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In order to effectively reduce the energy consumption, improve the efficiency of data collection in HWSNs, and prolong the
lifetime of the overall network, the clustering method is one of the most effective methods in the data collection methods for
HWSNs. +e data collection strategy of HWSNs based on the clustering method mainly includes three stages: (1) selecting the
appropriate cluster head, (2) forming between clusters, and (3) transferring data between clusters. Among them, the selection of
the cluster heads in the first stage. +e optimal number of cluster heads in the formation of clusters in the second stage is the core
and key to the clustering data collection of HWSNs. In the stage of cluster head selection, a data collection strategy for HWSNs
based on the clustering method is proposed. Sink establishes an extreme learning machine neural network model. +e cluster
member nodes select cluster heads based on the remaining energy of the sensor node, the number of the neighbor node, and the
distance to the sink. +e best cluster head node is selected through the adaptive learning of the online sequence extreme learning
machine. +rough comprehensive consideration of various factors to complete the clustering process, the gray wolf algorithm is
used to optimize the number of clusters, balance the effect of clustering, and improve the efficiency of data collection while
reducing energy consumption. An energy efficient and reliable clustering data collection strategy for HWSNs based on the online
sequence extreme learning machine and the gray wolf optimization algorithm is proposed in this paper. +e simulation results
show that the proposed algorithm not only significantly improves the efficiency of the data collection and reduces energy
consumption but also comprehensively improves the reliability of the network and prolongs the network’s lifetime.

1. Introduction

+e biggest feature of a heterogeneous sensor network is
data collection. First, the source node collects the data and
completes the data forwarding through the routing node.
+e data is transmitted between nodes by wireless com-
munication.+e cluster head node performs data fusion and
sends it to the sink node [1, 2]. And through the Internet, the
data are transferred to the database for analysis and pro-
cessing, and finally, feedback is given to the user. +is
process is a series of processing on the collected data. But, for
the heterogeneous sensor nodes, the perception ability is
limited; the computing ability is limited; and the energy is
limited [3]. How to design a high-efficiency data collection
strategy, reduce the energy consumption, and improve the
efficiency of data collection is currently a key research topic
in the field of HWSNs. According to whether the structure of

the heterogeneous sensor node data collection process has a
hierarchical structure, it can be divided into two data col-
lection structures: a hierarchical cluster structure and a flat
structure [4]. +e data collection of the flat structure is
mainly reflected in the common nodes, routing nodes, and
sink nodes in a plane; data collection of the hierarchical
structure will cause data transmission congestion, low ef-
ficiency, and fewer applications [5]. +e data collection
mode of hierarchical and clustered structure is much more
efficient than the data collection method of flat structure in
terms of sensor node organization and management, work
efficiency, and network scalability. +is clustering structure
is particularly suitable for large-scale distributed heteroge-
neous sensor networks. +erefore, the research on the data
collection method of heterogeneous sensor networks with
this hierarchical and clustered data collection structure has
very important significance [6].
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+e clustering data collection process of HWSNs is af-
fected by the limited initial energy, perception ability,
communication bandwidth resources of heterogeneous
nodes, and the dynamic change of the network topology.
+ese restrictive conditions determine that there must be a
clustering routing protocol suitable for its own character-
istics in the design process of HWSNs clustered data col-
lection [7]. At the same time, in the process of designing the
HWSNs clustered data collection protocol, consideration
was given to saving energy consumption, improving the
efficiency of the data collection, and prolonging the net-
work’s lifetime. +e cluster routing protocol of HWSNs
mainly responds to the dynamically changing network
structure. +e establishment, maintenance, and smooth
transmission of data between sensor nodes and cluster head
nodes and sink nodes are very important [8]. At the same
time, these characteristics also determine the design of an
efficient and reliable cluster routing protocol that has a very
important meaning. +e clustered data collection routing
protocol of HWSNs designed in this paper mainly selects the
network layer routing protocol for in-depth research, and
the data collection strategy is researched and improved [9].

To achieve the optimal network performance, this paper
defines the optimal network performance, that is, the op-
timization goal, as the problem of minimizing network
energy consumption. +rough the obtained optimal node
awareness rate and physical link transmission rate, the goal
of minimizing network energy consumption can be
achieved. Combining gray wolf optimization algorithm and
online sequence extreme learning machine, the two methods
cooperate with each other to optimize the performance of
heterogeneous wireless sensor networks, prolong the net-
work’s lifetime, and effectively balance the communication
energy consumption of the sensor nodes and the collection
delay of data collection. +erefore, the purpose of this paper
is to propose an efficient and low-energy data collection and
network energy-saving optimization strategy so that the
network can efficiently collect sensor node data and reduce
network energy consumption.

In this work, a newmethod of data collection strategy for
HWSNs based on the online sequence extreme learning
machine and the gray wolf optimization algorithm is pro-
posed. In comparison with the current general selection
approaches, the main contributions of our work in this paper
can be summarized as follows:

(1) Characterize the issues of a data collection strategy
for HWSNs and establish a mathematical model of
data collection strategy for HWSNs.

(2) Present a novel data collection strategy based on
online sequence extreme learning machine and gray
wolf optimization algorithm.

(3) Provide extensive simulation results to demonstrate
the use and efficiency of the proposed data collection
algorithm.

(4) Evaluate the performance of the proposed algo-
rithms by comparing them with the coverage opti-
mization algorithms of the SEP, ELM, and
ELM+PSO algorithm. +e experimental results

show that the scheme and strategy proposed in this
paper not only ensure the continuous operation of
the network but also achieve better network
performance.

+e rest of the paper is organized as follows: Section 2
discusses the related work. Section 3 equates the problem of
the system model and problem description for the HWSNs.
Section 4 describes the algorithm of the online sequence
extreme learning machine and the gray wolf optimization
algorithm. Section 5 presents the applied mathematical
models and implementation steps of the clustering data
collection algorithm for HWSNs. Section 6 provides the
parameters and simulation results that validate the perfor-
mance of our algorithm. Section 7 concludes the paper.

2. Related Work

+e characteristic of a heterogeneous wireless sensor net-
work is a data-centric network. Data collection is one of the
most basic tasks of HWSNs, and it is also a prerequisite for
application in various other fields and scenarios. +rough
research, it is found that the data collection method based on
the cluster structure is suitable for the monitoring envi-
ronments that require large-scale sensor nodes and can
improve network load balance and the efficiency of data
collection [10]. In the data collection strategy of HWSNs, the
data collection methods are classified according to the
network structure and working characteristics of the cluster
head nodes and the cluster member nodes, which are mainly
divided into the following three types.

2.1. Cluster-Based Data Collection. According to the char-
acteristics of the sensor node, the appropriate node is se-
lected as the cluster head, and the surrounding cluster
member nodes are chosen to join the corresponding cluster
according to the actual situation.+e routing node transmits
information, and the cluster head node performs data fusion
and sends it to the sink. Generally, clustering data collection
is the most adopted strategy for HWSNs data collection.
Dutt et al. [11] proposed a two-layer channel selection
threshold method for the problems of large energy con-
sumption and high system complexity in the process of
selecting cluster head nodes. Cluster heads are selected by
setting appropriate thresholds. +is method is referred to as
the CREEP clustering data collection strategy. +is strategy
significantly improves the collection efficiency of the net-
work and improves the quality of service of the network.
However, the proposed method increases network energy
consumption and algorithm processing time. Verma et al.
[12] considered the remaining energy of heterogeneous
sensor nodes, calculated the distance between ordinary
nodes and cluster heads, and constructed the fitness function
according to the network density function. A genetic al-
gorithm-based optimized clustering protocol (GAOC) is
proposed, which greatly improves network collection effi-
ciency and reduces network energy consumption, this
method increases the processing time of the algorithm and at
the same time increases the computational complexity of the
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algorithm. Al-Kiyumi et al. [10] proposed a distributed
energy-aware fuzzy logic routing algorithm (DEFL), which
simultaneously solves the problems of energy efficiency and
energy balance. +e above-mentioned methods reduce the
energy consumption of the network and prolong the life of
the network, but these methods increase the processing time
of the algorithm and at the same time increase the com-
putational complexity of the algorithm.

2.2. Tree-Based Data Collection. Tree-based data collection
means that the sensor nodes of HWSNs form a tree structure
through reasonable combination, and all nodes are divided
into child nodes and parent nodes.+e role of the child node
is to collect and forward data information, and the role of the
parent node is to receive data and merge it, thereby im-
proving the efficiency of data collection. In order to reduce
the cost of data collection, Sha et al. [13] proposed an energy-
balanced data collection method (ETDC) for the data col-
lection on subtrees with similar structures, which can op-
timize network performance and improve the efficiency of
data collection and the reliability of the network. Since the
selection of intersection points in route design has an im-
portant impact on the timely collection of network data,
Nitesh et al. [14] proposed an effective intersection point
collection algorithm. +e intersection point collection
strategy of this methodmainly refers to the multipath of data
transmission and network energy consumption to generate
trees, which greatly improves the efficiency of data collection
and work. Gowda et al. [15] considered factors such as
threshold, connection time, coverage, and robustness and
proposed a link-aware tree data collection method
(VEELCT), which greatly improved the efficiency of data
collection. +e above-mentioned tree-structured data col-
lection method integrates the influence of the remaining
energy of the node and the communication cost of the nodes
in the cluster on the network survival time and iteratively
selects the cluster heads periodically, which effectively avoids
the problem of uneven distribution of the cluster heads.
However, if the network nodes are not evenly distributed,
the load of the nodes will be uneven.

2.3. Chain-Based Data Collection. Chain-based data col-
lection means that the sensor nodes in the network are
connected in series in a chain to form a data transmission
link. +e chain structure of data transmission means that in
heterogeneous sensor network data collection, heteroge-
neous nodes form a link for data transmission and select a
chain head node, other nodes send data to the chain head,
and the chain head forwards the data to the sink. Wang et al.
[16] proposed an enhanced energy-efficient collection al-
gorithm EPEGASIS from four aspects to improve the effi-
ciency of data collection in response to the hot issues in the
sensor information system. Sasirekha and Swamynathan
[17] proposed a cluster chainmobile agent routing algorithm
(CCMAR), which improves the collection efficiency and
prolongs the life of the network. Qiao and Zhang [18]
proposed a random projected polar coordinate chain line
(RPC) method. A chain structure network architecture is

constructed according to the polar coordinate position, and
a random projection method is adopted for data com-
pression and transmission. +is method reduces the energy
consumption of data collection.

+e protocol uses a greedy algorithm to generate a chain.
+e sensor nodes only need to communicate with their
nearest neighbor nodes, which can effectively use energy and
greatly improve the network’s lifetime. However, the pro-
tocol is a chain structure, so the data transmission delays
increase, which is not suitable for real-time applications.

Based on the aforementioned documents, it can be
summarized as the following three main reasons. (1) +e
research direction is relatively one-sided. When many re-
searchers study hierarchical cluster routing, if the clustering
strategy studied is more complicated, they will neglect the
routing between clusters. Conversely, when studying com-
plex intercluster routing, simple and low-performance
clustering strategies are used. (2) Clustering or selecting
cluster heads has great randomness. Current clustering
methods usually determine the candidate cluster heads by
determining the thresholds of multiple weight factors of
nodes. +en each node randomly generates a random
number to select the cluster head with equal probability,
which has great randomness. (3) +e clustering strategy is
one-sided. Many current researches on clustering strategies
are based on certain aspects, such as the idea of nonuniform
clustering, graph theory, energy perception, and geographic
location. +ese strategies only consider a single aspect, and
performance needs to be improved.

Based on the analysis of the above references, the current
clustered data collection method unilaterally reduces the
collection energy consumption, prolongs the network’s
lifetime, or improves the efficiency of data collection,
without comprehensively considering the network perfor-
mance and the balance of the energy consumption of the
data transmission. +rough comprehensive analysis of the
above, in this paper, we comprehensively consider the
remaining energy of the heterogeneous sensor nodes in the
data transmission process, the distance between the het-
erogeneous sensor nodes and sink, the number of neighbor
nodes to complete energy-saving, efficient, and reliable data
collection. +e clustering data collection of HWSNs is di-
vided into three stages. In the first stage, improper or fre-
quent selection of cluster heads for HWSNs clustering nodes
is likely to cause network instability, dynamic changes in the
topology, and low data transmission efficiency between
heterogeneous nodes. In the cluster head selection stage of
HWSNs clustering data collection, an extreme learning
machine model is established at the sink node, and the
remaining energy of the node, the number of node neigh-
bors, and the distance to the sink are used as input. +e best
cluster head is selected through the adaptive learning of the
online sequence extreme learning machine.+e second stage
is the clustering stage of HWSNs. +e number of clusters
affects the efficiency of data collection and energy con-
sumption. A gray wolf optimization algorithm for the op-
timal number of clusters of HWSNs is designed. In the third
section, the data collected by HWSNs heterogeneous nodes
are transmitted to the cluster head node, and the cluster head

Computational Intelligence and Neuroscience 3



node data is fused and forwarded to the sink. +is paper
proposes an energy-saving, efficient, and reliable clustering
data collection strategy for HWSNs based on the online
sequence extreme learning machine and gray wolf optimi-
zation algorithm, which reduces the transmission delay of
heterogeneous nodes, effectively improves data collection
efficiency, and balances network energy consumption.

3. System Model and Problem Description

+is article first describes the clustering data collection
process of HWSNs, constructs a schematic diagram of data
collection scenarios, and then establishes a network energy
consumption model and an optimized cluster number
model.

3.1. Clustering Data Collection Model. +e clustered data
collection method of HWSNs in this paper is based on the
improvement and in-depth study of the classic distributed
low-power adaptive hierarchical routing protocol (stable
election protocol, SEP). In the three stages of the clustered
data collection strategy of HWSNs, the first stage selects
cluster heads based on the information of the heterogeneous
sensor nodes; the surrounding common sensor nodes in-
dependently choose to join the corresponding clusters; and
the sensor network forms a hierarchical network structure.
+e information collected by the terminal node is forwarded
to the cluster head node through routing and then sent to the
sink node after simple data fusion [19]. +e schematic di-
agram of HWSNs clustered data collection is shown in
Figure 1.

As shown in Figure 1, heterogeneous nodes and ordinary
nodes are randomly deployed in the square monitoring area,
and the nodes will not move after the deployment is
completed. +e fixed sensor node sends the collected data to
the sink node, and the sink node in this article is also fixed.
Under the premise of the specified transmission delay, the
node collects the information and finally sends it to the sink
node. First, the cluster heads must be selected, and a suitable
clustering structure must be formed [20]. +e routing node
selects the appropriate path to transmit the data to the
cluster head node and then forwards the data to the sink after
fusion. +e sink uploads the collected data to the upper
computer, and the user checks the occurrence information
of the monitoring area through the terminal device.+rough
multiple rounds of data collection, the data collection of the
entire heterogeneous wireless sensor network is finally
completed.

3.2. Optimal Cluster Head NumberModel. First, a clustering
mathematical model of HWSNs is established based on
energy consumption. +e monitoring area is a square of
length M, and the total number of nodes is N, including K
cluster head nodes, and there are N/K-1 cluster member
nodes.+e energy consumption generated by the data fusion
is ECH, and then the information is transmitted to sink, and
the distance between the cluster head and the base station is
dChtoBS. +e energy consumption of cluster head nodes

mainly includes receiving data sent by the heterogeneous
sensor nodes and forwarding data to sink. +e energy
consumption ENEN of cluster member nodes includes col-
lecting data and forwarding data to the cluster head [21].

+e ordinary sensor nodes and the heterogeneous sensor
nodes in the sensing area obey the Poisson distribution; the
area of the cluster is S�M2/k; and the density function of the
nodes in the monitoring area is ρ(x, y), which is calculated
as shown in the following formula:

ρ(x, y) �

k

M
2, (x, y) ∈ S,

0, (x, y) ∉ S.

.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

+e energy consumption of the cluster head node to
receive data is proportional to the distance. +e mathe-
matical expectation value of the square of the distance be-
tween the cluster head node and the cluster member nodes is
calculated as follows:

E dtoCH
2

􏽨 􏽩 � E x
2

+ y
2

􏽨 􏽩 �
M

2

2kπ
. (2)

+e calculation formula for the total energy consump-
tion of all nodes in the heterogeneous sensor network is as
follows:

Etotal � k × Ecluster � k × ECH + k ×
N

k − 1
􏼒 􏼓 × ENEN, (3)

Etotal � k × Ecluster

� k × ECH + k ×
N

k − 1
􏼒 􏼓 × ENEN

� k ×
N

k − 1
􏼒 􏼓 × lEelec + lEelec + lεampd

2
CHtoBS􏼒 􏼓

+(N − k) × lEelec + lεampd
2
toCH􏼐 􏼑

� l 2NEelec − kEelec + kεampd
2
CHtoBS +(N − k)􏼐

× εampd
2
toCH􏼐 􏼑.

(4)

In formula (4), only the value of dtoCH is uncertain. In
this calculation formula, since the position and number of
cluster heads must change during each polling data col-
lection process, dtoCH is solved by calculating the mathe-
matical expectation value. +e range of each cluster area is a
circular area with a radius of M/

���
πK

√
. +e formula for

calculating the expected value of the square of the distance
between the heterogeneous node and the cluster head node
is as follows:

E d
2
toCH􏽨 􏽩 � B x

2
+ y

2
􏼐 􏼑ρ(x, y)dxdy

� Br2ρ(r, θ)rdrdθ

� ρ􏽚
2π

0
dθ􏽚

M/
��
K

√

0
r
3dr � M

2/2πK.

(5)

+e total energy consumption of the network can be
calculated as follows:
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Etotal � l 2NEelec − kEelec + kεampd
2
CHtoBS +(N − k) × εamp ×

M
2

2kπ
􏼠 􏼡.

(6)

Substituting the calculated result of formula (5) into
formula (4), calculating the derivative, the calculation result
of the number of cluster heads K can be obtained, and at the
same time, the derivative of the number of cluster heads K is
equal to 0, and the calculation is obtained as follows:

Eelec −
N × M

2
× εfs

π × K
2 + εamp × d

4
+ d

4
CHtoBS􏼐 􏼑 � 0. (7)

Regarding the calculation of the optimal number of
clusters K in formula (7), the first derivative of K can be
calculated to obtain the calculation result of the optimal
number of clusters K as follows:

K � M ×

�������
N × εfs

π

􏽳

×

�����������������������
1

Eelec + εamp × d
4

+ d
4
CHtoBS􏼐 􏼑

􏽳

. (8)

From the calculation result of formula (8), the calcu-
lation result of the optimal number of clusters K is related to
the number N of all sensor nodes in the monitoring area, the

wireless communication distance d of the cluster head
node’s broadcast information, and the data transmission
distance dCHtoBS from the cluster head node to sink. +e
process of solving the optimal solution is a complex cal-
culation process that requires comprehensive consideration
of various factors, which is closely related to the application
scenario and the user’s purpose and needs. Generally, the
calculation method of the optimal cluster number K value of
HWSNs adopts the swarm intelligence optimization algo-
rithm to optimize the solution [22].

In summary, the process of clustering data collection of
HWSNs in this paper is as follows: in the stage of selecting
cluster heads of HWSNs, an extreme learning machine
neural network model is established through Sink, and the
member nodes in the cluster are used as input vectors. +e
input parameters include the initial energy of the node, the
number of neighbor nodes, and the distance between the
heterogeneous node and the sink node. +rough the
adaptive learning of the extreme learning machine, the
cluster head is selected as the output vector, which can
reduce the energy consumption of the network. In the stage
of optimizing the number of clusters, the method adopted by
the classic SEP routing protocol is based on empirical values,
which often has uncertainty, and the number of cluster

Local control room

Database server

Internet

Remote control room

Web server

Sink

User

Sensor node
Heterogeneous node

Routing node
Cluster head

Sensor node
Heterogeneous node

Routing node
Cluster head

Figure 1: Schematic diagram of clustered data collection of HWSNs.

Computational Intelligence and Neuroscience 5



heads in the network fluctuates greatly. +erefore, this paper
uses the gray wolf algorithm to optimize the number of
clusters of HWSNs. +is method can effectively increase the
number of data packets received by the sink node, improve
the efficiency of data collection, and balance the energy
consumption. Based on this, an energy-saving, efficient, and
reliable clustering data collection strategy for HWSNs based
on the online sequence extreme learning machine and gray
wolf optimization algorithm is proposed in this paper, which
can balance network energy consumption and prolong the
network’s lifetime.

4. Online Sequence Extreme Learning Machine
and Gray Wolf Optimization Algorithm

4.1. Online Sequence Extreme Learning Machine. Online
sequential extreme learning machine (OS-ELM) divides the
training data into data blocks and trains in time sequence,
which can effectively avoid repetition [23]. +is algorithm
mainly solves the problem that the extreme learning ma-
chine cannot dynamically process data in real time but can
only retrain the old and new data together, which takes too
long. +e OS-ELM method can learn in batches and remove
the trained data, which can reduce training time. It is a
neural network learning and training process, which is
mainly divided into two processes: initial learning and
online learning [24].

In the OS-ELM algorithm, given N samples, Ω � (xi,

ti), i � 1, 2, 3, . . . , N0, xi ∈ Rm is the input feature infor-
mation, and ti ∈ Rn is the idealized recognition output of the
sample. +e number of input layers is n, and the number of
hidden layers is L. +e network output can be expressed as
follows:

fL � 􏽘
L

i�1
βi × gi ai, bi, xj􏼐 􏼑 � ti. (9)

In the calculation and solution process, if the number of
hidden layer nodes L of the extreme learning machine is
equal to the number of input samples N, the output matrix
will be a square matrix H, 􏽢β � H− 1 × T. If the number of L
andN is not equal, that is, L<<N, then they do not match. In
this case, it is necessary to introduce least squares and
Moore’s generalized inverse to calculate H × β � T to obtain
􏽢β � H+ × T, where H+ is the generalized inverse of the
output matrix H [25].

In the online learning process, the training data are first
divided in the form of data blocks, and the first sample set
Ω0 � (xi, ti)􏼈 􏼉

N0
i�1 is input, and the original output weight is

solved according to 􏽢β � H+ × T as shown in formula (10).
Among them, P0 � HTH, T0 � (t1, t2, . . . , tN0

)T, and add
the data setΩ1 � (xi, ti)􏼈 􏼉

N0+N1
i�N0+1, where the parameter N1 is

the number of data set samples at the new time, and the
corresponding weights are updated as shown in formula (11)
[26].

β(0)
� P

−1
0 H

T
0 T0,

β(1)
� P

−1
1

H

H1
􏼢 􏼣

T

T1
􏼢 􏼣.

(10)

+erefore, it can be calculated as follows:

β(1)
� β(0)

+ P
−1
1 H

T
1 T1 − H1β

(0)
􏼐 􏼑. (11)

+e data are constantly changing. When new data are
added, the trained data should be removed to avoid repeated
training. When the K+ 1 batch of data is added, the output
weight at this time is as follows:

β(K)
� β(K− 1)

+ P
−1
K+1H

T
K+1 TK+1 − HK+1β

(K)
􏼐 􏼑. (12)

Parameter P1 � PK + HT
K+1HK+1. If the parameters N0

and N are consistent and equal, the OS-ELM algorithm is
equivalent to the original ELM algorithm without any dif-
ference [27].

4.2. Gray Wolf Optimization Algorithm. Dr. Mirjalili and
others proposed the gray wolf optimization algorithm
(GWO) in 2014. +e algorithm is inspired by the cooper-
ation and hierarchy in the process of prey hunting by wolves
and divides wolves into four levels [28]. +e algorithm refers
to the hunting division and food distribution of gray wolves
in nature, takes artificial wolves as the main body, and uses a
cooperative path search structure based on the division of
responsibilities to abstract the engineering optimization
solution process as a gray wolf hunting process [29].

Assuming that the wolf pack contains N individuals and
searches for food in a D-dimensional space, the position of
the i-th gray wolf that only captures food can be expressed by
a mathematical formula as Xi � (X1

i , X2
i , . . . , XD

i ), i� 1, 2,
. . ., N, where the parameter N is the gray wolf population
size. At the same time, it is defined that α (alpha) is the
optimal solution to be found in the prey and so on, β (beta) is
the second optimal solution, δ (delta) is the third optimal
solution, and the remaining solution is ω (omega) [30]. +e
gray wolf individuals in the wolf pack are set as X, and the
positions of the wolf individuals α, β, and δ in the wolf pack
obtained by the iterative solution are Xα, Xβ, and Xδ to
update their respective positions. +eir calculation formula
is as follows:

X
d
i,α(t + 1) � X

d
α(t) − A

d
i,1 C

d
i,1X

d
α(t) − X

d
i (t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

X
d
i,β(t + 1) � X

d
β(t) − A

d
i,2 C

d
i,2X

d
β(t) − X

d
i (t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

X
d
i,δ(t + 1) � X

d
δ(t) − A

d
i,3 C

d
i,3X

d
δ(t) − X

d
i (t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌.

(13)

Here, the parameter t is the current iteration number; the
parametersXα,Xβ, andXδ are the positions of the current wolf
population to capture prey; and Ad

i |Cd
i Xd

α(t) − Xd
i (t)| is the

encircling step length, and the calculation formulas of the
convergence factor Ad

i and the swing factor Cd
i are as follows:
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A
d
i � 2a × rand1 − a,

C
d
i � 2 rand2.

(14)

+e calculation formula of parameter a is as follows:

a � 2 −
2t

tmax
. (15)

Here, the parameter t represents the current calculation
times of the gray wolf population and tmax represents the
iterative termination times of the gray wolf individual in the
iterative calculation.

X
d
i (t + 1) � 􏽘

j�α,β,δ
wjX

d
i,j(t + 1). (16)

Here, wj(j � α, β, δ) represents the weight coefficient of
gray wolf individual α, β, and δ; then it can be calculated as
follows

wj �
f Xj(t)􏼐 􏼑

f Xα(t)( 􏼁 + f Xβ(t)􏼐 􏼑 + f Xδ(t)( 􏼁
. (17)

Here, f(Xj(t)) represents the fitness value of the j-th wolf
pack individual in the t-th generation.

+e time complexity indirectly reflects the length of time
the algorithm executes. In the GWO algorithm, it is assumed
that the execution time required to initialize the parameters
(under the condition that the population size is N and the
spatial dimension is n) is x1, and the time to generate a
uniform distribution is x2. +e time required to find the
fitness value is f(n), and then the time complexity of the
initial stage of the GWO algorithm is as follows:

O x1 + N nx2 + f(n)( 􏼁 � O(n + f(n)).( (18)

Assuming that the execution time required for the it-
erative update of each dimension of the individual is the
same, which is x3, the time for comparing the advantages and
disadvantages and selecting the best after iteration is x4.
+en the time complexity of the algorithm at this stage is as
follows:

O N nx3 + f(n)( 􏼁 + x4( 􏼁 � O(n + f(n)). (19)

+erefore, the total time complexity of the GWO al-
gorithm is as follows:

T(n) � O(n + f(n)) + O(n + f(n)) � O(n + f(n)). (20)

In summary, the improved strategy of the GWO algo-
rithm does not increase the time complexity of the algorithm
solution compared to the other traditional optimization
algorithms.

5. Design of Clustering Data Collection
Algorithm for HWSNs

+e clustering data collection algorithm of HWSNs is im-
proved on the basis of the clustering routing protocol (SEP)
of classic HWSNs [31]. In the clustered data collection
optimization strategy of HWSNs, data collection is divided

into three stages: cluster head selection, cluster region
formation, and data transmission between clusters. +e
heterogeneous sensor nodes in the network select the best
cluster head node according to the neural network method
of the online sequence extreme learning machine. +en a
method for the optimal number of clusters of the gray wolf
optimization algorithm is designed. After the number of
clusters and the clustering area are completed, the data are
transmitted between the clusters to the sink node. Finally,
the data are sent to the server for data processing, and the
entire data collection process is completed. +e clustering
data collection algorithm process of HWSNs is shown in
Figure 2.

5.1. Clustering Stage. Since heterogeneous nodes are ran-
domly deployed in a complex and changeable application
environment, the specific location of the heterogeneous
sensor nodes needs to be used to determine the partition.
+e methods for obtaining the location of specific sensor
nodes mainly include the following three: (1) ranging, (2)
nonrange positioning technology, and (3) node coordinate
information.

5.2. Cluster Head Selection Stage. In the clustering data
collection strategy of HWSNs, the key is the first step. +e
selection of cluster head nodes is related to the overall
performance of network data collection. In this paper, the
online sequence extreme learning machine neural network is
used to select cluster heads, and the remaining energy of
heterogeneous nodes, the number of neighbor nodes, and
the distance between heterogeneous nodes and sink nodes
are used as the input of the extreme learning machine neural
network. All the information of the above network is
transmitted to the sink node, and the online sequence ex-
treme learning machine neural network is established in the
sink for learning. +e above heterogeneous sensor node
information is used as the input vector of the online se-
quence extreme learning machine neural network. +rough
the continuous learning of the online sequence extreme
learning machine, according to the information of the nodes
in the monitoring area, the appropriate and optimal cluster
head node is selected.

+e design process of selecting the best cluster head is
based on the adaptive learning method of the online se-
quence extreme learning machine:

Step 1. Set the parameter variables and HWSNs initializa-
tion parameters.

Assuming that X(n) � [x1(n), x2(n), . . . , xN(n)]T is the
input vector, the cluster heads are selected from these nodes
in the monitoring area. +e information of each node in-
cludes the remaining energy of the node, the number of
neighbor nodes, and the distance between the cluster head
node where it is located and the sink node. ω1

i (n) � ω1
i1(n),

ω1
i2(n), . . . ,ω1

iN(n)]T is the weight coefficient of the forward
subnetwork of ELM, i � 1, 2, 3, . . . , M. +e parameter M is
the number of the heterogeneous nodes participating in the
selection of cluster head nodes by improving ELM. ω2

kl is the
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weight of competition subnetwork of ELM, where the
number 2 does not mean square but represents the second
layer network of OS-ELM. Y(n) � [y1(n), y2(n), . . . , yl(n)]

is the actual output vector of OS-ELM.

Step 2. Initialize.
For the forward network weightω1

ij, it is initialized with a
small random value to make it meet the constraints

􏽘

N

j�1
ω1

ij � 1, i � 1, 2, 3, . . . , M. (21)

+e setting of parameter ω2
kl(k, l � 1, 2, 3, . . . , M) is

shown in the following formula (22):

ω2
kl �

1, k � l

−δ, k≠ l
.􏼨 (22)

Here, the parameters k and l, respectively, represent the
current k-th and l-th sensor nodes in the heterogeneous
sensor network.

In the learning process of the extreme learning machine,
the output functions f1 and f2 of the neural network rep-
resent the functions; they are all linear relations, and the
output expression formula is as follows:

y �

0, x< ξ

x − ξ ξ, < x< uc

constantx, > uc

.

⎧⎪⎪⎨

⎪⎪⎩
(23)

Cluster head election
starts, and nodes with

low energy temporarily
enter a sleep state

The node exchanges
necessary information

with neighboring nodes

Selection of
candidate cluster

head nodes based on
OS-ELM method

Finally the cluster head
node broadcasts the
election message and

necessary information

Select the final
cluster head node

Exchange information
between candidate
cluster head nodes

When the election fails,
the cluster head will

temporarily go to sleep

Sensor node

Sleeping node
Heterogeneous node

rCH

Data collection after
clustering based on the

optimal number of clusters
based on GWO algorithm

Cluster head
Secondary cluster head
Candidate node

Figure 2: Clustering process of data collection algorithm.
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Step 3. Select the training sample X. After deploying the
ordinary nodes and the heterogeneous sensor nodes in the
monitoring area, all the nodes transmit their own infor-
mation, including the remaining energy of the nodes, the
number of neighbor nodes, and the distance between the
cluster head node where they are located, to the sink node.
+e sink node uses the information of these nodes as the
input vector of the neural network of the online sequence
extreme learning machine, which is the current training
sample.

Step 4. Calculate the output result of the forward subnet-
work of the OS-ELM neuron as follows:

yk(0) � V
1
i � f1 􏽘

N

j�1
ω1

ijxj
⎛⎝ ⎞⎠, i � 1, 2, 3, . . . , M. (24)

Step 5. Carry out the iterative process of calculating OS-
ELM as follows:

yk n1 + 1( 􏼁 � V
1
i � f2

· yk n1( 􏼁 − δ􏽘
k≠l

y1
⎛⎝ ⎞⎠, k � 1, 2, 3, . . . , M.

(25)

Step 6. Obtain the output result of OS-ELM. After the
output is completed, go to step 7, otherwise go to step 5 to
continue the calculation, n1 � n1 + 1.

Step 7. +rough calculation and comparison between
neurons, select the largest neuron as the winning neuron,
and then this neuron represents the sensor node selected as
the cluster head node after the OS-ELM learning calculation.

Step 8. Update the sensor node currently selected as the
cluster head node and update the weight of the current
neuron as follows:

ω1
i n1 + 1( 􏼁 � ω1

i (n) + η × Xi(n) − ω1
i (n)􏽨 􏽩. (26)

Step 9. Determine whether the maximum number of iter-
ations is reached; if not, return to step 3 to continue to
calculate the comparison and select again. Otherwise, the
calculation ends.

+e OS-ELM learning method selected in this paper uses
the unsupervised learning method to perform iterative
calculation and training. When the training and calculation
are completed, the cluster head nodes in the monitoring area
are also selected.

5.3. De Formation Stage of Clusters. After selecting the
cluster heads in the first stage, the second stage is the de-
termination of the number of clusters. +e number of
clusters also determines the performance of the network.
Too many clusters will cause frequent communication

between cluster heads and sink nodes to generate greater
energy consumption. If the number of clusters is too small,
multihop transmission between nodes will increase energy
consumption. Considering various factors, an optimal
cluster number method for HWSNs based on the gray wolf
optimization algorithm is proposed in this paper. +is
method avoids too many or too few clusters of HWSNs,
balances the number of clusters in the network, balances
network energy consumption, improves the efficiency of
data collection, and reduces the delay of data transmission.

5.4. Data Transfer between Clusters. After the clustering is
formed, it enters the data transmission stage. When the
heterogeneous sensor nodes are deployed, data collection
starts, and the collected data is sent to the cluster head node
within a specified time. +e cluster head node performs data
fusion and then sends the data to the sink node. After the
data transmission is completed, the node enters the dormant
state, which reduces the energy consumption of the network.

5.5. Stable Operation Stage. In the set time, the cluster head
node receives the data and then sends it to the sink node to
complete the routing transmission between clusters. In the
data collection process, the cluster head is selected according
to the set threshold. If a node has been selected as the cluster
head, it will not participate in the selection in the next round.
After multiple rounds of data collection, the clustered data
collection of HWSNs in the monitoring area is finally
completed.

6. Simulation Comparison and
Result Analysis

6.1. Simulation Environment Settings. In the construction of
the simulation environment, we use MATLAB 2017a soft-
ware to simulate and verify the clustering data collection
strategy of the proposed online sequence extreme learning
machine and gray wolf optimization algorithm. Common
nodes and heterogeneous nodes are randomly deployed in a
500× 500m2 square monitoring area. +e total number of
sensor nodes is set to 200, and the initial energy is set to 1 J.
Common nodes and heterogeneous nodes send 10 data
packets every 1 minute.+e length of the packet is 4,000 bits,
sent to the cluster head, and forwarded to the sink after
fusion processing. +e ELM parameter setting lies in its
network structure, the number of hidden layers, and the
kernel function adopted by the hidden layers. +e initial
number of hidden layer nodes is set to 10; gradually in-
creased with a period of 20, until reaching the value 300; and
chosen hard limit as the hidden layer activation function.
+e gray wolf optimization algorithm parameter settings in
the optimal number of clusters: the gray wolf population is
50; the number of iterations is 400; and the wolf group
control parameters are α1� 0.9 and α2� 0.4.

In order to reflect the performance of the algorithm in
this paper, this paper proposes a data collection method
(OS-ELM+GWO) based on the cluster head selection of the
online sequence extreme learning machine and the gray wolf
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optimization of the optimal number of clusters. Experiments
were compared with SEP data collection protocol, ELM-
based cluster head selection method, ELM-based cluster
head selection, and PSO algorithm optimization optimal
cluster head number data collectionmethod (ELM+PSO) to
verify the superior performance of the proposed algorithm.

6.2. Simulation Comparison and Analysis. +ere are many
indicators that affect the network performance of HWSNs.
+is paper mainly conducts experiments from the clustering
effect of HWSNs, the total energy consumption of the
network, the number of cluster head nodes, the energy
consumption of the cluster head nodes, the number of data
packets received by the sink, network load balancing,
transmission delay, and reliability. +ese indicators can
reflect the superior performance of the algorithm proposed
in this paper.

In order to verify the superior performance of the gray
wolf algorithm, we compare it with the three algorithms of
particle swarm optimization (PSO), ant colony algorithm
(ACO), and the new monarch butterfly algorithm (MBO).
We solve the optimal values of the four functions, and the
expressions of the four functions are shown in Table 1.

+e iterative solution process of the optimal solution of
the five functions is shown in Figure 3.

From the process of finding the optimal solution of the
five functions in Figure 3, it can be seen that with the
progress of iteration, the gray wolf algorithm has the best
performance, the fastest search speed, and the best optimal
solution.

6.2.1. Comparison of Network Clustering Effects. Whether
the network clustering is balanced or not directly affects the
network energy consumption and network life. If the net-
work clustering is large, the nodes need to consume more
energy to transmit data farther. If the clustered area is small,
multihop data transmission between nodes will extend the
data transmission time. +e clustering effect of HWSNs is
shown in Figure 4.

From the four clustering methods in Figure 3, it can be
seen that the data collection and clustering method of the
SEP routing protocol has the largest clustering area, the
distribution between clusters is not uniform, and the
number of member nodes in each cluster is different. +e
ELM-based data collection strategy has a larger cluster size,
and the number of clusters is more uniform. +e data
collection method based on ELM+PSO has a more uniform
clustering area, but the clustering area is larger in individual
places. +ere are also a few clustering areas where there is
only one cluster head node and cluster member node, and
the clustered data and size of the nodes are relatively uni-
form.+e OSELM+GWO data collection method proposed
in this paper has a more uniform clustering area, a more
uniform number of cluster member nodes, and a more
uniform number of clusters. In general, the OSELM+GWO
data collection method proposed in this paper has an ideal
clustering effect.

6.2.2. Energy Consumption Comparison. Network energy
consumption directly affects the performance and work
efficiency of heterogeneous wireless sensor networks. +e
proposed method is compared with the SEP data collection
protocol, the ELM-based cluster head selection method, the
ELM-based cluster head selection, and the PSO algorithm to
optimize the optimal number of cluster heads data collection
method (ELM+PSO). +e energy consumption curve of the
four algorithms is shown in Figure 5.

It can be seen from the energy consumption change
curve that the classical SEP data collectionmethod randomly
selects cluster heads, and the energy consumption is the
largest. +e data collection algorithm based on the ELM
method consumes a lot of energy, and the data collection
method based on ELM+PSO has less energy consumption.
+e OSELM+GWO data collection method proposed in
this paper has the least energy consumption. In terms of 200
polling times, the OSELM+GWO data collection method
proposed in this paper saves 43.7% of the energy con-
sumption of the SEP routing protocol. Compared with the
optimal cluster head data collection algorithm based on the
ELM method, the energy consumption is saved by 31.8%,
and the energy consumption is saved by 20.5% compared
with the ELM+PSO method. On the whole, the
OSELM+GWO data collection method proposed in this
paper has the least energy consumption.

+e comparison of the energy consumption of the three-
dimensional network of the four algorithms is shown in
Figure 6.

6.2.3. Comparison of the Number of Surviving Nodes.
+e number of surviving nodes in the network reflects the
life of the network, which is one of the purposes of network
performance optimization. +e more surviving nodes, the
longer the working time of the network. +e comparison of
the number of surviving nodes in the network of the four
algorithms is shown in Figure 7.

With the increase of simulation polling times, the sur-
vival of HWSNs sensor nodes of the four algorithms
gradually decreases. +is is mainly because the energy
consumption of the network is gradually increasing with the
increase of simulation time. Among them, the data collec-
tion method of the SEP routing protocol has the least
number of surviving nodes, and the number of surviving
nodes has the largest decrease. +e data collection method
based on the ELM method has fewer surviving nodes, and
the data collection method based on ELM+PSO has a
smaller decline in the number of surviving nodes. +e
method proposed in this paper has the largest number of
surviving nodes, the smallest decline, and the longest life
cycle of nodes in the network.

6.2.4. Comparison of the Number of Cluster Heads. In the
HWSNs clustered data collection strategy, the number of
clusters affects the final work efficiency of data collection. If
the number of clusters of HWSNs is small, the cluster area in
the monitoring area is larger; the node transmission distance
is longer; and the long-distance transmission causes an
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Table 1: +e basic information of the test function.

Function Formula Dimension Bounds Optimum
Sphere F1 � 􏽐

d
i�1 x2

i 30 [−100, 100] 0
Step F2 � 􏽐

d
i�1 (|xi+0.5|)2 30 [−100, 100] 0

Quartic F3 � 􏽐
d
i�1 ix4

i + rand(0, 1) 30 [−1.28, 1.28] 0
Alpine F4 � 􏽐

d
i�1 |xisin(xi) + 0.1xi| 30 [−10, 100] 0

Rastrigin F5 � 10 d + 􏽐
d
i�1[x2

i − 10cos(2πxi)] 30 [−5.12, 5.12] 0
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Figure 3: Continued.
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Figure 3: Comparison of convergence curves for function optimization: (a) F1, (b) F2, (c) F3, (d) F4, and (e) F5.
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Figure 4: Schematic diagram of network clustering of HWSNs: (a) SEP, (b) ELM, (c) ELM+PSO, and (d) OSELM+GWO.
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Figure 6: Comparison of energy consumption of three dimensional: (a) SEP, (b) ELM, (c) ELM+PSO, and (d) OSELM+GWO.

Computational Intelligence and Neuroscience 13



increase in energy consumption. If the number of clusters is
large, the nodes are scattered, and multihop data trans-
mission causes data delay, which affects the efficiency of data
collection.+erefore, it is necessary to balance the number of
cluster head nodes and select the number of cluster head
nodes reasonably. +e comparison of the number of cluster
heads of the four algorithms is shown in Figure 8.

+e number of cluster heads of the four algorithms
HWSNs in Figure 8 is relatively balanced and fluctuates little
with the increase of the number of polls. +e number of
cluster head nodes of the SEP data collection strategy
dropped from 25 to about 8, with the largest decline and the
largest fluctuation. +e data collection strategy of the ELM
method has a number of cluster head nodes ranging from 35
to 15, and the decline is also relatively large. +e data
collection strategy based on ELM+PSO has little fluctuation
and is relatively balanced, and the number of cluster heads in
the algorithm proposed in this paper is not much different,
and the number of clusters is also not much different. +is
paper proposes the OSELM+GWO data collection method
to select the number of cluster head nodes to fluctuate
smoothly, keeping it between 20 and 35, and the number of
selected cluster heads is more reasonable.

6.2.5. Comparison of Energy Consumption of Cluster Head
Nodes. +e energy consumption of the cluster head node
also reflects the performance of HWSNs. +e lower the
energy consumption of the cluster head node, the better the
network clustering effect. Otherwise, the energy con-
sumption of the cluster head node will be exhausted in
advance, leading to link failure and network paralysis. +e
change curve of cluster head node energy consumption is
shown in Figure 9.

+e SEP algorithm in Figure 9 is quite different from the
other three methods. +is is mainly because the latter three
algorithms use the extreme learning machine method to
select cluster heads, while the SEP algorithm selects

randomly, which causes the energy consumption of the
cluster head nodes to vary greatly and fluctuates the most.
+e method proposed in this paper has the least energy
consumption and the smallest change range. +e
OSELM+GWO proposed in this paper is much better than
the other three methods in selecting cluster heads and the
number of cluster heads.

6.2.6. De Number of Packets Received by Sink. +e number
of data packets received by sink is a direct manifestation of
the final effect of HWSNs data collection. +e more data
packets are received; it indicates that the optimization
strategy of the proposed data collection method is optimal.
Figure 10 shows the comparison result of data packets re-
ceived by the sink node.
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It can be seen from Figure 10 that the number of data
packets received by the sink node for these four algorithms is
very different. Among them, the SEP routing protocol
method and the ELM-based data collection strategy sink
receive less data packets, while the latter two receive more
data packets. +e latter two algorithms increase the opti-
mization of the number of clusters compared with the
previous two algorithms, which shows that the number of
clusters in the second step has a great impact on the amount
of data packets received by the sink node.+e selection of the
cluster head has little effect on the number of packets re-
ceived by the sink node. From the comparison of the per-
formance of the four algorithms, the number of data packets
received by the sink node based on the ELM+PSO and
OSELM+GWO data collection methods has increased
significantly, and the sink receives the largest number of data
packets, and the method is the best.

6.2.7. Network Load Balancing Analysis. Network load
balance affects network energy consumption and life cycle,
which is an important indicator of HWSNs data collection.
+e load balancing factor (LLBF) of HWSNs refers to the
reciprocal of the variance of all nodes in the monitoring area.
+e larger the value, the better the network load balance.+e
specific calculation formula is shown in the equation:

LLBF �
nc

􏽐
nc

i�1 xi − u( 􏼁
2. (27)

Here, parameter nc represents the total number of sensor
nodes deployed in the monitoring area, parameter xi is the
number of cluster member nodes added to the i-th clustered
area, and parameter u is the average number of cluster
member nodes in all clusters. After several polls, the load
balance has not changed much. We show the network load
balance comparison curve of the four algorithms for the
previous 300 polls as shown in Figure 11.

It can be seen from the comparison in Figure 9 that the
load balance of the classic SEP routing protocol network is
the worst, and the OSELM+GWO data collection strategy
proposed in this paper has a better load balance. +e load
balance based on the ELM data collection method and the
ELM+PSO method lies between the two. +is load bal-
ancing is mainly reflected in 100–300 rounds of iterations
and mainly reflects the impact on network load balance in
the second stage of data collection.

6.2.8. Comparison of Network Transmission Delay. +e
transmission delay is calculated by the time the sink node
receives the data packet, the shorter the better. Assume that
the terminal node sends a data packet to the sink at the time
Ts, and the sink node receives the data packet at the time Tr.
+e data transmission delay formula is as follows:

Ttrans �
1

Nr

􏽘

Nr

i�1
Tri − Tsi( 􏼁. (28)

Here, the parameter Nr is the total number of success-
fully received data packets.+e algorithm has little change in
the network transmission delay in the back, so we give the
network delay comparison of the first 50 polling times as
shown in Figure 12.

From the perspective of the overall network delay in
Figure 12, the average transmission delay of the SEP routing
protocol network is the largest, around 1.1 s. +e trans-
mission delay based on the ELM data collection method is
relatively large, around 0.8 s, and the transmission delay
based on the ELM+PSO data collection strategy is relatively
small, around 0.5 s. +e transmission delay of the proposed
OSELM+GWO data collection strategy network is the
smallest, about 0.3 s on average. It can be seen that the data
collection method proposed in this paper has the shortest
transmission delay.
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6.2.9. Comparison of Network Reliability. +e current net-
work reliability is an important indicator of network per-
formance. +ere are many parameters that affect the
network reliability Rnet, which can be calculated through the
connectivity I1 between the end nodes, the network con-
nectivity rate I2, and the network capacity I3.+e formula for
reliability is as follows:

Rnet � 0.1667I1 + 0.5I2 + 0.3333I3. (29)

+e reliability matrix is calculated according to the
distance between nodes, combined with Monte Carlo
analysis, the connectivity I1 between all end nodes can be
calculated after 400 polls. +e network capacity I3 represents
the survival probability of all nodes, and its value is the ratio
of the number of all surviving nodes to the total number of
nodes in the network. +e network reliability values of the
four algorithms are calculated, and the reliability compar-
ison is shown in Figure 13.

In Figure 13, as the number of polls gradually increases,
the network reliability of the four algorithms is decreasing,
but the magnitude of the decrease is different. +is is
mainly due to the increased energy consumption of nodes,
leading to the death of some nodes, affecting data trans-
mission and affecting network performance. It can also be
seen that the OSELM+GWO data collection method
proposed in this paper has the smallest decrease in network
reliability and the highest network reliability. Taking the
network reliability of 400 polling times as an example, the
data collection algorithm of the SEP routing protocol has
the lowest network reliability, with a value of 0.57. +e
network reliability of ELM-based data collection algo-
rithms is low, with a value of 0.69. +e network reliability
based on the ELM+PSO data collection algorithm is rel-
atively high, and its value is 0.77. +e OSELM+GWO data
collection method proposed in this paper has the highest
network reliability, with a value of 0.88.

In summary, the OSELM+GWOdata collectionmethod
proposed in this paper is compared with the classic SEP
routing protocol, the method of selecting cluster heads based
on ELM, the selection of cluster heads based on ELM, and
the PSO algorithm to optimize the number of cluster heads.
+e OSELM+GWO data collection strategy proposed in
this paper receives the most data packets, the highest data
collection efficiency, the longest lifespan, the lowest energy
consumption, the highest reliability, and the best
performance.

7. Conclusion

+is paper proposed an energy-saving, efficient, and re-
liable clustering data collection method for HWSNs based
on online sequence extreme learning machine and gray
wolf optimization algorithm. +e online sequence extreme
learning machine adaptively learns to select the best cluster
head, avoiding improper selection and frequent selection
of cluster heads, which could cause energy waste. At the
same time, a gray wolf optimization algorithm HWSNs
optimal clustering number method was designed to avoid
too many or too few cluster heads, reduce data trans-
mission delay, and balance network energy consumption.
+e algorithm could balance the clustering effect, reduce
network energy consumption, and increase the number of
surviving nodes under the condition of ensuring the re-
quirements of data delay. On the premise of increasing the
data packets received by the sink node, the network life-
time was prolonged.

+is paper currently focuses on the research on data
collection of heterogeneous wireless sensor networks and
then plans to carry out the research on heterogeneous
mobile wireless sensor networks, as well as the use of the
latest algorithms to study the optimal number of clusters in
heterogeneous sensor networks.

10 15 20 25 30 35 40 45 505
Number of rounds

0

0.5

1

1.5

2

2.5

3

3.5

4

ne
tw

or
k 

tr
an

sfe
r d

el
ay

 (s
)

ELM+PSO
OSELM+GWO

SEP
ELM

Figure 12: Comparison of the transmission delay.

50 100 150 200 250 300 350 4000
Rounds

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

N
et

w
or

k 
re

lia
bi

lit
y

SEP
ELM

OSELM+GWO
ELM+PSO

Figure 13: Comparison of network reliability.

16 Computational Intelligence and Neuroscience



Data Availability

+e data used to support the findings of this study are
available from the corresponding author upon request.

Disclosure

Also, the funders had no role in the design of the study; in
the collection, analyses, or interpretation of data; in the
writing of the manuscript; or in the decision to publish the
results.

Conflicts of Interest

+e authors declare that they have no conflicts of interest
regarding the publication of this paper.

Acknowledgments

+is work was supported in part by the Natural Science
Foundation of Hubei Province under Grant 2020CFB304
and the Educational Science Planning Issue of Hubei
Province under Grant 2020GA057; in part by Wenzhou
Basic Scientific Research Project under Grant R20210030
and the talent introduction project Wenzhou University of
Technology; and in part by Major Scientific and Techno-
logical Innovation Projects of Wenzhou Science and
Technology Plan under Grant ZG2021021 and ZY2019020,
Major Project of Zhejiang Natural Science Foundation
under Grant LD21F020001, and Wenzhou Intelligent Image
Processing and Analysis Key Laboratory Construction
Project under Grant 2021HZSY0071.

References

[1] D. Wohwe Sambo, B. Yenke, A. Förster, and P. Dayang,
“Optimized clustering algorithms for large wireless sensor
networks: a review,” Sensors, vol. 19, no. 2, pp. 322–335, 2019.

[2] Q. Wang, D. Lin, P. Yang, and Z. Zhang, “An energy-efficient
compressive sensing-based clustering routing protocol for
WSNs,” IEEE Sensors Journal, vol. 19, no. 10, pp. 3950–3960,
2019.

[3] D. Lin and Q. Wang, “A game theory based energy efficient
clustering routing protocol for WSNs,” Wireless Networks,
vol. 23, no. 4, pp. 1101–1111, 2017.

[4] L. Cao, Y. Yue, Y. Cai, and Y. Zhang, “A novel coverage
optimization strategy for heterogeneous wireless sensor
networks based on connectivity and reliability,” IEEE Access,
vol. 9, Article ID 18424, 2021.

[5] D. Lin and Q. Wang, “An energy-efficient clustering algo-
rithm combined game theory and dual-cluster-head mecha-
nism for WSNs,” IEEE Access, vol. 7, no. 1, Article ID 49894,
2019.

[6] D. Lin, Q. Wang, W. Min, J. Xu, and Z. Zhang, “A survey on
energy-efficient strategies in static wireless sensor networks,”
ACM Transactions on Sensor Networks, vol. 17, no. 1, pp. 1–48,
2020.

[7] D. Lin, W. Min, and J. Xu, “An energy-saving routing inte-
grated economic theory with compressive sensing to extend
the lifespan of WSNs,” IEEE Internet of Dings Journal, vol. 7,
no. 8, pp. 7636–7647, 2020.

[8] L. Xu, X. Yu, and T. A. Gulliver, “Intelligent outage proba-
bility prediction for mobile IoTnetworks based on an IGWO-
elman neural network,” IEEE Transactions on Vehicular
Technology, vol. 70, no. 2, pp. 1365–1375, 2021.

[9] V. Srividhya and T. Shankar, “Energy proficient clustering
technique for lifetime enhancement of cognitive radio–based
heterogeneous wireless sensor network,” International Jour-
nal of Distributed Sensor Networks, vol. 14, no. 3, 2018.

[10] R. M. Al-Kiyumi, C. H. Foh, S. Vural, P. Chatzimisios, and
R. Tafazolli, “Fuzzy logic-based routing algorithm for lifetime
enhancement in heterogeneous wireless sensor networks,”
IEEE Transactions on Green Communications and Network-
ing, vol. 2, no. 2, pp. 517–532, 2018.

[11] S. Dutt, S. Agrawal, and R. Vig, “Cluster-head restricted
energy efficient protocol (CREEP) for routing in heteroge-
neous wireless sensor networks,” Wireless Personal Com-
munications, vol. 100, no. 4, pp. 1477–1497, 2018.

[12] S. Verma, N. Sood, and A. K. Sharma, “Genetic algorithm-
based optimized cluster head selection for single and multiple
data sinks in heterogeneous wireless sensor network,” Applied
Soft Computing, vol. 85, no. 12, Article ID 105788, 2019.

[13] C. Sha, D. Song, R. Yang, H. Gao, and H. Huang, “A type of
energy-balanced tree based data collection strategy for sensor
network with mobile sink,” IEEE Access, vol. 7, no. 6, Article
ID 85226, 2019.

[14] K. Nitesh, M. Azharuddin, and P. Jana, “Minimum spanning
tree–based delay-aware mobile sink traversal in wireless
sensor networks,” International Journal of Communication
Systems, vol. 30, no. 13, pp. 3270–3283, 2017.

[15] A. Gowda, “An energy efficient data-collection cluster-tree-
based routing protocol for small and large mobile wireless
sensor network,” International Journal of Applied Research on
Information Technology and Computing, vol. 7, no. 2,
pp. 140–145, 2016.

[16] J. Wang, Y. Gao, X. Yin, F. Li, and H.-J. Kim, “An enhanced
PEGASIS algorithm with mobile sink support for wireless
sensor networks,” Wireless Communications and Mobile
Computing, vol. 2018, Article ID 9472075, 9 pages, 2018.

[17] S. Sasirekha and S. Swamynathan, “Cluster-chain mobile
agent routing algorithm for efficient data aggregation in
wireless sensor network,” Journal of Communications and
Networks, vol. 19, no. 4, pp. 392–401, 2017.

[18] J. Qiao and X. Zhang, “Polar coordinate-based energy-effi-
cient-chain routing in wireless sensor networks using random
projection,” IEEE Access, vol. 6, no. 4, Article ID 21275, 2018.

[19] M. R. Dhage and S. Vemuru, “Routing design issues in
heterogeneous wireless sensor network,” International Jour-
nal of Electrical and Computer Engineering, vol. 8, no. 2,
pp. 1028–1043, 2018.

[20] R. A. Wagan, K. Wei, A. Sajid, and A. A. Wagan, “A review:
threshold based clustering schemes of routing protocols for
heterogeneous wireless sensor networks,” International
Journal of Computer Science Network Security, vol. 18, no. 10,
pp. 120–129, 2018.

[21] C. Li, J. Bai, J. Gu, X. Yan, and Y. Luo, “Clustering routing
based on mixed integer programming for heterogeneous
wireless sensor networks,” Ad Hoc Networks, vol. 72, no. 5,
pp. 81–90, 2018.

[22] L. Yang, Y.-Z. Lu, Y.-C. Zhong, and S. X. Yang, “An unequal
cluster-based routing scheme for multi-level heterogeneous
wireless sensor networks,” Telecommunication Systems,
vol. 68, no. 1, pp. 11–26, 2018.

[23] B. Yadav, S. Ch, S. Mathur, and J. Adamowski, “Discharge
forecasting using an online sequential extreme learning

Computational Intelligence and Neuroscience 17



machine (OS-ELM) model: a case study in Neckar River,
Germany,” Measurement, vol. 92, no. 10, pp. 433–445, 2016.

[24] M. Sahani and P. K. Dash, “Variational mode decomposition
and weighted online sequential extreme learning machine for
power quality event patterns recognition,” Neurocomputing,
vol. 310, no. 10, pp. 10–27, 2018.

[25] Y. Li, S. Zhang, Y. Yin, W. Xiao, and J. Zhang, “A novel online
sequential extreme learning machine for gas utilization ratio
prediction in blast furnaces,” Sensors, vol. 17, no. 8, p. 1847,
2017.

[26] M. Ali, R. C. Deo, N. J. Downs, and T. Maraseni, “Multi-stage
hybridized online sequential extreme learning machine in-
tegrated with Markov chain Monte Carlo copula-bat algo-
rithm for rainfall forecasting,” Atmospheric Research, vol. 213,
no. 11, pp. 450–464, 2018.

[27] S. Shukla and B. S. Raghuwanshi, “Online sequential class-
specific extreme learning machine for binary imbalanced
learning,” Neural Networks, vol. 119, no. 11, pp. 235–248,
2019.

[28] Z.-J. Teng, J.-L. Lv, and L.-W. Guo, “An improved hybrid grey
wolf optimization algorithm,” Soft Computing, vol. 23, no. 15,
pp. 6617–6631, 2019.

[29] R. A. Ibrahim, M. A. Elaziz, and S. Lu, “Chaotic opposition-
based grey-wolf optimization algorithm based on differential
evolution and disruption operator for global optimization,”
Expert Systems with Applications, vol. 108, no. 10, pp. 1–27,
2018.

[30] E. Daniel, “Optimum wavelet-based homomorphic medical
image fusion using hybrid genetic-grey wolf optimization
algorithm,” IEEE Sensors Journal, vol. 18, no. 16,
pp. 6804–6811, 2018.

[31] P. G. V. Naranjo, M. Shojafar, H.Mostafaei, Z. Pooranian, and
E. Baccarelli, “P-SEP: a prolong stable election routing al-
gorithm for energy-limited heterogeneous fog-supported
wireless sensor networks,” De Journal of Supercomputing,
vol. 73, no. 2, pp. 733–755, 2017.

18 Computational Intelligence and Neuroscience


