values of 

previous studies. In contrast, our automatic method provides objective segmentations of 

GCL somas. The second difference was the distribution of the measured soma diameters. 

Previous literature [16,41] has reported a bimodal distribution for the soma size at retinal 

eccentricities above 6°. Although the distributions of our automatic diameter estimates for 

the 8.5° and 12.75° volumes did not appear bimodal for all subjects, a second smaller peak 

at higher diameter values was apparent for some [e.g., S1 and S4 in Fig. S4 and Fig. S6(C)]. 

The difference between the estimated diameters [Fig. S6(B)] reflects that the automatic 

masks yielded larger diameters for smaller somas (diameters <15 μm) and smaller diameters 

for larger cells compared to manual masks. These differences might ultimately render the 

two underlying peaks in the diameter distributions less distinguishable from each other.

To show the generalizability of our method to an unseen retinal location, we used the 

AO-OCT volumes recorded at 3.75° and 12.75° locations as the training data. When 

evaluated on the 8.5° volumes, the trained model achieved a performance similar to the 

3.75° and 12.75° dataset. As the two extreme locations involved in training encompassed 

the range of spatially varying GC size, type, and density across much of the retina (see 

Text Section 1 of Supplement 1), we anticipate that the trained model would generalize 

to other untested retinal locations without additional training. In the case of training 

only on one retinal location, or limited locations close to each other, we anticipate that 

WeakGCSeg’s performance would decrease when tested on other regions with different GC 

characteristics. Future work could extend our method to avoid this problem, if needed. We 

also demonstrated our trained models’ generalizability from one imager (the source) to a 

different system (the target) through scaling the target data to the source data voxel size. 

Further studies with larger datasets across different retinal diseases and imaging systems 

are required to fully characterize the generalizability of WeakGCSeg. Other approaches 

for domain adaptation, as demonstrated previously for other imaging modalities [51,52], 

could also be incorporated into our framework to potentially improve the generalizability in 

scenarios where there is a significant difference in the resolution or quality of the captured 

images.

Our approach could be used by others for similar applications. For tissues with more 

complex structures, future work could extend our framework by adding regularization terms 

into the loss function or using graph-based post-processing approaches. Our work could also 

be extended by exploiting interactive instance segmentation techniques [53,54] to correct 

errors in the automatically obtained segmentation masks with active guidance from an 

expert. Such approaches may increase robustness to inaccuracies in the initial user-provided 

labels.

Despite the great potential of AO-OCT for early disease diagnosis and treatment outcome 

assessment, the lack of reliable automated soma quantification methods has impeded clinical 

translation. We presented the first automated GCL soma quantification method for AO-OCT 

volumes, which achieved high detection performance and precise soma diameter estimates, 

thus offering an attractive alternative to the costly and time-consuming manual marking 

process. We demonstrated the utility of our framework by investigating the relationships 

between GCL’s automatically measured cellular-level characteristics, its thickness values 
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from AO-OCT and clinical OCT images, and local functional measures from the visual 

field test. In addition to reporting larger soma diameters in glaucoma subjects compared to 

healthy individuals, the structural analysis demonstrated a strong linear correlation between 

local GCL cell density and AO-OCT measured thickness. Thickness values obtained from 

clinical OCT exhibited a weak correlation to the local cell density. As the population of 

glaucoma patients in this work was relatively small and the subjects varied in the stage 

of disease, further studies are needed to investigate the structure–function relationship at 

different stages of glaucoma. Our work paves the way towards these clinical studies. We 

envision that our automated method would enable large-scale, multi-site clinical studies to 

further understand cellular-level pathological changes in retinal diseases.
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Fig. 1. 
Details of WeakGCSeg for instance segmentation of GCL somas from AO-OCT volumes. 

(A) Overview of WeakGCSeg. (B) Network architecture. The numbers in parentheses denote 

the filter size. The number of filters for each conv. layer is written under each level. Nf = 

32 is the base number of filters. Black circles denote summation. Conv, convolution; ReLU, 

rectified linear unit; BN, batch-normalization; S, stride. (C) Post-processing the CNN’s 

output to segment GCL somas without human supervision. The colored boxes correspond to 

steps with matching colors. Scale bar: 50 μm.
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Fig. 2. 
Results on IU’s dataset. (A) Average precision-recall curves of WeakGCSeg compared to 

average expert grader performances (circle markers). Each plotted curve is the average 

of eight and five curves at the same threshold values for the 3.75°/12.75° and 8.5° data, 

respectively. (B) GCL soma diameters across all subjects compared to previously reported 

values. Circle and square markers denote mean soma diameters from in vivo and histology 

studies, respectively. Error bars denote one standard deviation. “r” denotes the range 

of values. P, parasol GCs; M, midget GCs; fm, foveal margin; pm, papillomacular; pr, 

peripheral retina.
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Fig. 3. 
En face (XY) and cross-sectional (XZ and YZ) slices illustrate (top) soma detection results 

compared to the gold-standard manual markings and (bottom) overlay of soma segmentation 

masks, with each soma represented by a randomly assigned color. Cyan, red, and yellow 

markers denote TP, FN, and FP, respectively. Only somas with centers located within 5 μm 

from the depicted slices are marked in the top row. The intensities of AO-OCT images are 

shown in log-scale. Scale bars: 50 μm and 25 μm for en face and cross-sectional slices, 

respectively.
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Fig. 4. 
Results on FDA’s healthy and glaucoma subjects. (A) Average precision-recall curves 

compared to average expert grader performances (circle markers). Each plotted curve is 

the average of six and 10 curves for the healthy and glaucoma volumes, respectively. 

(B) En face (XY) and cross-sectional (XZ and YZ) slices illustrating soma detection and 

segmentation results. See Fig. 3 for further details.
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Fig. 5. 
Structural and functional characteristics of glaucomatous eyes compared to controls. (A) 

GCL soma diameters compared to values reported in the literature. (B) Automatic cell 

densities and average diameters for all volumes from FDA’s device. (C) TD measurements 

versus cell densities and GCL thickness values for four glaucoma subjects. ρ, Pearson corr. 

coef. Subjects are shown with different marker shapes.
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Table 2.

GCL Soma Detection Scores, Reported as Mean ± Standard Deviation Calculated across Six Healthy and 10 

Glaucoma Volumes
a

GCL Soma Detection

Dataset Method Recall Precision F1

FDA WeakGCSeg 0.90 ± 0.04 0.78 ± 0.07 0.84 ± 0.05

Healthy 2nd Grading 0.93 ± 0.02 0.72 ± 0.09 0.81 ± 0.06

FDA WeakGCSeg 0.75 ± 0.14 0.78 ± 0.15 0.75 ± 0.11

Glaucoma 2nd Grading 0.88 ± 0.07 0.53 ± 0.16 0.64 ± 0.13

a
WeakGCSeg was trained separately for the two groups.
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