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Intelligent decision support systems (IDSS) for complex healthcare applications aim to examine a large quantity of complex
healthcare data to assist doctors, researchers, pathologists, and other healthcare professionals. A decision support system (DSS) is
an intelligent system that provides improved assistance in various stages of health-related disease diagnosis. At the same time, the
SARS-CoV-2 infection that causes COVID-19 disease has spread globally from the beginning of 2020. Several research works
reported that the imaging pattern based on computed tomography (CT) can be utilized to detect SARS-CoV-2. Earlier iden-
tification and detection of the diseases is essential to offer adequate treatment and avoid the severity of the disease. With this
motivation, this study develops an efficient deep-learning-based fusion model with swarm intelligence (EDLFM-SI) for SARS-
CoV-2 identification. (e proposed EDLFM-SI technique aims to detect and classify the SARS-CoV-2 infection or not. Also, the
EDLFM-SI technique comprises various processes, namely, data augmentation, preprocessing, feature extraction, and classi-
fication. Moreover, a fusion of capsule network (CapsNet) and MobileNet based feature extractors are employed. Besides, a water
strider algorithm (WSA) is applied to fine-tune the hyperparameters involved in the DL models. Finally, a cascaded neural
network (CNN) classifier is applied for detecting the existence of SARS-CoV-2. In order to showcase the improved performance of
the EDLFM-SI technique, a wide range of simulations take place on the COVID-19 CTdata set and the SARS-CoV-2 CTscan data
set. (e simulation outcomes highlighted the supremacy of the EDLFM-SI technique over the recent approaches.

1. Introduction

Intelligent decision support systems (IDSS) has become
widely used in several applications of healthcare. Internet of
things (IoT), wearables, manual data entry, and online
sources are some of the instances of complex data sources for
IDSS. (e data sustained by IDSS significantly helps in the
earlier identification of diseases and equivalent treatments.

(e coronavirus disease 2019 (COVID-19) epidemic, caused
by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), began inWuhan city, Hubei province, in December,
2019, and has spread throughout China. COVID-19 is an
infectious disease caused by the novel coronavirus named
SARS-CoV-2. (e virus is extremely infectious, and can be
transmitted by indirect or direct contact with diseased
persons with respiratory droplets while they cough, sneeze,
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or even talk [1]. Now, the real-time polymerase chain re-
action (RT-PCR) test is the common method used to
confirm COVID-19 infection, and with the rapid rise in the
number of diseased persons, almost all countries are con-
fronting a shortage of testing kit. Furthermore, RT-PCR
testing can have a higher false-negative rate and turnaround
times [2]. (erefore, it is appropriate for considering other
testing tools for detecting COVID-19 infected people to
isolate them and alleviate the pandemic impact on the lives
of several people. (e chest computed tomography (CT) is
an appropriate supplement to RT-PCR testing and plays a
role in diagnosing and screening COVID-19 infection. In
current works [3], the researchers manually investigated
chest CT scans of over thousands of patients and confirmed
the helpfulness of chest CT scan in COVID-19 detection
with a higher sensitivity rates.

In certain cases, the patient had a negative PCR test at
first, but confirmation was depending on their CT results.
Additionally, chest CT screening was suggested, while the
patient shows compatible symptoms with COVID-19;
however, the outcome of its PCR tests is negative [4].
Hence, it is necessary for an automatic detection tool that
exploits the current developments in deep learning (DL)
and artificial intelligence (AI), as well as the accessibility of
CT images to construct AI-based tools to prevent further
spreading and expedite the diagnoses method [5]. In order
to mitigate the shortage and inefficiency of current tests for
COVID-19 infection, various attempts have been dedi-
cated to seeking alternate testing tools [6]. Various re-
searches have exposed that CT scans manifest strong
radiological results of COVID-19 and are promising in
serving as an accessible and more efficient testing tool
because of the wider accessibility of CT devices, which
could achieve results at the highest rate. Furthermore, to
mitigate the burden of medical specialists from reading CT
scans, numerous studies have designed DL algorithms that
could automatically interpret CT images and forecast
whether the CT is positive for COVID-19 infection. When
this work has demonstrated effective outcomes, they have
two limitations [7]. Initially, the CT scans data set utilized
in this study are not accessible to the public because of
security concerns.

Accordingly, their results could not be reproduced, and
the trained methods could not be utilized in other hospitals.
In addition, the lack of open-sourced annotated COVID-19
CTdata sets seriously hinders the development and research
of innovative AI tools for precise CT-based testing of
COVID-19 infection [8]. Next, this study requires a wide
range of CTs at the time of model training to accomplish
performances that meet the medical standards. (ese re-
quirements are practically stringent, and it could not met by
several hospitals, particularly under the circumstance that
medical experts are very occupied in handing COVID-19
infected patients and do not have time to annotate and
collect a huge amount of COVID-19 CT scans.

(is study develops an efficient deep-learning-based
fusion model with swarm intelligence (EDLFM-SI) for
SARS-CoV-2 identification for complex healthcare appli-
cations. Moreover, the EDLFM-SI technique comprises a

fusion of capsule network (CapsNet) and MobileNet based
feature extractors are employed. Furthermore, a water
strider algorithm (WSA) is applied to fine-tune the
hyperparameters involved in the DL models. Lastly, a cas-
caded neural network (CNN) classifier is applied to detect
the existence of SARS-CoV-2. For examining the enhanced
outcomes of the EDLFM-SI technique, a comprehensive
experimental analysis is carried out on the COVID-19 CT
data set and the SARS-CoV-2 CT scan data set.

(e rest of the paper is organized as follows. Section 2
offers the related works; Section 3 elaborates the proposed
model; Section 4 provides the result analysis; and Section 5
draws the conclusions.

2. Related Works

(is section provides a comprehensive review of existing
COVID-19 detection models. Biswas et al. [9] aimed to
determine a strong COVID-19 predictive method via chest
CT images through effective TL methods. At first, they
utilized three typical DL algorithms, such as Xception, VGG-
16, and ResNet50, for COVID-19 prediction. Next, they
presented a method to integrate the abovementioned pre-
trained method for the general enhancement of the pre-
dictive capacity of the model. Ibrahim et al. [10] proposed a
new computer-aided framework (COV-CAF) to categorize
the severity level of the disease from three-dimensional CT
Volumes. COV-CAF integrates conventional and DL
methods. (e presented COV-CAF method contains two
stages: the preparatory stage and the feature analysis and
classification stage. (e feature analysis and classification
stage integrates fuzzy clustering for feature fusion and au-
tomated RoI segmentation.

In Dansana et al. [11], the CNN approach is utilized to
binary classification pneumonia-based transformation of
Inception_V2, DT, and VGG-19 methods on CT scan and
X-ray image data sets that have 360 images. It could gather
that fine-tuned VGG-19, Inception_V2, and DT methods
show outstanding performances with an increased rate of
validation and training accuracy. Wang et al. [12] hypoth-
esized that AI method that could extract certain graphical
features of COVID-19 and offer medical diagnoses in ad-
vance of the pathogenic test, therefore saving critical time for
controlling the disease. (ey gathered 1,065 CT images of
pathogen-confirmed COVID-19 cases and persons who
were diagnosed previously with standard COVID-19. (ey
adapted the inception TLmethod for establishing the model,
followed by external and internal validations.

Mei et al. [13] employed AImethods for integrating chest
CT results with laboratory testing, medical symptoms, and
exposure history to quickly analyze persons with positive for
COVID-19. Goel et al. [14] presented a novel architecture for
exploiting effective features extracted from the AE and
GLCM, integrated with the RF model for the effective and
faster diagnosis of COVID-19 with CT images. Mohammed
et al. [15] presented an automatic CAD system for COVID-
19-based chest X-ray image analyses. It is developed for
COVID-19 diagnosis from another ARDS, MERS, and SARS
infection. (e optimum threshold values for chest images
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segmentation are deduced by using Li’s model and PSI
method. (en, Laws’ mask is employed in the chest image
segmentation for highlighting secondary characteristics.
Next, nine distinct vectors of features are extracted from the
GLCM of every Laws’ mask finding. (e ensemble SVM
methods are constructed according to the extracted feature
vector. Munir et al. [16] presented a DNN method that is
trained on the X-ray image of the COVID-19 and standard
X-ray images to the COVID-19 diagnosis. Alquzi et al. [17]
developed a result to detect persons with COVID-19 from
CT images and ML models. (is method is depending on a
CNN model named EfficientNet.

3. The Proposed EDLFM-SI Technique

In this study, an effective EDLFM-SI technique is designed
to detect and classify the SARS-CoV-2 infection or not. Also,
the EDLFM-SI technique comprises various processes
namely data augmentation, preprocessing, fusion-based
feature extraction, WSA-based hyperparameter optimiza-
tion, and CNN-based classification. At the same time, a
fusion of CapsNet and MobileNet based feature extractors
are employed. Figure 1 illustrates the overall process of the
EDLFM-SI model. (e working principle of every process is
elaborated in the succeeding sections.

3.1. Preprocessing and Data Augmentation. Primarily, me-
dian filtering is applied for removing the noise present in the
test CT images. Next, data augmentation comprises raising
the number of training instances by the transformation of
the images with no loss of semantic details. In this study,
data augmentation takes place in three ways such as rotation,
horizontal flip, and scaling.

3.2. Fusion-Based Feature Extraction. At this stage, the
fusion-based feature extraction process is employed in
which the fusion of MobileNet and CapsNet features is
extracted.

3.2.1. MobileNet Model. (e MobileNet V2 enhances effi-
ciency of mobile techniques on several tasks and bench-
marks and through the spectrum of various technique sizes.
(e basic principle behind MobileNet technique is the re-
placement of convolutional layers with depthwise separable
convolution blocks where the depthwise convolution layer is
trailed by the pointwise convolution layer to create effective
feature vectors. It can be much greater than the regular
convolutional with around similar outcomes. In MobileNet
V2, all the blocks include 1 × 1 development layer frommore
depthwise and pointwise convolution layers. Different Vl,
the pointwise convolution layer of V2 recognized as the
prediction layer projects information with the maximum
amount of channels as to tensor with a considerably min-
imum amount of channels. MobileNetv2 is based on an
inverted residual structure where the residual connections
exist among the bottleneck layers. A 1 × 1 expansion con-
volution layer has increased the amount of channels

dependent upon expansion issue from the data previously as
it goes to depthwise convolutions. (e second novel thing
from MobileNet V2’s structure block has remaining linking
[18]. (e remaining linking uses the flow of gradient with
networks.

Computation cost is considerably lower than the typical
convolution with a compromise in slightly reduced
accuracy.

3.2.2. CapsNet Model. For overcoming the limitations of
CNN and generating it nearby the cerebral cortex activity
framework, Hinton [19] presented a maximum dimension
vector named as “capsule” for representing an entity (an
object or part of object) with a set of neurons before a single
neuron. All the capsules learn an implicit explanation of
visual entity that output the probabilities of the entity and
the group of “instantiated parameter containing the precise
pose (place, size, and orientation), deforming, velocity, al-
bedo, hue, texture, and so on.

(e structure of CapsNet has been distinct in other DL
techniques. (e outcomes of input and output of CapsNets
have been vectors whose norm and way demonstrate the
existence probabilities and several attributes of entity cor-
respondingly. If the several forecasts have been consistent,
the higher level of one capsule is developed actively. Figure 2
depicts the framework of the CapsNet model. (e structure
has been shallow with only two convolution layers (Convl,
and PrimaryCaps) and one fully connected (FC) layer
(EntityCaps). In detail, Convl has the typical convolution
layer that alters images to initial features and outcomes to
PrimaryCaps with a convolutional filter with a size of
13 × 13 × 256. During the case where the original image is
not appropriate to the input of the primary layer of the
CapsNet, the rule feature then convolution was
implemented.

(e second convolution layer generates the equivalent
vector framework as input of the capsule layer [20]. (e
typical convolutional of all output is scalars; however, the
convolutional of PrimaryCaps has distinct from the classical
one. It is considered 2-D convolutional of eight distinct
weights to the input of 15 × 15 × 256. (e third layer
(EntityCaps) has been the resultant layer that has nine
typical capsules equivalent to nine distinct classes.

A layer of CapsNet has been separated into several
computational units called capsules. Consider a capsule i
with activity neuron i, it can be given as capsule j for
generating activity level vj of EntityCaps. (e propagating
and upgrading have been conducted utilizing vectors among
PrimaryCaps and EntityCaps. (e matrix model was
employed to scalar input from all the layers of typical NN
that is basically a linear combination of outcomes. (e
capsule modeling input has been separated into two phases:
linear combination as well as routing. (e linear combi-
nation represents an idea of modeling scalar input with NN
that implies processing the connection among two objects
from the scene with a visual alteration matrix but main-
taining its relative relation. In detail, the linear combination
was expressed as follows:
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􏽢uj|i � uiWij, (1)

where 􏽢u refers to the forecast vector created by changing the
outcome ui of the capsule from the layer under by weight
Wij. Afterward, during the routing phase, the input vector sj

of the capsule, j is determined as follows:

sj � 􏽘
i

cij􏽢uj|i, (2)

where cij implies the coupling coefficient defined as
the iterative dynamic routing procedure. (e routing
part comprises a weighted sum of 􏽢u coupling
coefficients. (e vector output of capsule j has com-
puted by implementing a non-linear squashing function
produces

vj �
sj

�����

�����
2

1 + | sj

�����

�����
2

sj

sj

�����

�����
. (3)

Noticeably, the capsule activation function essentially
suppresses as well as redistributes vector length. Its output
has been utilized as probabilities of entity signified as the
capsule from the present type. (e entire loss function of
novel CapsNet has a weighted summation of marginal loss
and reconstructing loss.(eMSE has utilized from the novel
reconstructing loss function that degrades this technique
considerably if modeling noisy data.

3.2.3. Fusion Process. Data fusion is employed in many
applications of ML and CV methods. Feature fusion is an
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Figure 1: Overall block diagram of EDLFM-SI model.
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Figure 2: Structure of the CapsNet model.
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important task that integrates one or more feature vec-
tors. (e proposed method is dependent on feature

fusion through entropy. (e two vectors are described as
follows:

fCapsNet1×n � CapsNet1×1,CapsNet1×2,CapsNet1×3, . . . ,CapsNet1×n􏼈 􏼉,

fEfficientNet191×m � MobileNet1×1,MobileNet1×2,MobileNet1×3, . . . ,MobileNet1×m􏼈 􏼉.
(4)

Besides, the extracted features are integrated into a single
vector using the following equation:

Fused(features vector)1×q � 􏽘
2

i�1
fCapsNet1×n, fMobileNet1×m,

(5)

where f represents fused vectors (1 × 1186). (e entropy is
utilized on features vectors for the selection of optimum
features according to the score.

3.3. Hyperparameter Optimization. In order to optimally
adjust the hyperparameters involved in the fusionmodel, the
WSA is applied to it.(eWSA is a population-basedmethod
that stimulates succession of water strider bugs, territorial
behavior, feeding mechanism, mating style, and intelligent
ripple communication. (is method is described briefly in
the following steps.

3.3.1. Initial Birth. (e candidate solution/water strider
(WS) is arbitrarily caused in the searching space as follows:

WS
0
i � Lb + rand,

(Ub − Lb); i � 1, 2, . . . , nws,
(6)

whereWS0i represents the first position of i-thWS in the lake
(search space). Lb and Ub represent lower and upper
bounds, respectively. rand denotes an arbitrary value in the
range of zero and one, and nws indicates the amount of WSs

(population size).(e first position ofWSs is estimated by an
objective function to evaluate the fitness.

3.3.2. Territory Establishment. To determine nt amount of
territories, WSs is arranged based on their fitness, and
nws/nt amount of groups are generated orderly. (e j-th
member of all the groups is allocated to the j-th territory,
where j � 1, 2, . . . ,nt. (us, the amount of WSs lives in all
the territories are equivalent to nws/nt. (e position in all
the territories with the best and worst fatness is considered
female and male (keystone), respectively.

3.3.3. Mating. (e male WS transmits ripple to female WS
for mating. As the response of females is unknown, a
probability p is determined for attraction or else repulsion
[21]. (e p is fixed to 0.5. (e location of the male WS is
upgraded as follows:

WSt+1
i � WSt

i + R.rand; if mating happens (with probability of p),

WSt+1
i � WSt

i + R.(1 + rand); otherwise.

⎧⎨

⎩ (7)

(e length of R is estimated as follows:

R � WSt−1
F − WSt−1

i , (8)

whereWSt−1
i andWSt−1

F denotes the male and femaleWS
in the (t − 1)th cycle, respectively.

3.3.4. Feeding. Mating expends numerous energies for water
strider, and the male WS forages to food afterward mating.
During the latter scenario, the male WS move towards the

optimal WS of lake (WS) for finding foods based on the
following equation:

WSt+1
i � WSt

i + 2rand∗ WSt
BL − WSt

i􏼐 􏼑. (9)

3.3.5. Death and Succession. In the novel location, the male
WS could not find food; it would pass away; and a novel WS

would replace it as follows:
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WSt+1
i � Lbt

j + rand∗ Ubt
j − Lbt

j􏼐 􏼑, (10)

where Ubt
j and Lbj are the maximal and minimal values

of WS†s located inside the j-th territory.

3.3.6. WSA Termination. When the end criteria are met, the
process would return to the mating step for a novel loop.
Now, the maximum amount of function evaluation
(MaxNFEs) is considered an end criterion.

3.4. CNN-Based Classification. Finally, the features are fed
into the CNN model to allot the classes that exist in it. (e
perceptron linking that has been designed among the input
and output has a procedure of direct relation, but FFNN
linked generated among input and output was an indirect
connection. (e link was non-linear from shape with acti-
vation function from the hidden layer. When the link
generated on perceptron and multilayer network has been
joined, afterward, the network with direct link among the
input and output layers is created. (e network generated in
this linking design was named CNN. (e formulas are
created in the CNN technique that is expressed as follows:

y � 􏽘
n

i�1
f

iωi
ixi + f

o
􏽘

k

j�1
ωo

jf
h
j 􏽘

n

i�1
ωh

jixi
⎛⎝ ⎞⎠⎛⎝ ⎞⎠ , (11)

where f refers to the activation function in the input-output
layers and ωi

i implies the weight in the input-output layers
[22]. When the bias has more than the input layers and
activation function of all the neurons from the hidden layer
is fh, then

y � 􏽘
n

i�1
f

iωi
ixif

o ωb
+ 􏽘

k

j�1
ωo

jf ωb
j + 􏽘

k

j�1
ωo

jf
h
j

⎛⎝ ⎞⎠⎛⎝ ⎞⎠ . (12)

During this case, the CFNN technique was executed
from the time sequences data. So the neurons from the input
layer are the delays of time sequences data
Xt−1, Xt−2, . . . , Xt−p, but the output has the present data Xt.

4. Performance Validation

4.1. Implementation Data. (e experimental validation of
the EDLFM-SI technique takes place using two benchmark
data set, namely, SARS-CoV-2 CT scan [23] and COVID-19
CT [24, 25] data sets. (e former contains a set of 2,482 CT
scans with 1,252 scans under SARS-CoV-2 and 1,230 scans
under other lung diseases. (e next data set includes 746 CT
images, with 349 CT images under COVID-19 and 397 CT
images under non-COVID-19. Few sample images are
demonstrated in Figure 3.

4.2. Result Analysis on SARS-CoV-2 CT Scan Data Set.
Figure 4 demonstrates the confusion matrices produced by
the EDLFM-SI technique on test data set-1. (e results
exhibited that the EDLFM-SI technique has identified the
COVID-19 and non-COVID-19 images correctly under all

runs. For instance, with run-1, the EDLFM-SI technique has
classified 1,234 images into COIVD-19 and 1,214 images
into non-COVID-19. At the same time, with run-4, the
EDLFM-SI approach has classified 1,241 images into
COIVD-19 and 1,214 images into non-COVID-19. Followed
by, with run-6, the EDLFM-SI method has classified 1,237
images into COIVD-19 and 1,216 images into non-COVID-
19. Moreover, with run-8, the EDLFM-SI system has clas-
sified 1,236 images into COIVD-19 and 1,215 images into
non-COVID-19. Furthermore, with run-10, the EDLFM-SI
methodology has classified 1,238 images into COIVD-19
and 1,218 images into non-COVID-19.

Table 1 and Figure 5 provide the overall COVID-19
classification outcomes analysis of the EDLFM-SI technique
on data set-1. (e table depicted that the EDLFM-SI
technique has the ability to classify images under all runs.
For instance, with run-1, the EDLFM-SI technique has
gained increased pren, seny, spey, accy, and Fscore of 0.9872,
0.9856, 0.9870, 0.9863, and 0.9864, respectively. Along with
that, with run-2, the EDLFM-SI system has reached en-
hanced pren, seny, spey, accy, and Fscore of 0.9888, 0.9904,
0.9886, 0.9895, and 0.9896, respectively. In line with that,
with run-6, the EDLFM-SI methodology has attained im-
proved pren, seny, spey, accy, and Fscore of 0.9888, 0.9880,
0.9886, 0.9883, and 0.9884, respectively. Followed by that,
with run-8, the EDLFM-SI technique has gained increased
pren, seny, spey, accy, and Fscore of 0.9880, 0.9872, 0.9878,
0.9875, and 0.9876, respectively. Lastly, with run-10, the
EDLFM-SI approach has achieved higher pren, seny, spey,
accy, and Fscore of 0.9904, 0.9888, 0.9902, 0.9895, and 0.9896,
respectively.

Figure 6 showcases the accuracy graph analysis of the
EDLFM-SI technique on the test data set 1. (e figure
revealed that the EDLFM-SI technique has resulted in
maximum training and validation accuracies. It is observed
that the EDLFM-SI technique has accomplished increased
validation accuracy compared to training accuracy.

Next, the loss graph analysis of the EDLFM-SI technique
under data set-1 takes place in Figure 7. (e figure reported
that the EDLFM-SI technique has attained minimal training
and validation losses. It is also noticeable that the EDLFM-SI

Figure 3: Sample images.
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Figure 4: Confusion matrix of EDLFM-SI model under data set-1: (a) run-1, (b) run-2, (c) run-3, (d) run-4, (e) run-5, (f ) run-6, (g) run-7,
(h) run-8, (i) run-9, and (j) run-10.

Table 1: Result analysis of EDLFM-SI model with distinct measures under data set-1.

No. of runs Precision Sensitivity Specificity Accuracy F-score
Run-1 0.9872 0.9856 0.9870 0.9863 0.9864
Run-2 0.9888 0.9904 0.9886 0.9895 0.9896
Run-3 0.9880 0.9880 0.9878 0.9879 0.9880
Run-4 0.9873 0.9912 0.9870 0.9891 0.9892
Run-5 0.9881 0.9920 0.9878 0.9899 0.9900
Run-6 0.9888 0.9880 0.9886 0.9883 0.9884
Run-7 0.9864 0.9864 0.9862 0.9863 0.9864
Run-8 0.9880 0.9872 0.9878 0.9875 0.9876
Run-9 0.9904 0.9872 0.9902 0.9887 0.9888
Run-10 0.9904 0.9888 0.9902 0.9895 0.9896
Average 0.9883 0.9885 0.9881 0.9883 0.9884
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technique has resulted in reduced validation loss over the
training loss.

A detailed comparative results analysis of the EDLFM-SI
technique with recent techniques takes place on data set-1 in

Table 2 and Figure 8.(e figure shows that the DTmodel has
gained poor outcomes with the lower classification. At the
same time, the GN, VGG-16, RN, and AN models have
reached moderately closer classification performance. Along
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Figure 5: Result analysis of EDLFM-SI model under data set-1.
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with that, the xDNN model has accomplished reasonable
classification performance over the other techniques. At last,
the proposed EDLFM-SI technique has outperformed the
othermethods with themaximum pren, seny, accy, and Fscore
of 0.9904, 0.9920, 0.9899, and 0.9900, respectively.

4.3. Results Analysis on COVID-19 CT Data Set. Figure 9
exhibits the confusion matrices formed by the EDLFM-SI
system on the test data set-2. (e outcomes showcased that
the EDLFM-SI manner has identified the COVID-19 and
non-COVID-19 images correctly under all runs.

For sample, with run-1, the EDLFM-SI scheme has
classified 331 images into COIVD-19 and 381 images into
non-COVID-19. Likewise, with run-4, the EDLFM-SI al-
gorithm has classified 335 images into COIVD-19 and 382
images into non-COVID-19. Similarly, with run-6, the
EDLFM-SI technique has classified 333 images into COIVD-
19 and 378 images into non-COVID-19. In addition, with
run-8, the EDLFM-SI method has classified 332 images into
COIVD-19 and 377 images into non-COVID-19. At last,
with run-10, the EDLFM-SI approach has classified 331
images into COIVD-19 and 383 images into non-COVID-
19.

Table 3 and Figure 10 offer the overall COVID-19
classification outcomes analysis of the EDLFM-SI approach
on data set-2. (e table outperformed that the EDLFM-SI
system has the ability to classify images in all runs. For
instance, with run-1, the EDLFM-SI approach has attained
maximal pren, seny, spey, accy, and Fscore of 0.9539, 0.9484,
0.9597, 0.9544, and 0.9511, respectively. At the same time,
with run-4, the EDLFM-SI methodology has attained su-
perior pren, seny, spey, accy, and Fscore of 0.9571, 0.9599,
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Figure 6: Accuracy analysis of EDLFM-SI model under data set-1.
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Figure 7: Loss analysis of EDLFM-SI model under data set-1.

Table 2: Comparative analysis of EDLFM-SI model with existing
approaches under data set-1.

Methods Precision Sensitivity Accuracy F-score
EDLFM-SI 0.9904 0.9920 0.9899 0.9900
xDNN model 0.0916 0.9553 0.9738 0.9731
RN model 0.9300 0.9715 0.9496 0.9503
GN model 0.9020 0.9350 0.9173 0.9182
VGG-16 0.9402 0.9543 0.9496 0.9497
AN model 0.9498 0.9228 0.9375 0.9361
DT model 0.7681 0.8313 0.7944 0.7984
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Figure 8: Comparative analysis of EDLFM-SI model under data
set-1.
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Figure 9: Confusion matrix analysis of EDLFM-SI model under data set-2: (a) run-1, (b) run-2, (c) run-3, (d) run-4, (e) run-5, (f ) run-6,
(g) run-7, (h) run-8, (i) run-9, and (j) run-10.

Table 3: Result analysis of EDLFM-SI model under data set-2.

No. of runs Precision Sensitivity Specificity Accuracy F-score
Run-1 0.9539 0.9484 0.9597 0.9544 0.9511
Run-2 0.9598 0.9570 0.9647 0.9611 0.9584
Run-3 0.9536 0.9427 0.9597 0.9517 0.9481
Run-4 0.9571 0.9599 0.9622 0.9611 0.9585
Run-5 0.9599 0.9599 0.9647 0.9625 0.9599
Run-6 0.9460 0.9542 0.9521 0.9531 0.9501
Run-7 0.9433 0.9542 0.9496 0.9517 0.9487
Run-8 0.9432 0.9513 0.9496 0.9504 0.9472
Run-9 0.9594 0.9484 0.9647 0.9571 0.9539
Run-10 0.9594 0.9484 0.9647 0.9571 0.9539
Average 0.9536 0.9524 0.9592 0.9560 0.9530
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0.9622, 0.9611, and 0.9585, respectively. Besides, with run-6,
the EDLFM-SI system has gainedmaximum pren, seny, spey,
accy, and Fscore of 0.9460, 0.9542, 0.9521, 0.9531, and 0.9501,
respectively. Moreover, with run-8, the EDLFM-SI tech-
nique has gained higher pren, seny, spey, accy, and Fscore of
0.9432, 0.9513, 0.9496, 0.9517, and 0.9487, respectively.
Eventually, with run-10, the EDLFM-SI methodology has

gained improved pren, seny, spey, accy, and Fscore of 0.9594,
0.9484, 0.9647, 0.9571, and 0.9539, respectively.

Figure 11 illustrates the accuracy graph analysis of the
EDLFM-SI approach on the test data set 2. From the
figure, it is obvious that the EDLFM-SI technique has
resulted in maximal training and validation accuracies. It
can be clear that the EDLFM-SI technique has
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Figure 10: Result analysis of EDLFM-SI model under data set-2.
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accomplished increased validation accuracy related to
training accuracy.

(en, the loss graph analysis of the EDLFM-SI approach
on the test data set-2 takes place in Figure 12. (e figure
stated that the EDLFM-SI system has reached lesser training
and validation losses. It can be also obvious that the EDLFM-
SI methodology has resulted in decreased validation loss
over the training loss.

A brief comparative outcomes analysis of the EDLFM-SI
approach with recent systems takes place on data set-2 in
Table 4 and Figure 13. (e figure demonstrated that the
Xception manner has attained worse results with minimum
classification. Simultaneously, the DN-121, InceptionV3,
RN-101, and DN-169 methods have obtained moderately
closer classification performance. Also, the DN-201 model
has accomplished reasonable classification performance
over the other techniques. At last, the presented EDLFM-SI
algorithm has outperformed the other methodologies with
the maximal pren, seny, accy, and Fscore of 0.9599, 0.9599,
0.9625, and 0.9060, respectively.

By looking into the detailed tables and figures, it is
obvious that the EDLFM-SI technique has resulted in im-
proved COVID-19 detection and classification performance
over the recent methods.

5. Conclusion

In this study, an effective EDLFM-SI technique is designed
to detect and classify the SARS-CoV-2 infection for complex
healthcare applications. Also, the EDLFM-SI technique
comprises various processes, namely, data augmentation,
preprocessing, fusion-based feature extraction, WSA-based
hyperparameter optimization, and CNN-based classifica-
tion. (e fusion-based feature extraction process is
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Figure 11: Accuracy analysis of EDLFM-SI model under data set-2.
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Figure 12: Loss analysis of EDLFM-SI model under data set-2.

Table 4: Comparative analysis of EDLFM-SI model with existing
approaches under data set-2.

Methods Precision Sensitivity Accuracy F-score
EDLFM-SI 0.9599 0.9599 0.9625 0.9599
RN-101 model 0.8810 0.9310 0.9090 0.9060
InceptionV3 0.8770 0.9000 0.8940 0.8880
Xception 0.8730 0.8830 0.8850 0.8770
DN-121 model 0.8760 0.8880 0.8890 0.8820
DN-169 model 0.8810 0.9370 0.9120 0.9080
DN-201 model 0.9130 0.9370 0.9290 0.9250
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Figure 13: Comparative analysis of EDLFM-SI model under data
set-2.
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employed in which the fusion of MobileNet and CapsNet
features is extracted. To optimally adjust the hyper-
parameters involved in the fusion model, the WSA was
executed to it. Finally, the features are fed into the CNN
model to allot the classes that exist in it. For examining the
enhanced outcomes of the EDLFM-SI technique, a com-
prehensive experimental analysis is carried out on the
COVID-19 CT data set and the SARS-CoV-2 CT scan data
set. (e simulation outcomes highlighted the supremacy of
the EDLFM-SI technique over the recent approaches. As a
part of the future scope, the classification performance of the
proposed EDLFM-SI technique can be employed for SARS-
CoV-2 detection by the use of hybrid metaheuristic-based
optimization algorithms.
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