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Abstract

Background—Hundreds of candidate genes have been associated with coronary artery disease 

(CAD) through genome-wide association studies (GWAS). However, a systematic way to 

understand the causal mechanism(s) of these genes, and a means to prioritize them for further 

study, has been lacking. This represents a major roadblock for developing novel disease- and 

gene-specific therapies for CAD patients. Recently, powerful integrative genomics analyses (IGA) 

pipelines have emerged to identify and prioritize candidate causal genes by integrating tissue/

cell-specific gene expression data with GWAS datasets.

Methods—We aimed to develop a comprehensive IGA pipeline for CAD and to provide 

a prioritized list of causal CAD genes. To this end, we leveraged several complimentary 

informatics approaches to integrate summary statistics from CAD GWAS (from UK Biobank 

and CARDIoGRAMplusC4D) with transcriptomic and expression quantitative trait loci data from 

nine cardiometabolic tissue/cell types in the STARNET study.

Results—We identified 162 unique candidate causal CAD genes, which exerted their effect from 

between one and up to seven disease-relevant tissues/cell types, including the arterial wall, blood, 

liver, skeletal muscle, adipose, foam cells and macrophages. When their causal effect was ranked, 

the top candidate causal CAD genes were CDKN2B (associated with the 9p21.3 risk locus) and 

PHACTR1; both exerting their causal effect in the arterial wall. A majority of candidate causal 

genes were represented in cross-tissue gene regulatory co-expression networks that are involved 

with CAD, with 22/162 being key drivers in those networks.

Conclusions—We identified and prioritized candidate causal CAD genes, also localizing their 

tissue(s) of causal effect. These results should serve as a resource and facilitate targeted studies to 

identify the functional impact of top causal CAD genes.
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Genome-wide association studies (GWAS) have been remarkably informative and provided 

lists of hundreds of variants that are associated with coronary artery disease (CAD).1-3 

Based largely on proximity, researchers have somewhat arbitrarily inferred the genes that are 

most likely to be associated with these variants.4,5 Despite the success of GWAS, this raises 

a number of concerns. To begin with, these inferences assigning genes that are associated 

with these variants rely on several assumptions and are not always correct.4,5 Furthermore, 

for most of these genes we do not know which are truly causal, rather than just being 

associated with CAD. In addition, at present there is no overall prioritized ranking of these 

genes based upon which are the most important for causing CAD.
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Yet another issue arising from GWAS is the lack of knowledge of which disease-relevant 

tissue(s) a given CAD-related gene exerts its effect in. For example, genes that might 

cause CAD can exert effect(s) in adipose, liver, inflammatory cells, the arterial wall, and 

other tissues/cell types. This lack of knowledge of both the prioritized importance of CAD 

genes, and also their tissue(s) of causal effect, is a major obstacle to scientific efforts to 

understand atherosclerosis and CAD. Indeed, at present, of the almost 300 single nucleotide 

polymorphisms (SNPs) known from GWAS to be associated with CAD,1-3 there are limited 

insights into the specific genes and tissues involved in modulating their CAD risk effect.1-3 

On the other hand, a prioritized list of causal CAD genes, and knowledge of their tissues 

of causal effect, would be a key resource that would allow targeted studies to identify the 

functional impact of the top causal genes for CAD in appropriate tissues.

As an important advance, powerful techniques have emerged for integrating tissue 

and cell-specific data with GWAS datasets. These integrative genomics analysis (IGA) 

methodologies include the Transcriptome-Wide Association Study (TWAS), Summary-

based Mendelian Randomization (SMR),6,7 MetaXcan8 and Coloc.9 IGA approaches 

integrate GWAS datasets with gene expression measurements (e.g. expression quantitative 

trait loci (eQTLs)), which permit the identification of specific genes and variants that are not 

only associated with CAD but which also directly govern aspects of disease pathobiology. 

Furthermore, IGA methodologies have the potential to determine causality and are well 

suited to the agnostic prioritization of causal mediators of disease pathobiology.10

In terms of resources that could be used to undertake an IGA for CAD, as well as 

publicly available GWAS datasets, STARNET (Stockholm-Tartu Atherosclerosis Reverse 

Network Engineering Task) is a genetics-of-gene expression study that now includes 

>1000 CAD subjects and >250 controls of European ancestry.11,12 From each subject, 

venous blood (BLOOD) as well as biopsies from atherosclerotic aortic wall (AOR), 

pre/early-atherosclerotic mammary artery (MAM), liver (LIV), skeletal muscle (SKLM), 

subcutaneous fat (SF) and visceral fat (VAF) were obtained and RNA was extracted. 

BLOOD was also used to obtain macrophages (MP) and foam cells (FC). The STARNET 

datasets have been extensively curated and already provided significant insights on CAD 

pathobiology,5,13 and in particular on gene regulatory co-expression networks (GRNs) that 

contribute to CAD heritability.12 Here, we used next-generation RNA sequencing data from 

blood and up to 8 different tissues/cell types that were collected from STARNET CAD 

subjects, and intersected this with CAD GWAS datasets,1,2 to develop a comprehensive IGA 

pipeline for CAD in a disease-relevant context. Resulting from this, and as a key scientific 

resource, we provide a prioritized list of 162 candidate causal CAD genes and the tissues in 

which they govern CAD risk.

METHODS

As a key resource in this study, the STARNET study has been extensively 

described.5,11-15 Briefly, after providing written informed consent, patients with 

angiographically proven CAD who were eligible for open-thorax surgery and control 

subjects without CAD were enrolled into this institutional review committee approved 

protocol (Ethics Review Committee on Human Research of the University of Tartu). 
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The STARNET data is accessible through Database of Genotypes and Phenotypes 

(dbGAP), accession phs001203.v1.p1. The subsequent IGA incorporated two data sources: 

GWAS summary statistics from an interim release of UK Biobank (UKBB) data1 or 

CARDIoGRAMplusC4D2 and tissue/cell-specific eQTLs from STARNET11 and these 

datasets are available through those sources. Datasets used in this study are also summarized 

in Supplemental Table I. All methods are described in the Supplemental Methods, or 

where mentioned in prior STARNET publications.5,11-15 The corresponding authors are also 

willing to address queries regarding the data or results upon reasonable request.

RESULTS

Proof-of-concept studies to determine causal tissues and cell types for CAD

A study overview is shown in Figure 1. To ascertain the feasibility of determining the 

tissues/cells in which genes identified by GWAS exert their effects in promoting CAD, 

we performed a linkage disequilibrium score regression (LDSC) analysis by leveraging 

publicly available data from BLUEPRINT16,17 and GTEx (the Genotype-Tissue Expression 

project),18 and GWAS data from either UKBB1 or CARDIoGRAMplusC4D.2 LDSC 

integrates eQTL, gene expression and epigenetic marks to identify disease-relevant tissues/

cells. From the multiple diverse tissues represented in this analysis, the majority of which 

are not related to the heart or vasculature, we identified a clear tissue enrichment signal 

that the pathobiology of CAD is predominantly driven by tissues/cells of the cardiovascular 

and immune systems (Supplemental Tables II and III). This unbiased analysis indicates that 

it is possible to determine the tissues/cells that promote CAD by integrating GWAS and 

epigenomic datasets.

IGA identifies and prioritizes candidate causal genes for CAD

Our IGA pipeline incorporated two sources of data: GWAS summary statistics (from both 

UKBB and CARDIoGRAMplusC4D) and tissue/cell-specific eQTLs from STARNET. Our 

IGA employed three methods from two broad classes: MetaXcan and SMR (class 1) and 

Coloc (class 2). We intersected the results of class 1 and 2 methods to identify a set of likely 

causal CAD genes. In total, 197,888 class 1 tests (MetaXcan and SMR, Supplemental Table 

IV) were conducted, on which we calibrated the FDR. Findings at ≤ 5% FDR were further 

filtered by genetic co-localization posterior probability estimated by Coloc.

Using the UKBB and CARDIoGRAMplusC4D GWASs, our IGA pipeline revealed 129 

and 121 candidate CAD causal genes, respectively (Supplemental Tables V and VI). 

Genes demonstrating the strongest MetaXcan evidence (P < 5x10−8) were visualized in 

Figure 2. The STARNET eQTLs and this IGA pipeline allowed us to pinpoint the tissue-

specificity of causal genes (Figure 3), and candidate causal CAD genes were identified as 

exerting their effect in differing numbers of tissue/cell types which ranged from 1 up to 

7 types. Notably, arterial wall tissues (AOR and MAM) yielded the greatest number of 

candidate causal CAD genes. For example, the IGA integrating AOR eQTLs with UKBB 

or CARDIoGRAMplusC4D GWASs both yielded 49 candidate causal genes; while the IGA 

involving MAM eQTLs with UKBB or CARDIoGRAMplusC4D GWASs yielded 42 and 41 
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candidate causal CAD genes, respectively (Figure 3). These findings indicate that the arterial 

wall is of major importance with respect to CAD pathogenesis.

In comparing the IGA results using GWAS data from UKBB versus 

CARDIoGRAMplusC4D, there was reasonably strong overlap for most of the 9 tissue/cell 

types (Figure 4A). In addition, we found a high degree of concordance for Z-score results 

generated using MetaXcan alone for UKBB versus CARDIoGRAMplusC4D GWAS data 

when integrated with STARNET eQTL data. Importantly, this concordance was not only in 

terms of the specific candidate causal genes identified, but also both the tissues in which 

they are likely to be causal and the directionality of their association with CAD (Figures 4B 

- 4D).

In considering the number of candidate causal CAD genes across the IGAs performed 

using either UKBB or CARDIoGRAMplusC4D with STARNET (129 and 121 genes, 

respectively), there were a total of 162 unique candidate causal CAD genes across both 

IGAs. These 162 candidate causal CAD genes were then ranked by P value and the top 25 

are presented in Table 1, with all 162 ranked genes presented in Supplemental Table VII. 

These 162 candidate causal CAD genes were found to exert their effects across a mean of 

1.9 ± 1.4 tissue/cell types (mean ± SD) (Figure 5, Supplemental Table VII).

Of the 163 independent CAD association peaks previously compiled by Erdmann et al,4 56 

of these were identified in our IGA as being linked to causal CAD genes (Supplemental 

Table VIII). While the genes nominated by our IGA were in high agreement with this 

literature,4 we also identified novel candidate causal genes. For example, at a GWAS 

peak around rs2022938 the previously attributed gene was HDAC9.4 Our analysis clarified 

that rather than HDAC9, the adjacent gene TWIST1 is the likely causal CAD gene 

(Supplemental Table VIII). The reassignment of this GWAS peak from HDAC9 to TWIST1 
as the likely causal candidate CAD gene is corroborated by another recent study by 

Nurnberg et al. conducted in smooth muscle cells.19 Of importance, our IGA also pinpointed 

the tissue-specificity of the candidate causal genes (Figure 5, Supplemental Table VII). 

Taking the same example, our IGA found that TWIST1 plays a causal role for CAD in AOR 

and MAM (Figure 5). Because the predominant cell type in AOR and MAM (i.e. the arterial 

wall) is smooth muscle cells, this finding adds further corroborative evidence to the study by 

Nurnberg et al.19

Various potential pathways and aspects of CAD and atherosclerosis were represented by 

these 162 genes and the corresponding tissues in which they exert their effects. For example, 

CDKN2B (cyclin dependent kinase inhibitor 2B) residing in the strongest genetic locus for 

CAD, 9p21.3,20 was the top ranked candidate causal gene for CAD (Table 1). CDKN2B is 

known to have strong effects on vascular cells,21,22 which is consistent with the single tissue 

of effect for CDKN2B in this IGA being AOR (Figure 5). Other candidate causal CAD 

genes that involved only a single tissue included PDE5A (phosphodiesterase type 5A) in 

AOR, TNF (tumor necrosis factor) in BLOOD, and CCDC97 (coiled-coil domain-containing 

protein 97) in LIV (Figure 5). Of the 31 genes that were associated with 2 tissue/cell 

types, 15 were associated with AOR and MAM (with both AOR and MAM being arterial 

wall) including PDGFD (platelet derived growth factor D), TWIST1 (twist-related protein 1) 
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and PHACTR1 (phosphatase and actin regulator 1), with PHACTR1 being the second top 

ranked candidate causal gene for CAD (Table 1). Three genes were associated with VAF 

and SF (both adipose tissue), including SCD (stearoyl-CoA desaturase) and IRS1 (insulin 

receptor substrate 1). Furthermore, 2 genes were associated with MP and FC (closely related 

inflammatory cell types), being SMAD3 (mothers against decapentaplegic homolog 3) and 

MIA3 (MIA SH3 domain ER export factor 3) (Figure 5).

Validation of IGA using an alternate transcriptomic dataset

As further validation we substituted transcriptomic data from GTEx18 for the STARNET 

dataset that was originally used. Although GTEx contained 48 tissues in its datasets, 

many of these tissues are unlikely to be related to CAD (e.g. uterus, bladder, esophagus, 

tibial nerve). Therefore, we only considered the following GTEx tissues that have biologic 

plausibility for causing CAD: SF, VF, AOR, LIV, SKLM, BLOOD and coronary artery 

(COR – which was not obtained in STARNET). Note that while GTEx allowed us to 

include COR, and to also analyze SF, VF, AOR, LIV, SKLM and BLOOD that were all in 

STARNET, on the other hand GTEx does not have MAM, MP or FC and therefore these 

tissues/cell types were excluded from this GTEx validation analysis.

Interestingly, when GTEx was used rather than STARNET fewer causal genes were 

identified, with only 47 candidate causal CAD genes identified with UKBB and GTEx 

(Supplemental Table IX) and 53 with CARDIoGRAMplusC4D and GTEx (Supplemental 

Table X). Despite there being less than half the number of candidate causal genes identified 

when GTEx was used rather than STARNET, many of the candidate causal genes identified 

using GTEx were also identified using STARNET (Supplemental Table XI).

As stated, unlike STARNET, GTEx includes COR. Using UKBB and GTEx for the IGA, 

candidate causal CAD genes identified in COR were: THOC5, MRAS, NBEAL1 and 

PHACTR1 (Supplemental Table IX). As an alternative, using CARDIoGRAMplusC4D 

and GTEx, candidate causal CAD genes in COR were: SF3A3, FHL3, MRAS, NBEAL1, 

ADAMTS7, PHACTR1 and INPP5B (Supplemental Table X). Demonstrating the similarity 

of COR and AOR in their predisposition to atherosclerosis, the majority of these were also 

identified as candidate causal CAD genes using AOR in STARNET (Supplemental Tables V 

and VI), with the only exceptions being ADAMTS7 and INPP5B.

Most candidate causal genes are involved in CAD gene regulatory co-expression networks

To identify potential pathways and mechanisms of how these genes cause CAD, we queried 

the GRNs that have been inferred from the STARNET datasets.5,11,12,14,15 We focused on 

identifying GRNs where the tissue of potential causality from the IGA matched the tissue 

of effect for that gene in the GRN. On this basis, for the 162 candidate causal CAD genes 

identified in the IGA using STARNET (Figure 5) we found that 144 (144/162 = 88.9%) 

were represented in at least one GRN, in the same tissue (Figures 6 and 7, Supplemental 

Table XII).

There are 224 GRNs in the current analysis of the STARNET datasets. To ensure that the 

above finding was not by chance (i.e. that 88.9% of candidate causal genes identified in our 

IGA are in GRNs), we performed a hypergeometric test for the 224 GRNs tested in relation 
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to the 162 candidate causal genes. In total, there were 9 GRNs that were significantly 

enriched (FDR < 0.05) for the 162 genes identified by IGA. In contrast, running this analysis 

using 162 randomly selected genes consistently identified only 0 – 2 significant GRNs.

Candidate causal CAD genes as key drivers in CAD gene regulatory co-expression 
networks

We also explored which candidate causal CAD genes are key drivers of GRNs. From the 

162 candidate causal CAD genes, there were 22 (22/162, 13.6%) that were key drivers in 

GRN(s) where the tissue of causality in the IGA matched the tissue of effect of that gene in 

the GRN (Table 2, Figure 7).

PHACTR1 is a top causal gene for CAD

CDKN2B and PHACTR1 were the top 2 candidate causal genes for CAD in this study 

(Table 1). While a great deal of research has been conducted on CDKN2B and the 

related 9p21.3 locus,20-22 much less is known about PHACTR1. Accordingly, we probed 

STARNET and the GWASs explored here to gain additional insights on this gene. In 

STARNET using FDR < 5%, we identified 4 index eQTLs (the best associations for 

this gene per tissue) for PHACTR1 and 2 further independent but non-index eQTLs by 

stepwise regression (Table 3). Among these, rs9349379 was an index eQTL for PHACTR1 
in both MAM and AOR. Notably, the statistical significance of the index eQTLs at 

rs9349379 were many orders of magnitude stronger than other eQTLs for PHACTR1 in 

this analysis (Table 3). Apart from MAM and AOR, there were no eQTLs at rs9349379 

for PHACTR1 in any other tissues (at FDR 5%). While there were 3 additional cis-eQTLs 

at rs9349379 for other genes, at FDR 5% these were of marginal significance (GFOD1 
in AOR, Padj = 0.047; AL008729.2 in BLOOD, Padj = 0.0003; AL008729.2 in SF, Padj 

= 0.02). Importantly, rs9349379 is a common SNP in the third intron of the PHACTR1 
gene, and was found to be associated with risk of CAD in both UKBB data1 and 

CARDIoGRAMplusC4D.2 Furthermore, we found no SNPs in proximity to rs9349379 

that are in linkage disequilibrium with rs9349379 itself. Taken as a whole, these results 

indicate that rs9349379 is likely to be the causal PHACTR1-associated SNP, and that the 

CAD-causal effects of rs9349379 and PHACTR1 arise in the arterial wall (i.e. AOR, MAM 

and COR in our analyses).

PHACTR1 is known to have multiple isoforms. To understand which are potentially the 

most important for causing CAD, we queried STARNET for isoform-specific eQTLs of 

PHACTR1 at rs9349379 (thereby avoiding the need to correct for multiple comparisons). As 

shown in Supplemental Table XIII, we identified 15 isoform-specific eQTLs for PHACTR1 
at rs9349379, with 13 of these being in AOR or MAM. Interestingly, these eQTLs coded 

for both protein and non-protein coding PHACTR1 isoforms. However, the strongest eQTLs 

to emerge, and thus by inference the strongest causal candidate isoforms for CAD, were 

PHACTR1 isoforms 201, 206 and 207.
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DISCUSSION

The pathobiology of CAD and atherosclerosis are profoundly complex, but until now there 

have been few insights as to which causal mechanisms are most important. This study 

directly addressed this concern and developed an IGA pipeline that provided a prioritized list 

of candidate causal CAD genes, and the tissues in which these genes exert their effect. This 

will enable a sharp refocusing of research efforts, both with respect to which genes are most 

critical for causing CAD and also where their effects are mediated.

Our IGA pipeline (Figure 1) integrated large eQTL and GWAS datasets. Several methods 

can be applied for this purpose, which belong to two broad classes.8 Class 1 includes 

TWAS, MetaXcan and SMR, while class 2 includes Coloc and eCAVIAR (only MetaXcan, 

SMR and Coloc were used in this study). It has been reported that the results of these 

classes do not fully overlap,23 which was corroborated by our study. Accordingly, our 

methodology was conservative, requiring candidate causal genes to be identified both using 

Coloc and either MetaXcan or SMR. While this likely led to the exclusion of additional 

causal genes that did not meet these conservative criteria, as the first systematic CAD 

IGA it provided assurance that the candidate causal genes identified are valid and correct. 

Furthermore, when our IGA pipeline was applied to different GWAS datasets (UKBB 

versus CARDIoGRAMplusC4D) or different eQTL datasets (STARNET versus GTEx), 

the results were comparable. Presumably, any differences in the candidate causal genes 

identified between these alternate datasets were related to differences between the subjects 

enrolled and their demographic features. However, another difference was that STARNET 

samples were from living subjects undergoing coronary artery bypass surgery and that after 

procurement these samples were immediately placed into solutions to stabilize RNA.12 

Conversely, GTEx samples18 were obtained at autopsy, and additional factors such as end-

of-life treatment modality,24 sequencing contamination,25 and other technical factors have 

been shown to influence gene expression in this dataset.24,25

As one of the main readouts of this IGA, we prioritized candidate causal CAD genes 

based on the smallest P value for the class 1 analyses (MetaXcan or SMR) (Table 1 and 

Supplemental Table VII). This is important to consider, because it means the prioritization 

was on the basis of the strengths of the correlations between the eQTL and GWAS results. 

While this gives assurance that the top ranked genes have very robust statistical associations 

to support their causal status, it does not imply that the top genes are those with the strongest 

effect on CAD. Ranking the strength of effect on CAD for the hundreds of genes identified 

by GWAS, across multiple different tissues, will be a major undertaking that might require 

added layers of data to be considered such as burden of CAD, the role of gene enhancer or 

promoter elements,26 and other aspects. At the present time we are not aware that this has 

been attempted using GWAS and other large-scale datasets.

While we believe our study is the first systematic, large-scale IGA for CAD, it is important 

to acknowledge a recent study that undertook a more restricted analysis for the association 

of 51 loci with CAD based on evidence from experimental and in silico studies, but 

which also included an SMR analysis using GTEx.27 While the analytic strategy was very 

different from that applied here, a likely causal gene was identified for 36 of 51 loci, and 
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several genes were validated as being potentially causal for CAD across that study and 

ours, including PHACTR1, FURIN, IL6R, LPL, LIPA, MRAS, KIAA1462 (also known as 

JCAD), GUCY1A3, SH2B3 and PDGFD.27

It was reassuring in our study that CDKN2B was one of the top two candidate causal genes 

(Table 1). This is consistent with CDKN2B being among the closest coding genes to the 

9p21.3 CAD risk locus and that the 9p21.3 locus influences CDKN2B expression.28 In 

turn, 9p21.3 is known to be a powerful common genetic risk factor for CAD.20 Our finding 

that CDKN2B is only potentially causal for CAD in AOR corroborates previous studies in 

mice21 and in humans whereby regulatory elements in coronary artery smooth muscle cells 

were linked to CDKN2B expression.22 These findings should guide research efforts to focus 

on the effects of this gene and the 9p21.3 CAD risk locus in the arterial wall, while other 

candidate genes at 9p21 (e.g. CDKN2A or long non-coding RNA ANRIL) may still exert 

causal effects at the epigenetic or post-transcriptional levels.29

Our results prioritized PHACTR1 as the other of the top two candidate causal CAD genes. 

As a CAD risk locus with largely unknown function, rs9349379, which resides in the 

3rd intron of the PHACTR1 gene, had already emerged as likely having a critical role in 

vascular pathobiology.1,2,11,30 Our results extend the knowledge-base regarding rs9349379 

and PHACTR1, showing that PHACTR1 is a likely causal gene for CAD and that this 

causality is most likely to be mediated through the arterial wall. Furthermore, our study 

highlights the profound complexity of rs9349379 in terms of its regulation of the expression 

levels (i.e. eQTLs) of at least 10 PHACTR1 isoforms, which include protein coding and 

non-coding isoforms (Supplemental Table XIII). Despite these complexities, it is clear given 

its ranking as among the top candidate causal CAD genes, that redoubled research efforts on 

PHACTR1 are justified and urgently needed.

Many other novel findings emerged from this analysis. For example, after PHACTR1 and 

CDKN2B, two of the next most significant candidate causal CAD genes were TBC1D7 
(causal in AOR and MAM) and GFOD1 (causal in MAM) (Table 1). Apart from the fact that 

they have been associated with CAD through GWAS,1,2 almost nothing is known about how 

these genes might be causal for CAD. Our study localized the tissue of likely causality to the 

arterial wall for both these genes. Furthermore, both genes are involved in GRNs; GFOD1 
in STARNET GRN 82 and TBC1D7 in STARNET GRNs 167 and 217 (Supplemental Table 

XII).

As another novel finding, our study found that most candidate causal CAD genes were in 

CAD GRNs, but only a minority were key drivers (Table 2). The fact that only a minority of 

candidate causal genes were GRN key drivers is consistent with our understanding of how 

gene networks and their key drivers cause disease. A leading explanation is that hub nodes 

(governed by key drivers) tend to be essential for life and are evolutionarily conserved, and 

that ‘disease genes’ do not typically encode hubs.31 Nonetheless, for the 22 candidate causal 

CAD genes that were found to be key drivers (Table 2), the mechanism of CAD causality 

appears to be at least partially evident via their key driver role in modulating the effects of 

those GRNs. For other candidate causal genes it appears plausible that some participate in 

GRNs but in a non-key driver role. While elucidating the precise mechanisms of effect of all 
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causal CAD genes is beyond the scope of the present study, the many network associations 

of these candidate causal genes (Table 2, Supplemental Table XII) is an important starting 

point for future research efforts.

There are certain limitations of this study. Firstly, IGA methodologies for integrating GWAS 

and eQTL data continue to evolve, and with further improvements to these methodologies 

the causal gene list for CAD could be refined. Secondly, we used STARNET as our main 

transcriptomic dataset, with GTEx as a validation dataset. Because it collected samples 

from living individuals, STARNET does not include coronary artery samples, rather the 

arterial samples collected in STARNET were the atherosclerosis-prone AOR and pre/early-

atherosclerotic MAM. As CAD is characterized by atherosclerotic plaques in coronary 

arteries, atherosclerotic aortic tissue might not be the ideal arterial tissue to study CAD. 

However, since atherosclerosis is a systemic disease, AOR should reflect ongoing disease 

patterns in differing vascular beds. Furthermore, GTEx does not contain MAM, MP or FC 

– therefore these tissues/cells could not be included in the validation analyses. In addition, 

both STARNET and GTEx used bulk (whole tissue) RNA sequencing, and did not use 

state-of-the-art single cell RNA sequencing. Hopefully, future large-scale efforts to create 

CAD-relevant single cell transcriptomic datasets will bring even greater clarity to the causal 

genes and cell types for CAD and other diseases. As another possible limitation, CAD 

was defined differently across STARNET and the GWAS datasets. STARNET applied a 

rigorous definition using coronary angiography, and CAD cases were those with severe 

CAD requiring coronary artery bypass graft surgery.11,12 In contrast, for the UKBB 

dataset a “soft” but inclusive CAD definition was used that incorporated self-reported 

angina or other evidence of chronic coronary disease, but also including more stringently 

defined phenotypes such as myocardial infarction and/or revascularization.1 Similarly, the 

CARDIoGRAMplusC4D GWAS dataset also used an inclusive definition of CAD (see 

Supplemental Table I).2 The impact of these differing definitions on this study is unknown, 

although, the fact that STARNET applied a stringent CAD definition provides reassurance of 

the validity of our findings.

In conclusion, we developed an informatics pipeline and thus conducted a large-scale IGA 

of GWAS and transcriptomic data using advanced computational methods to generate a 

refined list of candidate causal genes for CAD, which also localizes the tissue of causal 

effect. These results should serve as an important resource, facilitating the focusing of 

research efforts toward the most powerful causal CAD genes, and to the tissues and 

mechanisms that are most critical for that causal effect.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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NON-STANDARD ABBREVIATIONS AND ACRONYMS

AOR aorta

BLOOD venous blood

COR coronary artery

CAD coronary artery disease

eQTL expression quantitative trait loci

FC foam cell(s)

GWAS genome-wide association studies

GRN gene regulatory co-expression network

GTEx Genotype-Tissue Expression (project)

IGA integrative genomics analysis

LDSC linkage disequilibrium score regression

LIV liver

MAM internal mammary artery

MP macrophage(s)

SF subcutaneous fat

SKLM skeletal muscle

SMR summary-based Mendelian randomization

SNP single nucleotide polymorphism

STARNET Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task

TWAS transcriptome-wide association study

UKBB UK Biobank

VF visceral fat
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Figure 1. Flow diagram and study design.
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Figure 2. Manhattan plot of IGA and MetaXcan results demonstrating tissue-specific gene 
expression associated with CAD genetic risk loci.
Upper panel, candidate CAD causal genes identified by integrating STARNET eQTLs (9 

tissue/cell types) and UKBB GWAS data.1 Y axis denotes −log10(MetaXcan P value). Only 

genes with a MetaXcan P value < 5x10−8 (dashed red line) are shown. The tissue where 

the most significant MetaXcan P value was observed is color coded. Lower panel, candidate 

CAD causal genes identified using the same IGA pipeline by integrating STARNET eQTLs 

and CARDIoGRAMplusC4D CAD GWAS.
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Figure 3. Summary of IGA and MetaXcan results.
(A) MetaXcan results based on UKBB GWAS data. The X axis shows different tissue/cell 

types, and combinations of these different tissue/cell types, from among the 9 tissue/cell 

types sampled in STARNET. The Y axis shows the number of genes identified by MetaXcan 

for that combination of tissue/cell types. (B) As per (A), showing MetaXcan results based on 

CARDIoGRAMplusC4D GWAS data.
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Figure 4. Concordance of IGA using STARNET with alternate GWAS datasets.
(A) Venn diagrams showing the number of candidate causal CAD genes, for each tissue/

cell type in STARNET, identified in an IGA using STARNET with either UKBB or 

CARDIoGRAMplusC4D (CardioG). (B) x-y plots of Z-score results generated using 

MetaXcan alone for UKBB versus CARDIoGRAMplusC4D GWAS data when integrated 

with STARNET eQTL data for AOR and MAM. (C) x-y plot as per (B) but using 

STARNET eQTL data for BLOOD, FC and MP. (D) x-y plot as per (B) but using STARNET 

eQTL data for LIV, SF, SKLM and VAF.
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Figure 5. Heatmap showing 162 candidate causal CAD genes and the tissue(s) in which they 
exert their causal effect.
Candidate causal genes are shown for the IGA performed using STARNET with UKBB or 

CARDIoGRAMplusC4D GWASs. Genes are listed alphabetically, and tissue/cell types have 

been clustered. This is a visual summary of the genes listed in Supplemental Table VII, but 

also indicates all tissues in which these genes exert their causal effect (Supplemental Tables 

V and VI).
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Figure 6. Key GRNs and inferred regulatory interactions of candidate causal CAD genes.
(A) In STARNET, GRN 154 is a cross-tissue module with 940 genes of which 61.3% are 

co-expressed in AOR, 31.3% in MAM, 5.6% in SKLM, and <1% each in VAF, SF, BLOOD 

and LIV. This IGA identified multiple candidate causal CAD genes in this GRN: PAN2, 

PHACTR1, SMG6, THOC5 (all in AOR), and MRAS in SKLM (Supplemental Table XII). 

The visualized network shows inferred gene regulatory interactions among key drivers and 

their related genes of GRN 154, comprising 372 inferred interactions between 281 genes 

(out of 940). In this GRN, the candidate causal CAD genes (yellow arrows) were found 

in non-key driver roles. (B) Close-up view of the second-order network neighborhood of 

PAN2, PHACTR1, SMG6 and MRAS in GRN 154.

Hao et al. Page 20

Circ Genom Precis Med. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. Certain candidate causal CAD genes function as key drivers in GRNs.
(A) STARNET GRN 39, which is exclusively in AOR and contains 182 genes. GRN 

39 includes 3 candidate causal CAD genes with a key driver role: ABHD2, CAMK1D, 

PDGFD, which are each highlighted by a blue arrow (Table 2). In addition, in non-key 

driver roles GRN 39 includes CDH13 and MFGE8 (Supplemental Table XII), which are 

highlighted by yellow arrows. (B) STARNET GRN 171, which is exclusively in LIV and 

contains 200 genes. GRN 171 includes only 1 causal CAD gene with a key driver role, being 

TGFβ1 (blue arrow) (Table 2). There are no other candidate causal CAD genes in this GRN.
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Table 1.
Top 25 prioritized candidate causal genes for CAD identified using our IGA pipeline with 

either UKBB1 with STARNET,12 or, CARDIoGRAMplusC4D2 with STARNET.12

Candidate causal genes were prioritized based on the smallest P value for the class 1 analyses (MetaXcan or 

SMR), however, for all of these top 25 candidate causal genes the most significant P value was obtained with 

MetaXcan (as opposed to SMR). Full results for all 162 candidate causal genes are in Supplemental Table VII.

Candidate
casual
CAD gene

Most
significant
P value

Tissue with
most significant
P value

GWAS used in IGA
with most significant P
value (UKBB or
CaridoG)

Causal in that
tissue in UKBB,
CaridoG, or Both

CDKN2B 2.16x10−47 AOR UKBB Both

PHACTR1 3.65x10−42 MAM CardioG Both

TBC1D7 2.40x10−39 MAM CardioG Both

GFOD1 2.64x10−34 MAM CardioG Both

PSRC1 3.40x10−24 BLOOD UKBB Both

SORT1 1.18x10−23 LIV UKBB Both

CELSR2 5.19x10−23 LIV UKBB Both

MRPS6 1.96x10−22 AOR UKBB Both

SLC5A3 1.96x10−22 AOR UKBB Both

SARS 2.42x10−20 LIV UKBB Both

KCNE2 8.19x10−20 AOR UKBB CardioG

NBEAL1 4.04x10−18 AOR UKBB Both

ICA1L 1.08x10−17 AOR UKBB Both

CARF 1.79x10−17 MP UKBB Both

LIPA 1.58x10−15 LIV UKBB Both

GGCX 3.94x10−13 SF UKBB Both

TWIST1 3.97x10−13 AOR UKBB Both

VAMP5 1.11x10−12 MP UKBB Both

VAMP8 1.13x10−12 FC UKBB CardioG

FES 1.39x10−12 VAF UKBB Both

MIA3 2.56x10−12 FC UKBB Both

KIAA1462 5.86x10−12 MAM UKBB Both

PDGFD 6.28x10−12 MAM UKBB Both

FURIN 1.07x10−11 AOR UKBB Both

MAT2A 2.33x10−11 AOR UKBB Both
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Table 2.
Candidate causal CAD genes that are also key drivers of a GRN in the same tissue.

Candidate causal CAD genes in this table represent those identified in the IGA performed using STARNET 

and either UKBB or CARDIoGRAMplusC4D, where the tissue of causality in the IGA is the same tissue 

where the gene is also a key driver of a GRN. Note that STARNET does not yet have curated GRNs for 

MP and FC. Therefore this table only considered AOR, MAM, LIV, BLOOD, VAF, SF and SKLM. BMI, 

body mass index; CAD DGE, the enrichment of differential gene expression in the module between cases and 

controls; WHR, waist-hip ratio.

Candidate
causal CAD

gene

Causal gene
using UKBB
or CardioG

Tissue(s) of
effect in IGA

Tissue in
which

causal gene
is operative

in
STARNET

GRN

STARNET
GRN

number

Number
of genes
in GRN

Top phenotypic
associations of GRN

ABHD2 UKBB, CardioG AOR, MAM AOR 39 182 BMI, LDL-C, HDL-C, HBA1C

AP000350.5 UKBB AOR, LIV, MAM, VAF VAF 175 569 BMI, WHR, TG, Chol

ARNT UKBB BLOOD, SF, VAF VAF 36 307 BMI, LDL-C, TG, HBA1C

SF 137 299 BMI, LDL-C, HDH-C, WHR

ARVCF UKBB AOR AOR 74 124 LDL-C, HDL-C, BMI, CRP

ATP5G1 CardioG SKLM, VAF VAF 75 95 WHR, TG, HBA1C, CRP

CAMK1D UKBB AOR AOR 39 182 BMI, LDL-C, HDL-C, HBA1C

CNNM2 UKBB, CardioG MAM MAM 191 169 BMI, CRP, LDL-C, HDL-C

CTD-3253I12.1 CG MAM MAM 120 795 CRP, CAD DGE, WHR, BMI

DHX58 UKBB, CardioG AOR, BLOOD, LIV, 
MAM, SF, SKLM, VAF

AOR 139 104 BMI, LDL-C, CRP, TG

EIF2B2 CG FC, MAM, MP, SF SF 198 1624 BMI, WHR, HDL-C, LDL-C

FAM192A CG AOR, LIV, MAM, SF, 
SKLM

MAM 110 283 CRP, LDL-C, BMI, WHR

SF 118 214 CAD DGE, BMI, LDL-C, TG

FCHO1 UKBB, CardioG BLOOD, FC, LIV, MP BLOOD 133 57 WHR, TG, Duke, BMI

LIPA UKBB, CardioG AOR, BLOOD, LIV, 
MP, SKLM, VAF

VAF 67 98 BMI, WHR, TG, HBA1C

AOR 150 64 LDL-C, Chol, Duke, BMI

NT5C2 UKBB, CardioG AOR, BLOOD AOR 177 407 BMI, LDL-C, HDL-C, Syntax

PDGFD UKBB, CardioG AOR, MAM AOR 39 182 BMI, LDL-C, HDL-C, HBA1C

PLTP CardioG AOR, SF, VAF AOR 122 766 LDL-C, Chol, BMI, Duke

REST UKBB, CardioG AOR, MAM, MP AOR 35 223 HDL-C, LDL-C, CRP, Duke

SARS UKBB, CardioG LIV, VAF LIV 92 72 BMI, WHR, TG, CRP

SCD UKBB SF, VAF SF 78 1403 BMI, HBA1C, WHR, TG

STAT2 UKBB, CardioG FC, LIV, MP, SF, VAF SF 60 457 BMI, LDL-C, HDL-C, WHR

TGFβ1 UKBB, CardioG LIV, SKLM LIV 171 200 LDL-C, BMI, TG, HBA1C

THOC5 UKBB AOR, LIV, MAM, SF, 
SKLM, VAF

VAF 140 89 BMI, LDL-C, WHR, TG

SF 60 457 BMI, LDL-C, HDL-C, WHR
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Table 3.
Genome-wide significant eQTLs involving PHACTR1.

At genome-wide significance, four lead eQTLs for PHACTR1 were identified (the best associations for this 

gene per tissue), with stepwise regression revealing 2 additional non-lead eQTLs.

Tissue Locus Location on
chromosome 6

P value Beta

Lead eQTLs

Aorta rs9349379 12903725 9.37 x 10−17 0.49

Internal Mammary Artery rs9349379 12903725 1.95 x 10−56 0.86

Blood rs413120 13280409 1.8 x 10−8 0.41

Subcutaneous Adipose rs386406198 13060791 3.63 x 10−8 0.45

Non-lead eQTLs

Aorta rs6458568 12961440 1.33 x 10−9

Subcutaneous Adipose rs20499 13294772 5.09 x 10−5
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