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A B S T R A C T   

The COVID-19 pandemic has raised international awareness of the importance of rigorous scientific evidence and 
the havoc caused by uncontrolled excessive inflammation. Here we consider the evidence on whether the 
specialized pro-resolving mediators (SPMs) are ready to meet this challenge as well as targeted metab-
ololipidomics of the resolution-inflammation metabolomes. Specific stereochemical mechanisms in the biosyn-
thesis of SPMs from omega-3 essential fatty acids give rise to unique local-acting lipid mediators. SPMs possess 
stereochemically defined potent bioactive structures that are high-affinity ligands for cognate G protein-coupled 
surface receptors that evoke the cellular responses required for efficient resolution of acute inflammation. The 
SPMs biosynthesized from the major omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid 
(DHA) are coined Resolvins (resolution phase interaction products; E series and D-series), Protectins and Mar-
esins (macrophage mediators in resolving inflammation). Their biosynthesis and stereochemical assignments are 
established and confirmed (>1,441 resolvin publications in PubMed.gov) as well as their functional roles on 
innate immune cells and adaptive immune cells (both lymphocyte T-cell subsets and B-cells). The resolution of a 
protective acute inflammatory response is governed mainly by phagocytes that actively clear apoptotic cells, 
debris, blood clots and pathogens. These resolution phase functions of the acute inflammatory response are 
enhanced by SPMs, which together prepare the inflammatory loci for homeostasis and stimulate tissue regen-
eration via activating stem cells and the biosynthesis of novel cys-SPMs (e.g. MCTRs, PCTRs and RCTRs). These 
cys-SPMs also activate regeneration, are organ protective and stimulate resolution of local inflammation. Herein, 
we review the biosynthesis and functions of the E-series resolvins, namely resolvin E1 (the first n-3 resolvin 
identified), resolvin E2, resolvin E3 and resolvin E4 biosynthesized from their precursor eicosapentaenoic acid 
(EPA), and the critical role of total organic synthesis in confirming SPM complete stereochemistry, establishing 
their potent functions in resolution of inflammation, and novel structures. The physical properties of each bio-
logically derived SPM, i.e., ultra-violet (UV) absorbance, chromatographic behavior, and tandem mass spec-
trometry (MS2) fragmentation, were matched to SPMs biosynthesized and prepared by stereospecific total 
organic synthesis. We briefly review this approach, also used with the endogenous D-series resolvins, protectins 
and maresins confirming their potent functions in resolution of inflammation, that paves the way for their 
rigorous evaluation in human tissues and clinical trials. The assignment of complete stereochemistry for each of 
the E and D series Resolvins, Protectins and Maresins was a critical and required step that enabled human clinical 
studies as in SPM profiling in COVID-19 infections and experimental animal disease models that also opened the 
promise of resolution physiology, resolution pharmacology and targeted precision nutrition as new areas for 
monitoring health and disease mechanisms.   
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1. Introduction 

The current pandemic and COVID-19 infections have painfully 
underscored the important contribution of excessive, uncontrolled 
inflammation and collateral tissue damage to disease pathology that can 
amplify inflammation and lead to untimely death of patients [1,2]. The 
acute inflammatory response is an essential and temporal process 
evoked in the host defense of infection as well as by tissue injury that 
normally is self-limited and resolves to return to tissue homeostasis on 
its own [3,4]. In the acute inflammatory response, human phagocytes, 
both neutrophils and macrophages, play central roles in host defense 
and produce endogenous lipid mediators (LMs), e.g. eicosanoids such as 
prostaglandins and leukotrienes, that are potent pro-inflammatory me-
diators critical to host defense [5,6].The acute inflammatory response is 
functionally characterized in two separate and discrete phases, the 
initiation phase (Fig. 1A) and resolution phase [7–9]. Mediators such as 
complement components, chemokines and cytokines have well appre-
ciated roles in the initiation phase of the acute inflammatory response 
summoning neutrophils to the local site(s) of invasion or tissue injury 
[10] as do lipid mediators derived from the precursor arachidonic acid 
[6,7]. In the initiation phase, prostaglandins such as PGE2 regulate the 
cardinal signs of inflammation: local capillary blood flow, heat, swelling 
and pain [7]. At sites of inflammation-resolution, physiologic hypoxia is 
transient in the local milieu that was modeled and played a triggering 
role in our original studies [7,8] on the biosynthesis and functions of the 
resolvins (vide infra). In our studies on the resolution phase of acute 
inflammation in self-limited or self-resolving acute inflammation [7], 
infection [11], and collateral organ damage [4], a novel superfamily of 
potent endogenous LMs emerged, which one of the authors coined 
specialized pro-resolving mediators (SPMs: resolvins, maresins, pro-
tectins and lipoxins, derived from the major essential omega-3 poly-
unsaturated fatty acids docosahexaenoic acid (DHA) and 
eicosapentaenoic acid (EPA) that were first uncovered in mouse 
resolving inflammatory exudates), given the potent and special func-
tions in vivo of this superfamily of mediators [7]. These inflammatory 
exudates (i.e., pus) were temporally interrogated along the time course 
and were comprised of a mixture of leukocytes recruited in vivo to form 
the exudates [8,12,13]. Each family of mediators was named given their 
potent bioactivity and unique structures [7,8,14,15]. The biosynthesis of 
the SPMs was investigated in detail and confirmed with isolated human 
leukocytes. SPMs play a fundamental role in the resolution of acute 
inflammation by governing the temporal and spatial regulation of 
neutrophil traffic and down regulation of the pro-inflammatory media-
tors, e.g., eicosanoids, cytokines, and chemokines [7]. By their defined 
criteria as a pro-resolving molecule as originally proposed [7,8], each 
SPM specifically limits further neutrophil infiltration to the site and 
enhances the clearance of apoptotic cells by macrophages, reduces both 
cytokine and eicosanoid storms, reduces pain (Fig. 1A) and shortens the 
resolution interval in vivo [4,7,12,16]. Macrophages play a central 
function in the resolution phase of inflammation by actively clearing 
dead cell debris, apoptotic neutrophil cells [16] and biosynthesizing 
distinct families of LMs that are dependent on the macrophage pheno-
type [17,18]; see Fig. 1. The mediators biosynthesized by macrophages 
are either pro-inflammatory or anti-inflammatory-pro-resolving 
depending on the specific macrophage agonists and the availability of 
the required precursor [18,19]. In this context, human macrophages 
incubated with the high-mobility group box 1 protein (HMGB1) stimu-
late the production of pro-inflammatory cytokines and leukotrienes, 
whereas the high-mobility group box 1 protein (HMGBI) exposed 
together with the complement component 1q (C1q) switches these 
macrophages to produce SPMs [20]. Apoptotic PMN, M2 macrophages 
and microglial cells are major human cell types that produce and release 
SPMs [17,18] (Fig. 1B). Human PMN also biosynthesize resolvins via 
transcellular biosynthesis routes when interacting with vascular endo-
thelial cells or mucosal epithelial cells (e.g., lung airway, gastrointestinal 
tract) [8,13,21,22]. 

2. SPMs in COVID-19 infections and other human studies 

The stereochemical assignments of each of the SPMs originally re-
ported by the Serhan Lab (reviewed herein) permitted SPM identifica-
tion by other research teams in COVID-19 patients (Table 1) along with 
eicosanoids, i.e., prostaglandins and leukotriene [23–26]. New rigorous 
LC-MS-MS-based profiling methods introduced using synthetic SPM 
[27], internal standards (for some of the original publications, see Refs. 
[28–30]) helped to establish criteria for endogenous production and 
identification of resolvins in tissues enabling the recent publications 
from independent laboratories with human subjects providing results 
(Table 1) suggesting that, in COVID-19 infections, endogenous SPM 
production is dysregulated in vivo during these viral infections [23,31]. 
Each of these studies used LC-MS-MS-based identification enabled by the 
availability of synthetic SPMs and deuterium-labeled internal standards 
that were first introduced by the Serhan laboratory (reviewed in 
Ref. [27]). SPMs are now commercially available from several sources 
based on our original studies determining the stereochemical assign-
ments of each SPM with human leukocyte, mouse exudates and tissues 
reviewed here and accomplished with support from NIH Program 
Project grant P01GM095467 to the CN Serhan research team. 

In most COVID-19 infection studies, there appears to be an excess of 
proinflammatory lipid mediators PGs and LTB4 with diminished 
amounts of SPMs compared to peripheral blood of control subjects 
(Table 1). The increase in pro-inflammatory eicosanoids may drive as 
well as amplify the uncontrolled cytokine storms and excessive lung 
inflammation that possibly reflect systemic inflammation characteristic 
of COVID-19 infections [32,33]. In one published study analyzing 
bronchial alveolar lavage fluids from COVID-19 patients, in addition to 
eicosanoids such as leukotrienes and prostaglandins, the COVID-19 lung 
lavages (Table 1) contained high amounts of resolvins and lipoxins [23]. 
Given the potent pro-resolving functions of these SPMs, it appears that in 
this study endogenous SPM produced in vivo that appear in BAL were 
functionally unable to counteract the excessive pro-inflammatory 
phenotype in COVID lung infections and/or were unable to engage 
leukocytes to activate the endogenous resolution response needed in 
these patients. Much still needs to be learned about the potential role of 
specific SPMs in COVID-19 infections during the time course of human 
infection and disease. Recent in vitro studies demonstrated that both 
Resolvin D1 and Resolvin D2 each are potent in reducing human 
macrophage production of pro-inflammatory cytokines and chemokines 
in response to the virus spike protein [34]. It is appropriate to emphasize 
that these early fundamental studies are vital to understanding the 
pathogenesis of COVID-19 infections and the potential role of lipid 
mediators that could give useful new directions for treatments of 
COVID-19, long COVID and in lasting immunity. These new findings 
(Table 1) and many other human studies for SPMs from international 
experts [35–55] would not have been possible without the i) complete 
stereochemical assignments of each of the potent bioactive SPMs pro-
duced by human and mouse leukocytes, ii) their biosynthesis from n-3 
essential fatty acids (EPA and DHA) and iii) total organic synthesis with 
rigorous matching studies with endogenous SPMs along with our dedi-
cated and talented organic chemistry collaborators summarized herein. 
In this relatively new SPM field, the Serhan lab has collaborated for 
many years with Professor Nicos Petasis and colleagues as part of the 
total synthesis core of our NIH-supported Program Project grant 
P01GM095467, Professor Trond Hansen and team in Oslo, Norway [56], 
Professor Bernd Spur and Anna Rodriguez [57–59], and the organic 
synthesis group at Cayman Chemical; for examples, see the custom 
synthesis of benzo-RvD1 analog mimetic [60] and the new RvE4 [61]. 

Importantly, the many other elegant human studies on SPMs would 
not have been possible without reliance on the complete stereochemi-
cally defined synthetic SPMs and their internal standards for LC-MS-MS- 
based analyses with adult tissues [35–55] and adolescent human pe-
ripheral blood samples [38] as well as their scale-up for commercial 
availability [62]. A recent clinical trial reported that local topical 
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treatment of gingival inflammation with a proresolving lipoxin/resolvin 
stable analog is safe and effective as well as activated endogenous pro-
duction of SPMs present in peripheral blood [63]. A new generation of 
lipoxin stable analog mimetics introduced by investigators in Dublin 
hold exceptional promise for novel pro-resolving treatments in 
inflammation-resolution for kidney diseases and the many diabetic 
complications [64–66]. They demonstrated with analyses of nasal la-
vages that SPMs, e.g., RvD2, are dysregulated in human rhinosinusitis. 
This may be an indication where treatment with a pro-resolving mole-
cule can be a useful new treatment approach [67]. 

3. E series Resolvins (resolution phase interaction products) and 
new bioactive members: stereochemistry 

In the original studies from the Serhan lab, eicosapentaenoic acid 
(EPA) was found to be the obligatory precursor to the first resolvins, 
namely resolvin E1 [21] and the E-series resolvins biosynthesis [8]. 
Resolvin E1 is produced via transcellular biosynthesis with interactions 
between human neutrophil (PMN) and hypoxic vascular endothelial 
cells that release 18-HEPE, which is converted to the bioactive resolvin 
E1 [21] (Fig. 2). The therapeutic uses of EPA in cardiovascular medicine 
and health are still heatedly debated [68] even today, 50 years after the 
landmark Greenland study and publication clearly pointing to reduced 
cardiovascular disease in the indigenous population study participants 

and their marine-based nutrition [69]. Prescription omega-3 fatty acids 
are used clinically to reduce triglycerides in patients. Employing Icosa-
pent ethyl ester of EPA, a human clinical trial with hundreds of subjects 
enrolled showed a statistically significant reduction in risk of cardio-
vascular disease (CVD) [70]. The omega-3 essential fatty acids are also 
being considered in COVID-19 patients with cardiovascular complica-
tions as additional therapies in these patients [71]. These are significant 
advancements for the field of omega-3-based therapeutics given the 
worldwide unmet medical needs of our times. The mechanism(s) of EPA 
efficacy in reducing cardiovascular disease remains to be determined 
and is an ongoing interest of many investigators along with the potential 
role of the EPA resolution metabolome in the resolution of inflammation 
in human disease including COVID-19 infections (Table 1). 

In our original experiments, we found that hypoxic human vascular 
endothelial cells converted EPA to a novel 18-hydroxyeicosapentaenoic 
acid (18-HEPE) that is released from the cells and is precursor for 
transcellular biosynthesis of resolvin E1 (RvE1) [8,21]. The complete 
stereochemistry of resolvin E1 was determined, 5S,12R,18R-trihy-
droxy-6Z,8E,10E,14Z,16E-eicosapentaenoic acid, and its proposed 
structure and potent bioactions [21] were confirmed with materials 
prepared by total organic synthesis [21,72]. These matched the products 
from human neutrophils produced during coincubations with hypoxic 
endothelial cells and in mouse resolving exudates, given the vast surface 
area of the vascular endothelium and vessels in vivo and high number of 
circulating PMN that roll on the endothelial surface in vivo from head to 
toe [73]. This is a considerably massive cellular architecture in vivo for 
cell-cell interactions and transcellular biosynthesis of several SPMs [73, 
74], interactions that can also stimulate resolvin biosynthesis from EPA 
on command to function on surrounding blood cells [75]. RvE1 is pro-
duced via transcellular biosynthesis with human neutrophils via acety-
lated cyclooxygenase-2 (COX-2) [21] or the microbial cytochrome P450 
[76]. The RvE1 produced via co-incubations of human cells matched the 
properties of the product found in mouse resolving inflammatory exu-
dates and its bioactivity in blocking transmigration and the binding of 
LTB4 to its receptor BLT1 [21]. 

The 18-HEPE released from endothelial cells is converted by the 
human neutrophil 5-LOX to a 5(6)-epoxide-containing intermediate that 
was identified by trapping experiments and analyses of the products 
using both GC–MS and LC-MS-MS as well as derivatives. This 5(6)- 
epoxide intermediate is converted to RvE1 via the LTA4 hydrolase 
(LTA4H) in human neutrophils (see Figs. 3 and 4). This step of the RvE1 
biosynthesis was confirmed with human recombinant LTA4 hydrolase 
[77,78]. Chiral LC-MS-MS analyses were also carried out with the RvE1 
biosynthesis pathway with human leukocytes as well as functional 
studies with 18S-RvE1 compared directly with RvE1, where both iso-
mers proved to be equally potent with human cells and in vivo in mice 
promoting resolution [77]. Of interest, the 18S-RvE1 isomer is more 
rapidly inactivated via metabolic conversion than RvE1 given the ster-
eoselectivity of the dehydrogenase [77], which may underlie the finding 

Fig. 1. Schematic illustration of the acute inflammatory response with the strategic positions of lipid mediators in this local protective response. 
Panel A: Initiation of the acute inflammatory response ideally proceeds to complete resolution and homeostasis. Edema, regulated by PGE2 in seconds to minutes, 
enables neutrophil tissue/exudate influx by chemotaxis to the arachidonic-acid-derived leukotriene B4 (LTB4). The prostaglandins PGE2 and PGD2 activate the lipid 
mediator class switch [13], triggering the increase in 15-lipoxygenase [211] that leads to production of lipoxins starting the decrease in neutrophil numbers in the 
inflammatory exudate and beginning the resolution phase and biosynthesis of resolvins [8,21], protectins, and maresins (the SPM), which carry functions critical to 
timely resolution and homeostasis [4]. These include limiting further PMN recruitment to the site and the uptake and removal of apoptotic PMN and cell debris by 
macrophages. The resolvins down regulate and counteract the cytokines, chemokines, and eicosanoids, e.g., prostaglandins and leukotrienes, the pro-inflammatory 
signals produced via inflammasomes, and NF-κB are reduced and cellular adhesion molecules C11b/CD18 are also downregulated. The production of protectins and 
maresins from DHA is organ protective and activates tissue regeneration as needed to repair the injured site for homeostasis (see text for further details). Adenosine 
blocks the biosynthesis of SPMs from omega-3 fatty acids [194], illustrating that there are many checkpoint regulators involved in the resolution of the acute in-
flammatory response and the resolution of this complex leukocyte trafficking event that is critical to host defense, elimination of invading bacteria, and survival. Each 
SPM reduces proinflammatory mediator production and expression as well as enhances PMN and macrophage-mediated bacterial phagocytosis and killing. 
Panel B: SPM-producing cell types. Apoptotic PMN, brain microglial cells and M2 macrophages biosynthesize SPM from the single cell type, while intact neutrophil 
and vascular endothelial cells biosynthesize SPM via transcellular biosynthesis (see text for details and original references; for example, see Fig. 3). Eosinophils are a 
source of SPM, lipoxins, and protectins and are rich in 15-lipoxygenase [209,212], giving a new role for these cells in resolution and wound healing via their 
production of SPM. 

Table 1 
Resolvins*, SPMs and Eicosanoids in Human Subjects with COVID-19 Infections.  

Reference Findings Source 

Schwarz et al. 
[31] 

Dysregulation of eicosanoids increases 
5-lipoxygenase, leukotriene, 
prostaglandins, EETs, specific resolvins 
in severe illness, decreases 12-LOX 
(ALOX12) and COX-2; immune lipid 
mediator metabolome imbalance in 
severe COVID-19 

Serum 

Archambault 
et al. [23] 

Predominance of prostaglandins, 
thromboxane, LTB4 and leukotrienes; 
increased lipoxin A4 and D-series 
resolvins 

Bronchoalveolar 
lavages (BAL) 

Proinflammatory eicosanoids and 
SPMs were elevated in COVID-19 BAL 

Koenis et al. 
[25] 

Disrupted resolution and altered 
phagocyte responses Plasma 
SPM and eicosanoids identified 

Turnbull et al. 
[26] 

SPM and eicosanoid metabolomes 
identified in critically ill COVID-19 
showing dysregulation during infection 

Serum 

Arnardottir et al. 
[195] 

Omega-3 in resolution of COVID-19; 
randomized clinical trial COVID-Omega-F  

* The potential for resolvins and other SPMs as new therapeutic approaches in 
the resolution of inflammation was recognized early by inflammation experts 
[196] from the time of their initial discovery; see [197]. 
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that RvE1 (which carries its carbon 18 position alcohol in the 18R 
configuration) is identified in vivo using MS3 with human plasma [72] 
and in other human studies (vide infra). 

The biosynthesis of RvE1 [21] from EPA (Figs. 2–4) also yields in this 
pathway the bioactive resolvin E2 structure 5S,18R-dihydroxy-6E,8Z, 
11Z,14Z,16E-eicosapentaenoic acid [77,78]; each possesses potent 
anti-inflammatory-pro-resolving actions. RvE2 is also produced with 
hypoxic endothelial cells on incubation with human neutrophils [78], 
and both RvE1 and RvE2 each stereoselectively activate the receptor 
ChemR23, a G-protein coupled surface receptor [72,77–79]. 
Anti-ChemR23 (i.e., resolvin E1 receptor) antibodies that activate this 
RvE1 receptor as an agonist stimulate resolution of inflammation and 
reduce the cancer burden in mice [79], as does Resolvin E1 and protectin 
D1 in the activation of endogenous resolution programs in vivo [80] in 
mice and resolvin E1 in rabbits [81], which demonstrates the potential 
for resolution pharmacology with agonists to control excess inflamma-
tion. This principle was also demonstrated (Fig. 5) with metabolically 
stable analogs prepared for RvE1, 19-phenoxy-parafluoro-RvE1 [82]. 
The discovery of agonist antibodies for the proresolving receptors that 
activate endogenous resolution programs [79] is a very exciting new 
addition to the potential novel therapeutic approaches to control 
excessive inflammation and cancer. 

Resolvin E3 was the next bioactive mediator to join the E-series of 
resolvins, discovered by Professor Makoto Arita and his colleagues in 
Japan. Resolvin E3 proved to have the complete stereochemistry 
17R,18R-dihydroxyicosa-5Z,8Z,11Z,13E,15E-eicosapentaenoic acid, 
containing a vicinal diol that potently blocks neutrophil migration and is 
biosynthesized via the actions of 15-lipoxygenase and confirmed by total 

organic synthesis [83]. RvE3 is identified in human tissues in vivo, for 
example in arthritic exudates [46]. The resolvin E1 and RvE2 precursor, 
18-HEPE, is a major product of EPA identified in humans in vivo 
(Table 1) that also carries its own bioactivity with potent actions on 
cardiovascular tissues [84]. 

Recently, we encountered [85] and elucidated the complete struc-
ture [61] of a new bioactive member of the EPA–derived E-series 
resolvins termed Resolvin E4 (RvE4) given its potent actions and in vivo 
production. The stereochemistry of RvE4 was deduced and the 
double-bond geometry proposed based on the activity of 15-lipoxyge-
nase (15-LOX) with EPA via double lipoxygenation to produce the 
potent bioactive molecule 5S,15S-dihydroxy-6E,8Z,11Z,13E,17Z-eico-
sapentaenoic acid. RvE4 is produced in physiologic hypoxia by human 
neutrophils and macrophages. Given that RvE4 proved to be a potent 
agonist for efferocytosis of both senescent erythrocytes (sRBCs) and 
apoptotic neutrophils, it is classified as having resolving functions, and 
with EPA as the precursor and backbone we grouped it with the E-series 
resolvin members. This novel bioactive structure was accordingly 
named RvE4 because it increases the resolution of hemorrhagic exudate 
in vivo in mice [85]. 

The proposed biosynthesis of RvE4 was recently independently 
confirmed with purified recombinant human enzymes using 5-lipoxyge-
nase (5-LOX) and 15-LOX with substrate EPA in vitro [86]. We establish 
the complete stereochemistry of RvE4 and its potent functions with 
isolated human macrophage-mediated efferocytosis employing results 
from detailed matching experiments [61]. To assign the complete ste-
reochemistry of RvE4 as well as determine whether synthetic RvE4 
shares reported physical and biological functions [85], it was deemed 

Fig. 2. Schematic illustration of the transcellular and single cell biosynthesis and functions of the E-series Resolvins in efferocytosis, phagocytosis and 
limiting further PMN infiltration. The transcellular biosynthesis of E-series resolvins involves hypoxic vascular endothelial cells and neutrophils. Physiologic 
hypoxia activates the conversion of EPA by COX-2 and the upregulation of this enzyme [8,21]. Each SPM limits further PMN recruitment by blocking diapedesis. 
RvE1 and RvE2 activate specific GPCRs such as ERV1, ChemR23 and BLT1 [72,213]. 
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essential to establish the physical properties of the newly synthesized 
RvE4 [87]. 

The structure and stereochemistry of synthetic RvE4 were deter-
mined using total organic synthesis from chiral starting materials of 
known stereochemistry as well as stereocontrolled chemical reactions. 
This approach was successfully used with each of the potent bioactive 
SPMs. Synthetic RvE4 was directly compared to the target RvE4 struc-
ture that was deduced earlier using the isolated and well-studied 15-lip-
oxygenase (LOX) enzyme that inserts molecular oxygen into 1,4-cis- 
pentadienes predominantly in the S configuration [85]. Co-injections 
of biogenic RvE4 with synthetic RvE4 confirmed their identical chro-
matographic behavior. MS/MS analysis indicated that co-injection gave 
identical fragmentation with parent ion m/z 333 = M-H and daughter 
ions at m/z 315 = M-H-H2O, m/z 271 = M-H-H2O-CO2, m/z 253 =
M-H-2H2O-CO2, m/z 217 = 235-H2O, m/z 199 = 217-H2O, and m/z 173 
= 235-H2O-CO2 essentially identical to that obtained in [61,85,87]. 

Neutrophils are often the first leukocytes to infiltrate an inflamma-
tory site, recruited from post-capillary venules in large numbers, and 
therefore their effective removal from the inflammatory site following 
neuralization of invading microbes is a prerequisite for the resolution of 
inflammation and return to tissue homeostasis [7,16,88,89]. SPMs, 
including RvE4, enhance macrophage efferocytosis of apoptotic neu-
trophils in vitro and in vivo with both human cells and in murine models 
of inflammation [7,85]. RvE4 enhanced efferocytosis of sRBCs by M2 
macrophages confirming the function of endogenous RvE4 [61]. From 
results of matching studies using LC-MS-MS, co-elution in LC and frag-
mentation, UV spectrum absorbance and biological actions, we assigned 

the complete double-bond geometry of RvE4, namely 5S,15S-dihy-
droxy-6E,8Z,11Z,13E,17Z-eicosapentaenoic acid [61,85,87]. Hence, the 
synthetic RvE4 now commercially available is suitable for use as both a 
standard for LC-MS-MS-based mediator lipidomics and for further 
functional investigations. In line with this and of interest, endogenous 
human RvE4 has already been identified in human cerebrospinal fluid 
indicating its production in vivo in human tissue [90] and is present in 
plasma obtained from COVID-19 patients [26]. 

RvE4 was first uncovered from physiological hypoxic triggered 
biosynthesis of EPA, via lipoxygenation, by human macrophages and 
neutrophils exposed to stimuli [85]. M2 macrophages play critical roles 
in the resolution of inflammation by virtue of their capacity to carry out 
efferocytosis [7,16], wound repair [7,91], and production of SPMs [18]. 
RvE4 proved to be a potent agonist of M2 macrophage efferocytosis of 
neutrophils: EC50 ~0.23 nM and an EC50 ~0.29 nM for efferocytosis of 
sRBCs [61]. In human macrophages and neutrophils, RvE4 biosynthesis 
is solely dependent on the substrate availability, where we found that 
EPA is released from both phospholipids and triglycerides [85]. EPA is 
converted by 15-LOX to 15S-HpEPE, which becomes a substrate for 
further lipoxygenation by either 5-LOX or a second enzymatic turn of 
15-LOX to produce 15S-hydroxy-5S-HpEPE; this is further reduced to 
RvE4 (Figs. 3 and 4). This route of RvE4 biosynthesis by human 
phagocytes was subsequently also confirmed by Kutzner et al. using 
recombinant human 5- and 15-LOX co-incubations in vitro [86]. EPA is 
converted by the wild type and recombinant engineered lipoxygenases 
to double dioxygenation products including RvE4 on a larger synthesis 
scale [92]. It is likely that the lipoxygenation of EPA is initiated via 

Fig. 3. Proposed Biosynthesis of the E-series Resolvins. 
18R-HEPE produced from unesterified EPA via acetylated or modified COX-2 as well as p450 [21] is next converted by leukocyte 5-lipoxygenase to the intermediate 
5S-hydroperoxy-18R-HEPE, which is either reduced to RvE2 or converted to the epoxide intermediate 5S,6S-epoxy-18R-HEPE to produce RvE1 [77] to carry out their 
specific functions listed above; see text for details. RvE1 (5S,12R,18R-trihydroxy-6Z,8E,10E,14Z,16E-eicosapentaenoic acid) [8,21,72]. EPA is also a substrate for 
lipoxygenation by 15-LOX to produce RvE3 (17R,18R-dihydroxy-5Z,8Z,11Z,13E,15E-eicosapentaenoic acid) [83]. Stereochemistry and proposed biosynthetic route 
of RvE4 are confirmed as well as RvE4’s potent actions and functions in vivo [61,87]. 
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hydrogen abstraction at carbon position C7 by 5-LOX to biosynthesize 
RvE4 in human neutrophils and/or via transcellular biosynthesis [21, 
93] as depicted in the cellular interactions in Fig. 2 illustration. 

Earlier results demonstrated conversion of EPA to 15R-HEPE via 
acetylated COX-2 [21,76]; hence it is likely that this product can be a 
substrate for lipoxygenation by 5-LOX that can lead to further conver-
sion to the corresponding alcohol giving rise to a novel 15R epimer of the 
RvE4. This 15 epi-RvE4 could also be biosynthesized following acety-
lation of COX-2 by acetyl-CoA and sphingosine via sphingosine kinase 1 
(SphK1) [94] and/or modified possibly by S-nitrosylation of COX-2 
[95]. Since 5-LOX has been shown to be phosphorylated to produce 
15R-HETE and further converted to 15R-lipoxin A4 (LXA4) [96–98], it is 
likely that, with EPA as a carbon 20:5 substrate like C20:4 arachidonate, 
phosphorylated 5-LOX can produce 15R-HEPE that can be subsequently 
converted to the novel 15R-RvE4 structure. Along these lines, RvE4 can 
be biosynthesized from EPA via several separate biosynthetic routes and 
can now be included in the E-series of pro-resolving mediators; see 
Table 2. At this juncture, the actions of RvE4 include stimulating human 
macrophage efferocytosis of apoptotic neutrophils and senescent red 
blood cells, as well as reducing mouse hemorrhagic exudates by 
increasing efferocytosis and decreasing neutrophil infiltration in vivo 
[85]. The abilities of RvE4 to limit neutrophil tissue infiltration and to 
enhance efferocytosis are also functions shared by other SPMs and 
members of the E-series resolvins (Table 2). 

RvE1’s pro-resolving actions include stopping neutrophil [21,77,78, 
80,99] and dendritic cell migration [72,100], reducing 
pro-inflammatory cytokines [101], enhancing macrophage phagocytosis 
and efferocytosis [77,80], enhancing bacterial clearance [101], modu-
lating T cell responses [102] and regenerating periodontal ligament 
stem cells [103]. RvE1 has unique actions on platelets by inhibiting 

adenosine diphosphate (ADP)-activated mobilization of P-selectin to 
minimize platelet aggregation, which is very useful for prolonged stor-
age of blood that can be useful for needed battlefield transfusions [104]. 
In addition, RvE1 and the other SPMs have potent actions in the nano-
gram range in vivo that include organ protection, clearing infections (by 
increasing killing [105]), and stimulating resolution as receptor agonists 
in, e.g., peritonitis [21,72,77,78,80], sepsis [106], ischemia-reperfusion 
injury [107], diabetes [108], colitis [99,109,110], lung inflammation 
[111], obesity [112], atherosclerosis [113], tumor burden [114], 
dermatitis [115], Candida albicans [116], and herpes simplex virus in-
fections [117] as well as in pain [118]. In humans, RvE1 has been 
identified in the plasma of healthy individuals [119], plasma and sy-
novial fluid from arthritic patients [46], plasma of type II diabetes 
mellitus patients [54], plasma of peripheral artery disease patients 
[120], cord blood [55], breast milk [121], and blisters induced by 
UV-killed E. coli [122]. Recently, RvE1 was found by Barden and col-
leagues to be increased in human neutrophils from subjects with meta-
bolic syndrome following weight loss upon stimulation ex vivo [45]. The 
RvE1 analog mimetic (Fig. 5) evokes anti-inflammatory actions by 
reducing both neutrophil infiltration and pro-inflammatory cytoki-
ne/chemokine production in vivo [82]. These findings demonstrate tis-
sue/organ- and cell type-specific actions of RvE1 in the control of a wide 
range of diseases where excessive inflammation is an underlying 
pathobiology driven by excessive PMN infiltration and resulting collat-
eral tissue damage. 

In the E-series bioactive metabolome, RvE2 stops chemoattractant- 
stimulated PMN recruitment in vivo in murine peritonitis [78] and de-
creases depression-like behavior in mice [123]. RvE2 has also been 
identified in the plasma of healthy individuals [119], plasma and sy-
novial fluid of arthritis patients correlating with pain reduction in these 

Fig. 4. Biosynthetic Mechanism and Intermediates in Resolvin E1 Production from EPA. The enzymes and structures of 5-LOX and LTA4H were determined 
with recombinant enzymes and the 5,6-epoxide intermediate identified by methanol trapping [78]. The biosynthesis of the 18S E-series resolvins and their potent 
functions were described in [77,78]. 
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patients [46], plasma of type II diabetes mellitus patients [54], plasma of 
peripheral artery disease patients, breast milk [121], and in human 
blisters induced by UV-killed E. coli [122]. Of interest, a novel RvE2 
analog, benzo-resolvin E2, was found to display exceptional potency (in 
the femtomole range) at reducing inflammation in vivo [124] (Table 2). 

RvE3 decreases allergic airway inflammation via the IL-23/IL-17A 
pathway [125], reduces depression-like behavior in mice [126], and 
lowers the incidence of preterm birth in lipopolysaccharide-exposed 
pregnant mice [127]. Also, RvE3 was identified in both plasma and 
synovial fluid of arthritic patients [46], plasma of type II diabetes mel-
litus patients [54], cord blood [55], breast milk [121], and 
E. coli-stimulated human skin blisters [122] (Table 2). Considering the E 
series metabolome, the precursor of several E-series resolvins, namely 
18-HEPE (Figs. 2–4), is also bioactive, inhibiting macrophage-mediated 
pro-inflammatory activation of cardiac fibroblasts as well as preventing 
overload-induced maladaptive cardiac remodeling in vivo, demon-
strating potent actions in cardiac tissue [84]. Considering the 
structure-activity relationships for the E series resolvins, the 18-deoxy--
resolvin E3 (18-deoxy-RvE3) shows potent bioactivity in stopping 
neutrophil infiltration in mice as well as resolves peritonitis [128]. 
Recent results indicate that RvE3 is reduced in COVID-19 patients with 
severe disease compared to moderate disease [24] (Table 1), which 
highlight the potential significance of SPMs in human disease. E-series 
resolvins are also found to be endogenous anti-depressants in mouse 
models [129]. Together these new findings from many independent 
investigators emphasize the potent structure-based function and bio-
actions of the E-series resolvins (Table 2). 

The EPA resolution bioactive metabolome to the E-series bioactive 

resolvins produces several potent mediators in this biosynthesis 
pathway (Table 2 and Fig. 3) that target diverse cell types relevant to 
inflammation, resolution, depression, and resolution of vascular 
inflammation. This EPA precursor metabolome may contribute to the 
clinical impact of omega-3 supplementation as in recent results from 
cardiovascular disease patients [130] and in human randomized trials, 
where omega-3 lowered systemic levels of potent pro-inflammatory 
cytokines associated with inflammaging [131]. It is now clearly 
demonstrated in humans that omega-3 supplementation is required to 
increase RvE1, as reported in both serum and plasma of healthy in-
dividuals, RvE3 in plasma of patients with peripheral artery disease 
[120], and circulating RvE1, RvE2, and RvE3 [132]. Welty et al. [133] 
found that the ratio of the sum of 18-HEPE plus RvE1 to the amounts of 
leukotriene B4 is useful in assessing the regression of coronary artery 
plaques in humans. Keeley et al. [134] recently reported identification 
of SPMs in women with coronary microvascular dysfunction. 

4. D-series resolvins: biosynthesis and stereochemistry 

The DHA-derived resolvins and protectins were first uncovered in 
resolving inflammatory exudates [8,14] and named given their potent 
actions. The D-series resolvins are biosynthesized via two separate 
pathways to yield the 17R series [8] and 17S-series resolvins that can 
involve transcellular biosynthesis with hypoxic vascular endothelial 
cells and human PMN. There are six potent bioactive members in each, 
named RvD1, RvD2, RvD3, RvD4, RvD5 and RvD6 [8]. The 17R resol-
vins are produced from DHA conversion to 17R-hydroperoxy interme-
diate via acetylated COX-2 and 17S-series resolvins from DHA 

Fig. 5. Further Local Metabolism of Resolvin E1 and Structures: metabolic inactivation. RvE1 is converted to less active metabolites by neutrophils and 
macrophages [214]. The Resolvin E1 further metabolome is cell-type specific, macrophages carry out dehydrogenation, and neutrophil p450 converts RvE1 to 20-car-
boxy-metabolites [214]. We prepared and designed stable analogs of Rv [60,82] that delay their rapid local inactivation. For examples, benzo RvD1 analog has been 
prepared [60] that retains potent bioactions of RvD1, and the 19-p-fluorophenoxy-RvE1 analog delays rapid leukocyte inactivation and is a potent anti-inflammatory 
and proresolving molecule [82]. Also, the benzo-Resolvin E2 has femtomolar potencies in mouse peritonitis [124]. 
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Table 2 
Inflammation-Resolution EPA Bioactive Functional Metabolome and Related Analogs and Structures.  

Name and 
Abbreviation 

Stereochemical name Structure Pro-resolving cellular functions and 
in vivo actions 

Organ protection Locations/origins in humans and 
animal models 

Resolvin E1 (RvE1) 
5S,12R,18R-trihydroxy- 
6Z,8E,10E,14Z,16E- 
eicosapentaenoic acid 

Limits PMN [21,77,78,80,99] and 
reduces dendritic cell further tissue 
infiltration [72,100]. 

Peritonitis [21,72, 
77,78,80], air 
pouch [21], 
CLP/sepsis [106], 
bacterial [101], I/R 
injury [107], 
diabetes [108], 
obesity [112], 
colitis [99,109, 
110]; lung 
inflammation 
[111], kidney 
injury [199], 
depression, 
Alzheimer’s [200], 
atherosclerosis 
[113,201], bone 
[81], reduces tumor 
growth [114], 
Dermatitis [115], 
Candida albicans 
[116], pain [118], 
and reduces herpes 
[117]. 

Plasma [119] 

Nano-delivery of 
RvE1 repairs 
gastrointestinal 
injury and activates 
wound healing 
[110,202] 

Plasma from arthritis patients [46] 

Reduces pro-inflammatory 
cytokines [101].  

Arthritic synovial fluid exudates 
[46] 

Enhances MΦ phagocytosis & 
efferocytosis [77,80]. 

Plasma of Type 2 diabetes mellitus 
[54] 

Enhances bacterial clearance 
[101]. 

Plasma of peripheral artery disease 
(OMEGA-PAD II trial) 

Inhibit pain TRP channels [102]. 0.32− 0.62 pg/mL [120] 
Regeneration of stem cells isolated 
from periodontal ligaments [103]. 

Cord blood [55] 

Blocks ADP dependent platelet 
aggregation [198]. 

Human breast milk [121] 
Blister [122] 
Metabolic syndrome 
(weight loss) PMN [45] 

18S-Resolvin E1 
(18S-RvE1) 

5S,12R,18S-trihydroxy- 
6Z,8E,10E,14Z,16E- 
eicosapentaenoic acid 

Stops PMN migration, reduces pro- 
inflammatory cytokines, and 
enhances MΦ phagocytosis & 
efferocytosis [77]. 

Mouse Peritonitis 
[77].  

Resolvin E4 (RvE4) 
5S,15S-dihydroxy- 
6E,8Z,11Z,13E,17Z- 
eicosapentaenoic acid 

RvE4 stimulates macrophage 
efferocytosis and phagocytosis [61, 

85]. 

Mouse 
Hemorrhagic 
Exudate [85]  

Resolvin E2 (RvE2) 
5S,18R-dihydroxy- 
6E,8Z,11Z,14Z,16E- 
eicosapentaenoic acid 

Stops PMN migration [77,78]. 

Resolves Peritonitis 
[77,78], and 
reduces depression 
[123]. 

Plasma 2.3− 2.7 pg/mL [119] 

Down-regulates leukocyte integrins 
[110]. 

Plasma of arthritis 68.8 pg/mL [46] 
Arthritis synovial fluid 
774.2 pg/mL [46] 
Plasma of Type 2 diabetes mellitus 
[54] 
Cord blood [55] 
Plasma of peripheral artery disease 
(OMEGA-PAD II trial) [120] 
Human breast milk [121] 
Human skin blisters [122] 

Ortho-Benzo- 
Resolvin E2 (o- 
BZ-RvE2) 

(S,E)-5-hydroxy-8-(2-((R,E)-3- 
hydroxypent-1-en-1-yl)phenyl) 
oct-6-enoic acid 

Reduces PMN infiltration in vivo 
[124]. 

Resolves mouse 
Peritonitis [124].  

18R-Resolvin E3 
(18R-RvE3) 

17R,18R-dihydroxy- 
5Z,8Z,11Z,13E,15E- 
eicosapentaenoic acid 

Inhibits leukocyte migration [83]. Peritonitis [83], 
Mouse lung 
inflammation 
[125], reduces 
murine depression 
behavior [126], 
premature birth 
[127]. 

Plasma of arthritis [46] 
Reduces IL-23 and IL-17 [125]. Arthritis synovial fluid [46] 

BLT1R antagonist [125]. 

Plasma of Type 2 diabetes mellitus 
[54] 
Plasma of peripheral artery disease 
(OMEGA-PAD II trial) [120] 
Cord blood [55] 
Human breast milk [121] 
Human skin blisters [122] 

(continued on next page) 
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conversion via 15-lipoxygenase reaction [8,14]. Each of the D series 
Resolvins and other SPMs are produced by specific agonist and cell types 
(Table 3) in well-defined in vitro conditions. Resolvin D1 and Resolvin 
D2 are produced from a transient 7(8)-epoxide intermediate produced 
via the 5-LOX. Their structures were determined using both GC–MS and 
LC-MS-MS together with bioassays. The complete stereochemistry of 
RvD1 and 17R-RvD1 was systematically determined with total organic 
synthesis and results from rigorous matching studies [135]. The com-
plete structure of Resolvin D2 was also established using this approach 
and proved to be a potent proresolving molecule [136]. 

Resolvin D3 and Resolvin D4 are produced [8,14] later in the time 
course of the acute inflammatory response, appearing in inflammatory 
exudates after both resolvin D1 and D2 [137]. The complete stereo-
chemical assignment of RvD3’s structure was established and its potent 
bioactions confirmed by total organic synthesis confirmed in two sepa-
rate series of experiments as 4S,11R,17S-trihydroxydocosa-5Z,7E,9E, 
13Z,15E,19Z-hexaenoic acid [137–139]. The second synthesis under-
taken afforded larger-scale production of RvD3 [138]. The complete 
stereochemistry of Resolvin D4 was also established using matching 
studies with materials prepared from total organic synthesis [140,141]. 

RvD4’s complete structure is 4S,5R,17S-trihydroxydocosa- 
6E,8E,10Z,13Z,15E,19Z-hexaenoic acid. Both RvD3 and RvD4 proved to 
be potent immunoresolvents stopping further neutrophil infiltration and 
transmigration, enhancing macrophage phagocytosis and efferocytosis, 
and reducing cytokines and chemokines, promoting bacterial clearance 
in vivo in mice. Resolvin D3 and Resolvin D4 are produced in resolving 
inflammatory exudate from the same 4(5)-epoxy-resolvin intermediate 
as proposed in Ref. [8]. The 4S,5S-epoxy-resolvin intermediate was 
recently prepared by total organic synthesis and is selectively converted 
to Resolvin D3 by human neutrophils and to Resolvin D4 by human 
neutrophils and M2 macrophages [142] by specific enzymes in these 
phagocytes. RvD4 reduced thrombus in pathologic thrombosis 
[143–145]. Morita et al. [146] also reported a stereocontrolled synthesis 
of resolvin D4. 

Morbidly obese human subjects have higher amounts of RvD4 and 
other SPMs that are reduced post-surgery in diabetes, suggesting 
ongoing inflammation in these patients [42]. Resolvin D5 plays a critical 
role in host defense, enhancing bacterial killing and clearance [11,147]. 
The structure of resolvin D5 was established and confirmed with results 
from total organic synthesis [148,149], leukocyte biosynthesis, and 
from enzymatic studies [150] with 15-lipoxygenase-2. RvD5 is increased 
in human blood with n-3 supplementation [38] and is present in human 
skin in lesions of psoriasis [151]. With skin cells, RvD5 reduces 
expression of IL-24 and S100A12 with human keratinocytes [151] and 
remains elevated one year after discharge in ICU patients with abdom-
inal septic shock [152], suggesting the need for long-term follow-up of 
ICU patients. Resolvin D5 and other D-series resolvins reduce both in-
flammatory pain and neuropathic pain, showing sex-dependent dimor-
phism in mice [153]. In addition to the innate system, SPMs are also 
biosynthesized [154] and function in the adaptive immune system 

regulating T-cell responses [155] and B cell antibody production [156] 
that is relevant in infections such as COVID-19. Recently, RvD5 was 
found to also act on T cells to reduce experimental arthritis [157]. 

Resolvin D6 was first uncovered in resolving inflammatory exudates 
along with the other D-series resolvins and protectins biosynthesized 
from DHA [8]. These novel and unique structures were determined using 
both LC-MS-MS and GC–MS fragmentation and bioassays. Resolvin D6 
has a role in reducing muscle inflammation associated with injury and 
aging [48] and in tendon overuse [49]. Recently, a Resolvin D6 isomer 
and Elovanoid-N32 were discovered to reduce ACE2 and binding of the 
virus spike protein to human corneal epithelial cells of the eye following 
injury or exposure to IFNγ [158,159] and to stimulate nerve regenera-
tion, wound healing and pain [160]. Human periodontal stem cells also 
produce Resolvin D6 and other SPM [161]. The complete structure of 
the Resolvin D6 novel isomer responsible for reducing neuropathic pain 
and nerve regeneration was recently elucidated and found to be 
RR-RvD6 prepared by total organic synthesis [162]. 

DHA is enriched in neural tissues, nerves, and brain. SPMs are 
bioactive products via enzymatic pathways that are highly conserved in 
evolution from fish to humans [163]. Trout brain produces Resolvin D5, 
RvD1 and RvD2 as well as neuroprotectin D1, indicating that these 
chemical signals are conserved structures from fish to humans [164]. 
Atlantic salmon also produce resolvins de novo, which are reduced in 
amounts with baking [165]. DPA of the n-3 pathways is also a precursor 
to SPMs [56]. The consequence of consuming fish that contain resolvins 
and/or other SPM as well as prostaglandins remains to be determined. 

5. The Protectin and Maresin families of potent bioactive 
mediators: biosynthesis and stereochemistry 

Within the inflammatory exudates (Fig. 1) as neutrophils enter the 
exudates [8], DHA is converted to conjugated triene structures, e.g. 10, 
17-diHDHA, that include neuroprotectin D1, which protects retinal 
pigmented epithelial cells of the eye [166] and stops PMN infiltration to 
the brain, protecting neural tissues from leukocyte-mediated collateral 
tissue damage and inflammation [167], and stimulates wound healing of 
corneal epithelial cells [168]. Both 17S-resolvins and protectins are 
produced from the 17S-HpDHA intermediate that is the biosynthetic 
product of human 15-LOX (12/15-lipoxygenase of the mouse) with DHA 
[14] and subsequent enzymatic steps to produce each of the potent 
bioactive molecules. The name protectins was coined from the potent 
organ-protective actions and anti-inflammatory—pro-resolving actions 
of this family of mediators. The prefix neuro in neuroprotectin D1 
(NPD1) reports the tissue of origin of these bioactive molecules [166], 
which are also produced by exudate leukocytes of the innate immune 
system [8,14]. NPD1 reduced stroke damage [167], protects lung tissue 
[169] and kidneys from injury [170], and increases neural cell survival 
[171]. Macrophages, T cells and neutrophils produce protectins from 
DHA. The complete stereochemistries of the bioactive neuroprotectin 
D1/protectin D1 and its natural biosynthesis isomers produced on 

Table 2 (continued ) 

Name and 
Abbreviation 

Stereochemical name Structure Pro-resolving cellular functions and 
in vivo actions 

Organ protection Locations/origins in humans and 
animal models 

Metabolic syndrome (weight loss) 
PMN [45] 

18S-Resolvin E3 
(18S-RvE3) 

17R,18S-dihydroxy- 
5Z,8Z,11Z,13E,15E- 
eicosapentaenoic acid 

Inhibits PMN migration [83,203]. Reduces mouse 
peritonitis [83, 
203].  

18-hydroxy- 
eicosapenta-enoic 
acid (18-HEPE) 

18S/R-hydroxy- 
5Z,8Z,11Z,14Z,16E- 
eicosapentaenoic acid 

Reduces pro-inflammatory 
cytokines [84]. 

Prevents overload- 
induced 
maladaptive 
cardiac remodeling 
[84] and metastasis 
[204].   
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enzymatic processing of DHA were established using materials prepared 
by total organic synthesis and qualified with NMR [172]. NPD1/PD1 
activates endogenous resolution programs, shortening the time to 
resolve [80]. 

The 17-epi-protectins such as 17R-PD1/NPD1 are biosynthesized via 
aspirin-acetylated COX-2 enzyme, as for example in hypoxic vascular 
endothelial cells [173], which proved to be potent protective and 
pro-resolving molecules [reviewed in Ref. 174]. The complete stereo-
chemistry of the 17-epi-NPD1/PD1, also known as the aspirin-triggered 
(AT)-NPD1/PD1, was assigned using materials prepared by total organic 
synthesis. The endogenous AT- or R epimer of NPD1/PD1 proved to be 
10R,17R-dihydroxy-docosa-4Z,7Z,10E,12E,14Z,19Z-hexaenoic acid 
with potent proresolving actions [reviewed in Ref. 174, cf. and see ref-
erences within]. Other stereo and geometric isomers of NPD1/PD1 do 
not possess these potent anti-inflammatory—pro-resolving actions. 

These properties of NPD1/PD1 may be useful in the design of novel 
therapeutic agents for neurodegenerative diseases where neural 
inflammation plays a central role in disease pathology. 

Later in the progression of the acute inflammatory response (Fig. 1), 
when macrophages appear and enter the exudates with directives for 
wound healing and homeostasis, these cells convert DHA to the maresins 
(macrophage mediators in resolving inflammation), which are proresolving 
and stimulate tissue regeneration [15,175]. The complete stereochem-
istry of Maresin 1 (MaR1) is 7R,14S,dihydroxydocosa-4Z,8E,10E,12Z, 
16Z,19Z-hexaenoic acid and was determined by matching the endoge-
nous MaR1 produced by macrophages to compounds prepared by total 
organic synthesis. MaR1’s proresolving actions are complemented by 
this molecule’s ability to stimulate tissue regeneration and reduce pain. 
MaR1 inhibits capsaicin-induced TRPV1 currents in neurons [175]. 
MaR1 is biosynthesized via an epoxide intermediate enzymatically 

Table 3 
Agonist and Cell Types Producing SPM in vitro.  

Agonist Cell Type Incubation SPM Reference 

ASA (500 μg/air pouch) TNF-α induced exudate (6 h) 2.3 × 106 leukocytes/ pouch FVB mice 18R HEPE [21] 
EPA (500 μg/ air pouch) Air pouch leukocyte Resolvin E1 
IL-1β-treated 

HUVEC IL-1β (24 h) and ASA 
18R HEPE 

[21] Human HUVEC  
Serum-treated zymosan 100 ng/ mL 

Human PMN 
PMN 30 × 106, 30 min Resolvin E1 

[21] ASA recombinant COX-2 EPA products STZ (100 ng/mL) Lipoxin A5 

FMLP 10− 7 M GM-CSF Human PMN 
PMN 30 × 106 Lipoxin A4 

[205] 200 pM rhGMCSF Lipoxin B4 90 minutes 

A23187 (20 min) Trout Macrophages 10 × 106 cells, A23187 Lipoxin A4 [206] 
20 min, 18 ◦C Lipoxin A5 

TNF-α (50 ng/mL) 24 h Human Microglia ASA, 30 min 17R-HDHA [8] 

Hypoxia HUVEC 
ASA, TNF-α, IL-1β + Hypoxia 

17R-HDHA [8] DHA (20 μg/ 1 × 106) 

ASA Inflammatory exudates 6 h, FVB mice 17R-Resolvin D5 [8] 
Mouse ASA 17R-Resolvin D3 

Zymosan Human PMN 
PMN (50 × 106 cells/ ml) 

D series Resolvins [8] Zymosan 100 ng/mL 
17R HDHA (5μg/mL) 

IL-1β or 
Retinal ARPE-19 cells IL-1β (6 h) NPD1 [166] A23187 

TLR-7 Agonist (R-848) Human monocytes 
10 × 106 cells + Resolvin D5 

[207] R-848 (100 μM) Protectin D1 
1 h, 37 ◦C  

Apoptotic PMN 10 × 106 cells E series Resolvins [17] 
D series Resolvins 

Mouse apoptotic PMN M0 Macrophages Time course 120 min efferocytosis 
Lipoxin A4, Resolvin E1 

[80] Protectin D1 
ASA + EPA Human M0 Macrophages EPA (20μM) for 45 min Resolvin E1 [80] 

E. coli M2 human Macrophages 
5 × 106 M2 Macrophages 

Resolvin D5 [18] 
90 min, 37 ◦C 

sPLA2 Type V Microparticle Zymosan peritonitis (1 mg) exudates 48 h 17-HDHA [191] 
14-HDHA 

E. coli (105 CFU) 
Infectious Leukocytes 

In vivo collected exudate 24 h Resolvin D3 [138] Exudate 

18-HEPE (5μg) Human PMN 
Hypoxia PMN plus Resolvin E1 

[78] Zymosan (100 μg/mL) Resolvin E2 

LPS/ FMLP GM-CSF Human Macrophages 
LPS (1μg/mL) 20 min Lipoxin A4 

[208] + FMLP (1μM) 10 min 17-HDHA 
37 ◦C 

Zymosan peritonitis (1 mg) Eosinophils In vivo collected exudate 24 h Lipoxin A4 [209] 
Protectin D1 

HMGB1+ C1q Human Monocytes 
HMGB1 (1μg/mL) Lipoxin A4 

[20] C1q (25 μg/mL) Resolvin D1 
6 h Resolvin D2 

HMGB1 alone Human Monocytes HMGB1 (1μg/mL) Leukotriene B4 [20] 

Carbon monoxide (CO) + zymosan in vivo in mice 

Mouse Peritoneal Exudates 

250 ppm CO 

Resolvin E2 

[210] 
0.1 mg/ zymosan 

Resolvin D1 
Resolvin D2 
Maresin 1 

Zymosan peritonitis (1 mg) Human MCSF Macrophages 
Endogenous Maresin 1 

Maresin 1 [15,175] Stereochemistry 

Physiologic Hypoxia (1 % oxygen) Human M2 Macrophages 24 h hypoxia chamber 
RvE4 

[85] 
D-Series Resolvins 

EPA (1 g) Human plasma collected (3 h)  18-HEPE [77]  
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produced from the DHA-derived lipoxygenase product 14-HpDHA [15] 
as determined by acid methanol trapping studies and analyses of the 
resulting products. The role of this unique 13S,14S-epoxy-maresin was 
confirmed by total organic synthesis and its conversion to MaR1 [176, 
177] by M2 macrophages, where this epoxide also proved to be bioac-
tive, stimulating the phenotype switch from M1 to M2 macrophages. 

6. Cys-SPM 

The enzymatic conversion of lipoxygenase produces hydro(peroxy)- 
containing intermediates that are transient and rapidly transformed to 
epoxide-containing intermediates that play critical roles in the stereo-
chemical specific biosynthesis of Resolvins, Protectins and Maresins in 
each pathway [for review, see Ref. 174]. Evidence for the cellular pro-
duction of unstable epoxide intermediates within each SPM biosynthesis 
pathway was obtained using acid-methanol trapping [8,14,15,135,154]. 
Confirmation of the role of these transient epoxide-containing in-
termediates was obtained from studies with leukocytes, isolated en-
zymes, and their stereoselective total organic synthesis. The 13S, 
14S-epoxy-maresin was prepared with Professor Nicos Petasis and his 
team [176], and the 16,17-epoxy-protectin was prepared with Professor 
Trond Hansen, Jørn Tungen and Marius Aursnes [178]. Recently, the 4S, 
5S-epoxy-resolvin was synthesized by total organic synthesis, and its 
enzymatic conversion to Resolvin D3 and Resolvin D4 proved to be cell 
type specific with human phagocytes [142]. Each epoxide intermediate 
is also pivotal in the enzymatic biosynthesis of the cys-SPM, e.g. MCTRs 
[179], which stimulate tissue regeneration and are proresolving, PCTRs 
[178] and RCTRs, each with 3 members in their biosynthetic pathways; 
their complete stereochemistry has been determined and confirmed 
their potent bioactivities [180] with both Dr. Bernd Spur and Dr. Nicos 
Petasis [181,182]. With these epoxides in hand, we’ve focused on the 
enzymes responsible for their conversion to potent cys-SPMs [142,183], 
as well as specific SPMs. 

Essential fatty acids, i.e., EPA and DHA, can undergo autooxidation 
reactions that are widely known to lead to products that are pro- 
inflammatory; however, these non-enzymatic reaction products are 
not stereoselective for the most part in their production and give rise to 
racemic mixtures of products that do not share the properties or potent 
biologic functions of the SPMs reviewed herein. The stereoselective 
biosynthesis of the resolvins within human leukocytes leads to their 
stereochemically defined structures for the SPMs that activate specific 
cell surface GPC receptors with nanomolar binding constants [reviewed 
recently in Ref. 184]. The biosynthesis of SPM in humans requires 
substrate EPA and DHA in adequate amounts and locations in vivo to 
enable SPM biosynthesis in vivo in humans; for examples, see [38–40,50, 
185–187], to yield precise chemical structures of the SPMs with pro-
tective function for the host [188]. These early results of our studies 
underscore the importance of precision nutrition in the optimal pro-
gression of host defense and resolution of the acute inflammatory 
response in humans and model organisms [189]. 

7. In summation 

The results reviewed here provide evidence that synthetic stereo-
chemically defined potent bioactive SPMs matching the endogenous 
molecules produced by human cell types, e.g., neutrophils, lymphocytes, 
and macrophages (Fig. 1B), are now in wide use worldwide in experi-
mental disease studies and as standards for targeted LC-MS/MS-based 
profiling and lipidomics/metabolomic human studies from many inde-
pendent investigators worldwide confirming that SPMs are produced in 
vivo in humans. Omega-3 supplementation is required and increases 
SPM production in vivo [50]. Each member of the E-series resolvins, i.e., 
RvE1, RvE2, RvE3 and RvE4, are now documented in human tissues in 
several independent investigations that confirm their original structural 
elucidation. The physiologic function(s) of the E series resolvin metab-
olomes in humans are still evolving. The current results available from 

human studies indicate that the SPMs are indeed produced in humans 
when suitable substrates are available in vivo. 

The potent functions of each of the stereochemically defined SPMs in 
resolving and reducing the magnitude of inflammation in vivo are now 
demonstrated by many independent investigations around the world 
with diverse experimental animal models of disease: >1420 publications 
were reported for resolvins in PubMed.gov as of Dec. 2021 (with 
resolvins as search term) that confirm the potent pro-resolving proper-
ties of each of the SPMs and their novel structures as originally 
described, triggered via local hypoxia in the resolving inflammatory 
milieu [8,14,15]. Given the current pandemic and the identification of 
resolvins as well as the other SPMs in human COVID-19 (Table 1), the 
availability of SPM and several of their deuterium-containing labels for 
use as standards and rigorous determinations and authentication 
methods enable targeted LC-MS-MS-based profiling that the Serhan lab 
initially introduced [27–29]. These can be tested in long-COVID patients 
to assess SPM, their de novo production and potential local cellular and 
organ functions with precision nutrition interventions that can now be 
rigorously tested as, e.g. to consider whether they can reduce the 
symptoms of long COVID and acute COVID-19 infections. The SPMs 
have proven to be potent proresolving molecules in resolving inflam-
mation and pain in experimental animals and with isolated single cell 
analysts with human leukocytes. Given that SPMs are conserved struc-
tures in evolution as discussed herein, it is very possible that increasing 
SPM production in vivo can permit them to function in humans to reduce 
pain, resolve tissue inflammation and clear microbes as well as activate 
regeneration of damaged tissues. 

Clinical studies along these lines with interventions for precision 
nutrition [190] are now made possible with the stereochemically 
defined SPMs and targeted LC-MS-MS-based metabololipidomic 
profiling [27,28] as required tools for this endeavor. In a clinical trial 
where a proresolving mimetic LX/Rv stable analog was employed top-
ically on inflamed gingival tissue, subjects had reduced gingival 
inflammation as well as increased production of SPMs in their peripheral 
blood samples [63]. These human results suggest that SPM therapies can 
increase endogenous SPM and resolution in a positive feed-forward 
mechanism as uncovered earlier in experimental animals, where we 
found that SPMs each activate endogenous resolution programs to 
shorten recovery times from inflammatory challenge [80]. Local de-
livery of pro-resolving molecules with nano-pro-resolving medicines 
such as the resolvins and lipoxins delivered in humanized nano particles 
has advantages as well in resolving inflammation and activating wound 
healing and repair [191]. This concept for the local delivery of resolvins 
has now been studied in a wide range of engineered materials to suc-
cessfully activate endogenous resolution programs in vivo [192,193]. 
Hence, rigorous determinations of whether the state of resolution of 
inflammation can be achieved in humans with precision nutrition is of 
vital importance given the impact of the COVID-19 variants and long 
COVID on human health, the ongoing pandemic, and the unmet need in 
public health. Have the stereochemistry studies of the SPM and their 
human biosynthesis pathway(s)-metabolomes each from omega-3 pre-
cursors prepared us for this paramount challenge? Are we ready? 

Can precision nutrition targeted to increase SPMs in vivo enable 
human subjects to return to homeostasis more rapidly (recover more 
swiftly) following the initial insult of the COVID viral infection? It can 
also be considered whether there are functional roles for SPMs in pe-
ripheral blood circulation. Are they functional in the local milieu, where 
they can directly regulate leukocyte response in whole human blood 
[75,194], or in transit and/or leaking into peripheral blood from other 
sites/organs within the body, possibly from sites of infectious inflam-
mation in multiple organs? Our field is prepared to address these chal-
lenges and is armed with the required tools and ample experimental 
evidence now available from investigators around the world’s scientific 
community interested in resolving inflammation and infection (cited 
herein). Only time, resources and rigorous testing-documentation will 
give us the much-needed answers on precision nutrition and its potential 
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in human public health and the potential for SPMs in resolution 
physiology-pharmacology. 
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