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Abstract Selenicereus is a genus of perennial shrub from

the family Cactaceae, and some of them play an important

role in the food industry, pharmaceuticals, cosmetics and

medicine. To date, there are few reports on Selenicereus

plastomes, which limits our understanding of this genus.

Here, we have reported the complete plastomes of four

Selenicereus species (S. monacanthus, S. annthonyanus, S.

grandifloras, and S. validus) and carried out a compre-

hensive comparative analysis. All four Selenicereus plas-

tomes have a typical quartile structure. The plastome size

ranged from 133,146 to 134,450 bp, and contained 104

unique genes, including 30 tRNA genes, 4 rRNA genes and

70 protein-coding genes. Comparative analysis showed that

there were massive losses of ndh genes in Selenicereus.

Besides, we observed the inverted repeat regions had

undergone a dramatic expansion and formed a previously

unreported small single copy/inverted repeat border in the

intron region of the atpF gene. Furthermore, we identified 6

hypervariable regions (trnF-GAA-rbcL, ycf1, accD, clpP-

trnS-GCU, clpP-trnT-CGU and rpl22-rps19) that could be

used as potential DNA barcodes for the identification of

Selenicereus species. Our study enriches the plastome in

the family Cactaceae, and provides the basis for the

reconstruction of phylogenetic relationships.
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Abbreviations

SSR Simple sequence repeat

IRs Inverted repeats

LSC Large single-copy

SSC Small single-copy

ML Maximum-likelihood

BI Bayesian inference

DnaSP DNA Sequence Polymorphism

CTAB Cetyl trimethylammonium bromide

NCBI National Center for Biotechnology Information

Pi Nucleotide diversity/polymorphism

Introduction

Hylocereus species are perennial herbs from the family

Cactaceae. The species in this genus are native to Central

America, and nearly 20 species of Hylocereus are recog-

nized by most researchers and they can be found naturally

occurring from Southern Mexico to throughout Central

America and even Northern South America (Nunes et al.

2014). All Hylocereus species have varying edible fruits

and are commercially developed in different ways.

Although the white pitaya (H. undatus) is the primary

species found in grocery stores and street markets, red

fleshed dragon fruit has gained more popularity. The red

fleshed pitaya (Selenicereus monacanthus (Lem.)

D.R.Hunt), formerly known as H. lemairei, not only has an

attractive red–purple appearance and unique taste, due to

its rich content of high-value functional com-

pounds(Zhuang et al. 2012), it is also widely used in

pharmaceutical, cosmetic and medical applications. For
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example, the pulp of red fleshed pitaya is rich in b-carotene
and anthocyanin, which can effectively prevent and treat

some chronic diseases (especially cancer) (Bai and Zhang

2017; Guimaraes et al. 2017; Villalobos et al. 2012).

The specific definitions of Hylocereus and Selenicereus

have always been controversial (Cálix de Dios 2009).

Britton and Rose (1963) divided Selenicereus and Hylo-

cereus into different genera from morphology. However,

based on many plastids and nuclear DNA sequences,

morphology and anatomical data, it was proved that the

two genera were not separated, and Hylocereus was nested

in Selenicereus (Arias et al. 2005; Gómez-Hinostrosa et al.

2014; Plume et al. 2013; Miguel Ángel et al. 2016). Dif-

ferent perspectives on classification standards and limited

genomic information further complicated the taxonomic

definition of this genus. Therefore, it is important to

explore the phylogenetic relationship of the Selenicereus

species based on genomics. There are few studies on the

phylogenetic relationship between Hylocereus and Se-

lenicereus based on the complete plastomes (Korotkova

et al. 2017).

Organelle genome sequencing is essential for under-

standing the phylogenetic relationship between closely

related species. (Ivanova et al. 2017). Chloroplast is an

essential organelle in plants with a semi-autonomous

genetic system. Its genome is called plastid genome or

plastome (Palmer et al. 1985). Most plastomes in angios-

perms are a typical quadripartite structure (Palmer 1985),

consisting of two inverted repeats (IRa and IRb) and two

single copy regions (LSC and SSC) (Yang et al. 2016), and

the size of the plastome ranges from 72 to 220 kb (Pervaiz

et al. 2015), including about 110–130 unique genes, many

are involved in photosynthesis (Choi et al. 2015). Plas-

tomes have been widely used in taxonomic and evolu-

tionary studies (Daniell et al. 2016) due to their small size,

simple structure and maternal inheritance (Maliga 2002;

Palmer et al. 1988). Entire plastome and nuclear DNA

clusters are important in distinguishing between closely

related or recessive species (Krawczyk et al. 2018; Yang

et al. 2013; Myszczyński et al. 2017). Besides, although the

plastomes are generally conserved in terms of sequence

differences and structural organization, some non-coding

regions may experience an unexpectedly high frequency of

nucleotide substitutions, and these hypervariable regions

could be used as DNA barcodes for species identification

(Dong et al. 2012).

In this study, we sequenced, assembled and annotated

the plastomes of four Selenicereus species, including the

red-fleshed pitaya (S. monacanthus, formerly classified as

Hylocereus) and three traditional Selenicereus species (S.

annthonyanus, S. grandifloras and S. validus). Our main

tasks were as follows: (1) To provide four high-quality

reference Selenicereus plastomes; (2) To analyze the

structural characteristics and sequence divergence of the

plastomes in Selenicereus; (3) To identify simple sequence

repeats (SSRs) loci and repeat sequences for further studies

on population genetic structure; (4) To understand the

phylogenetic relationships of Selenicereus in Cactaceae

based on the complete plastome sequences; and (5) To

identify the hypervariable regions that could be used as

DNA barcodes for commercial identification of pitaya

varieties.

Materials and methods

Sampling, DNA extraction and sequencing

Fresh stems of the red-fleshed pitaya (S. monacanthus)

were collected from Yulin, Guangxi, China (22�94’ N,

110�49’ E). The fresh stems of the other three analyzed

Selenicereus species were collected from the local flower

market of Beibei, Chongqing, China (29�81’ N, 106�40’
E). S. monacanthus, S. annthonyanus, S. grandifloras, and

S. validus were identified by Professor Jie Yu based on

morphological characteristics and related DNA barcoding.

These species were cultivated for edible use or ornamental

plants, and no permission is required to collect these

samples. Our experimental work, including the collection

of plant materials, complies with institutional, national or

international guidelines. All the samples were deposited in

the Herbarium of Southwest University, Chongqing, China

(voucher code: YJ-swu002, YJ-swu027 * YJ-swu029).

Total genomic DNA was extracted by using the CTAB

method (Arseneau et al. 2017). The DNA library with an

insert size of 350 bp was constructed using a NEBNext�
library construction kit and sequenced by using the HiSeq

Xten PE150 sequencing platform. Sequencing produced a

total of 6.04–6.85 Gb of raw data per species. Clean data

were obtained by using Trimmomatic (Bolger et al. 2014):

by removing the low-quality sequences with more than 5%

bases being ‘‘N’’, and a quality value of Q\ 19 accounted

for more than 50% of the total base. The detailed

sequencing data were shown in Table S6.

Genome assembling and annotation

The plastome assembly from the clean data was accom-

plished utilizing GetOrganelle (v1.7.3) with a default set-

ting. The correctness of the assembly was confirmed by

using Bowtie2 (v2. 0.1) (Langmead et al. 2009) to manu-

ally edit and map all the raw reads to the assembled gen-

ome sequence under the default settings. Detailed assembly

information was shown in Table S1. The plastomes were

initially annotated by using GeSeq (Tillich et al. 2017) with

two reference genomes (Carnegiea gigantea, GenBank:
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NC_027618.1 and Lophocereus schottii, GenBank:

NC_041727.1). Subsequently, the annotations with prob-

lems were manually edited by using Apollo (Misra and

Harris 2005), and genome maps were drawn by OGDRAW

(Greiner et al. 2019).

Repeats and SSR analysis

The GC content was determined by using the cusp program

provided by EMBOSS (v6.3.1) (Rice et al. 2000). Simple

Repeat Sequences (SSRs) were available through the

online site MISA (https://webblast.ipk-gatersleben.de/

misa/). Additionally, REPuter (https://bibiserv.cebitec.uni-

bielefeld.de/reputer/) was used to calculate palindromic

repeats, forward repeats, reverse repeats, and complemen-

tary repeats with the following settings: hamming distance

of three and minimal repeat size of 30 bp (Kurtz et al.

2001).

Sequence divergence analysis

The BLASTn (Chen et al. 2015) program was used to

search for the homologous sequences of ndh, rpoC1 and

rpl2 genes among these plastomes, including: the four

Selenicereus species, Opuntia quimilo (MN114084.1) and

Portulaca oleracea (NC_036236.1). The parameters were

as follows: -evalue 1e-5, -word_size 9, gapopen 5, gapex-

tend 2, reward 2, penalty 3, and dust no. The BLASTn

results were visualized on TBtools (Chen et al. 2020).

Furthermore, the sequence similarity analysis results of the

four plastomes we analyzed were obtained in shuffle-

LAGAN mode by using the online site mVISTA (http://

genome.lbl.gov/cgi-bin/VistaInput?num_seqs=4). With the

help of PhyloSuite (v1.2.1), we extracted the orthologous

genes of the four taxa and aligned the sequences by using

the plugin MAFFT (v7.313) embedded in PhyloSuite. The

percentage of variable sites was calculated based on the

comparison of protein-coding genes by MEGA (v6.0)

(Tamura et al. 2013). A sliding window with both window

length and step size of 500 bp was set using DnaSP (v6.0)

software to obtain nucleotide polymorphisms (Pi) of four

plastomes. IRscope was used for visualizing the IR/SC

boundaries (https://irscope.shinyapps.io/irapp/) and the

adjacent genes.

Phylogenetic analysis

The data sources for phylogenetic analysis were shown in

Table S2. A total of 56 orthologous genes among the

analyzed plastomes were identified and extracted by using

PhyloSuite (v1.2.1) (Zhang et al. 2020). The 56 shared

plastid protein-coding genes includes atpA, atpB, atpE,

atpF, atpH, atpI, ccsA, cemA, clpP, infA, matK, petA,

petB, petD, petG, petL, petN, psaA, psaB, psaC, psaI,

psaJ, psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI,

psbJ, psbK, psbM, psbN, psbT, rbcL, rpl14, rpl16, rpl20,

rpl22, rpl2, rpoA, rpoB, rpoC1, rpoC2, rps11, rps12,

rps14, rps15, rps19, rps2, rps3, rps4, rps7, rps8 and ycf3.

The corresponding nucleotide sequences were aligned by

using MAFFT (v7.450) (Rozewicki et al. 2019) imple-

mented in PhyloSuite. These aligned nucleotide sequences

were concatenated, and used to construct the phylogenetic

trees by using the maximum likelihood (ML) method

implemented in RAxML (v8.2.4). The parameters were

‘‘raxmlHPC-PTHREADS-SSE3 -f a -N 1000 -m

GTRGAMMA—9 551,314,260 -p 551,314,260’’. The

bootstrap analysis was performed with 1,000 replicates.

Bayesian inferences (BI) analysis was performed in

MrBayes (v3.2.6) using the Markov Chain Monte Carlo

method with 200,000 generations and sampling trees every

100 generations. The first 20% of trees were discarded as

burn-in with the remaining trees being used for generating

a consensus tree.

Results

Overall organization and features of the four

plastomes

The plastome size of these four taxa ranged from

133,146 bp (S. monacanthus) to 134,450 bp (S. validus).

They were typical quadripartite structure, consisting of a

large single-copy region (LSC, 68,076—68,877 bp), a

small single-copy region (SSC, 21,716—22,023 bp), and a

pair of inverted repeat region (IRs, 21,674—21,775 bp).

Figure 1 showed the plastid genome map. In addition to the

differences in length, the GC content of these conserved

plastomes also showed slight changes. According to the

analysis, the GC content of the four plastome ranged from

36.29 to 36.43%, and the GC content in SSC region

(39.39–39.69%) was significantly higher compared to LSC

region (36.22%—36.36%) and IR region (34.83%—

34.98%) (Table 1).

Like previous reports in cacti plastomes, the genome

annotation results showed that the 11 ndh genes in the

analyzed plastome were partially lost, including ndhA,

ndhC, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, and ndhK.

However, all these genes existed in the plastome of

Opuntia Quimilo and Portulaca Oleracea (Köhler et al.

2020; Liu et al. 2018). We used all 11 ndh genes of O.

Quimilo as query sequences to search for homologous

sequences in the four Selenicereus plastomes based on the

BLASTn program. The results confirmed the absence of

most ndh genes (Fig. 2a). The second exon of ndhB gene

was also lost, and only the first exon remained (Fig. S1). By
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contrast, only the ndhD gene was intact. Overall, the four

plastomes were all composed of 104 unique genes,

including 30 unique tRNA genes, 4 unique rRNA genes

and 70 unique protein-coding genes. Moreover, we

observed the loss of the first exon of clpP gene based on

BLASTn search (Fig. S2), which might be pseudogenes

similar to gene ndhB (Table 2).

Furthermore, we also clearly observed the loss of

intron in two genes: rpl2 and rpoC1 (Fig. 2b). Due to

the loss of some genes, exons and introns, the number of

intron-containing functional genes in Selenicereus spe-

cies’ plastomes were significantly reduced. Except for

the trans-splicing gene, rps12, there were only 5 protein-

coding genes (petB, petD, rpl16, rps16 and atpF,) con-

taining one intron, and only one gene (ycf3) containing

two introns. Moreover, there were 5 tRNA genes con-

taining one intron (trnL-UAA, trnT-CGU, trnK-UUU,

trnA-UGC and trnE-UUC).

In the four Selenicereus plastomes, there were 10 pro-

tein-coding genes (atpF, atpA, clpP, psbI, psbK, rps16,

matK, psbA, ycf2, ycf1) and 8 tRNA genes (trnR-UCU,

trnT-CGU, trnS-GCU, trnQ-UUG, trnK-UUU, trnH-GUG,

trnM-CAU and trnL-CAA) were observed located in IR

regions, and they duplicated in the IR regions, so they

existed as two copies. Among the protein-coding genes,

Fig. 1 Plastid genome map of Selenicereus species and correspond-

ing pictures of four plants. The thick line spacing in the inner circle

represents a conservative quaternary structure, with LSC region, SSC

region and a pair of IR region, and the dark gray area and light gray

parts inside represent the ratio of GC and AT content, respectively
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two genes (ycf1 and atpF) are partially located in IR region,

and all rRNA are located in the SSC region.

Repeat and SSR analysis

Microsatellites (also called simple repeat sequences,

SSRs) are usually 6 bp tandem sequences in eukaryotic

genomes (Lovin et al. 2009). Their high polymorphism

and codominant inheritance make them become popular

molecular markers (Morgante et al. 2002; Naranpanawa

et al. 2020). They play an important role in the

identification of species and the evaluation of evolu-

tionary relationships (Guang et al. 2019). Among the

four plastomes, S. monacanthus had the most significant

number of SSR i.e. 67, followed by S. anthonyanus with

61 SSR and S. validus with 60 SSR, and finally, S.

grandiflorus with 55 SSR. Most of these SSRs were

homopolymers of A/T mononucleotide, and on average,

they accounted for 64.60% of the total SSRs. Dinu-

cleotides, tetranucleotides, and trinucleotides account for

18.93%, 8.64%, and 3.70% of the total SSR. Pentanu-

cleotide and hexanucleotide repeats were rare in

Table 1 Plastome features of

the four Selenicereus species
Species S. monacanthus S. anthonyanus S. grandiflorus S. validus

Accession number MW553055 MW553068 MW553069 MW553070

Length (bp)

Total length 133,146 133,317 134,211 134,450

LSC 68,076 68,203 68,839 68,877

SSC 21,716 21,766 22,014 22,023

IR 21,677 21,674 21,679 21,775

GC content (%)

Total GC content 36.40 36.43 36.34 36.29

LSC 36.25 36.36 36.24 36.22

SSC 39.69 39.54 39.40 39.39

IR 34.98 34.98 34.95 34.83

Gene numbers

Total number of genes 104 104 104 104

tRNA 30 30 30 30

rRNA 4 4 4 4

Protein-coding 70 70 70 70

Fig. 2 Visualization of BLASTn results on TBtools. a Schematic diagram of significant loss of ndh gene in the four Selenicereus plastomes.

b Schematic diagram of rpoC1 and rpl2 gene’s intron in the four Selenicereus plastomes
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Selenicereus plastomes, accounting for 1.23% and 1.64%

of all SSRs, respectively (Table S3 and Fig. 3).

We detected a large number of dispersed repeats in the

four plastomes. A total of 807 dispersed repeats were

identified, including 618 forward repeats (with length

ranging from 30 to 415 bp), 146 palindromic repeats (30 to

415 bp), 39 reverse repeats (30 to 41 bp), and 4 comple-

mentary repeats of 30 bp in length (Table S4). Notably, the

number of forward repeats in S. grandiflorus and S. validus

was significantly compared to the other two taxa (Fig. 3b).

The dispersed repeats not only serve as potential markers

for rearrangement, but were also crucial for inducing

mutations (Lopez et al. 2015).

Genomic divergence

Sequence similarity analysis based on mVISTA (Frazer

et al. 2004) was performed among the 4 plastomes, with

the reference being the plastome of S. validus. We

observed that the plastome sequences of the four species

were quite conservative. In general, IR regions were

more conserved than LSC and SSC regions, and the

hypervariable regions were mainly observed in non-

coding sequences. Nevertheless, several coding-regions

showed significant differences in the sequences (Fig. 4),

such as accD, clpP, ycf1 and ccsA; particularly, for gene

accD, which showed a high-level of sequence diver-

gence. In addition, there were significant differences

among several non-coding regions: trnF-rbcL, trnM-

accD and trnN-trnR.

According to the results of DNA sequence polymor-

phism obtained by DnaSP (v6.0) (Rozas et al. 2017), we

detected six hypervariable regions, trnF-GAA-rbcL (Pi =

0.05567), ycf1 (Pi = 0.059), clpP-trnS-GCU (Pi =

0.03067), clpP-trnT-CGU (Pi = 0.03167), rpl22-rps19

(Pi = 0.02067), and the highest Pi value of accD gene,

including the intergenic region trnM-accD, with Pi value

ranging from 0.00667 to 0.167 (Fig. 5). The maximum Pi

value for six hypervariable regions is given in parentheses.

The results were similar to those based on mVISTA, sug-

gesting that these regions could be used as potential DNA

barcodes.

Table 2 Gene composition in the plastomes of Selenicereus

Category of

genes

Group of genes Name of genes

Ribosomal

RNA

rRNA rrn16S, rrn23S, rrn5S, rrn4.5S

Transfer RNA tRNA 30 unique trna genes

Photosynthesis Subunits of ATP synthase atpA (9 2), atpA, atpB, atpE, atpF* (9 2), atpH, atpI

Subunits of photosystem II psbA (9 2), psbB, psbC, psbD, psbE, psbF, psbI (9 2), psbJ, psbK (9 2), psbM, psbN,
psbT, psbZ

Subunits of NADH-

dehydrogenase

ndhBw, ndhD

Subunits of cytochrome b/f

complex

petA, petB*, petD*, petG, petL, petN

Subunits of photosystem I psaA, psaB, psaC, psaI, psaJ

Subunit of rubisco rbcL

Self-replication Large subunit of ribosome rpl14, rpl16*, rpl2, rpl20, rpl22, rpl32, rpl33, rpl36

DNA dependent RNA

polymerase

rpoA, rpoB, rpoC1, rpoC2

Small subunit of ribosome rps11, rps12*, rps14, rps15, rps16, rps16*, rps18, rps19, rps2, rps3, rps4, rps7, rps8

Other genes Subunit of Acetyl-CoA-

carboxylase

accD

c-type cytochrom synthesis gene ccsA

Envelope membrane protein cemA

Protease clpPw (9 2)

Translational initiation factor infA

Maturase matK (9 2)

Unknown Conserves open reading frames ycf1, ycf1w, ycf3**, ycf2 (9 2), ycf4

(9 2) indicates that the gene located in the IRs and thus had two complete copies, * and ** indicate that genes containing one/two introns. ‘w’

indicates that it is a pseudogene
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We analyzed 67 orthologous genes in the protein-coding

regions of the four plastomes. In our study, a total of 19

genes (atpA, matK, petD, petG, petN, psaC, psaI, psaJ,

psbA, psbE, psbF, psbH, psbI, psbK, psbM, psbN, psbT,

psbZ, rps16) in the four species were completely con-

served, and 27 genes had a mutation rate of less than 1.0%.

However, we also observed that some protein-coding genes

had a high-level of mutation (Table S5 and Fig. 6). For

example, the mutation rates of 2 genes were more than 2%,

and the mutation rates of 3 genes (rpl36, ycf1 and rpl22)

were more than 3%. The highest mutation rates were

observed in three genes: rpl32 (12.34%), accD (10.05%)

and clpP (7.44%).

Contraction and expansion of inverted repeats

We analyzed the IR/SC boundaries and their adjacent

genes in the four plastomes, and compared them to pre-

viously published related plastomes. The IR/SC border

and the adjacent genes of Selenicereus plastomes were

very similar in structural characteristics except for small

differences in gene position. However, we observed that

the IR lengths and IR boundaries of the four plastomes

which have been newly reported here varied greatly from

those previously reported in cacti and related species. The

length of IR regions was observed as more than

20,000 bp in Opuntia quimilo and all other reported non-

cactus species in the order Caryophyllales (Su et al.

2018). However, it was only 8530 bp in Rhipsalis bac-

cifera, and less than 2000 bp in most cacti genera, such as

Mammillaria, Carnegiea, and Lophocereus (Solórzano

et al. 2019a; Oulo et al. 2020b). Here, in our four Se-

lenicereus plastomes, the IR lengths ranged from 21,674

to 21,775 bp, indicating that the cacti had undergone a

drastic expansion/contraction event in IR regions.

Furthermore, we also analyzed the IR boundaries of

plastomes longer than 2000 bp in the IR region. As

shown in Fig. 7, in two non-cactus species, the rps19

gene span the LSC/IRb border, and a rps19 pseudogene

was duplicated in the IRa. The ycf1 gene span the SSC/

IRa border, and an ycf1 pseudogene was duplicated in

the IRb.

Fig. 3 Comparison of repeated sequences in the 4 Selenicereus plastomes. a Types and numbers of SSRs detected in the 4 plastomes. b Types

and numbers of repeats detected in the 4 chloroplast genomes. c-f Types and numbers of SSR motifs detected in the 4 plastomes
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In O. quimilo, the two LSC/IR boundaries were ycf15-

trnV and trnV-trnH, and the two SSC/IR boundaries were

ndhG-trnL and ndhG-ndhE, respectively. By contrast, in R.

baccifera, the two LSC/IR boundaries were rpl23-trnI and

trnI-trnH, and the two SSC/IR boundaries were inside ycf1.

Due to the dynamic changes of IRs, the IR boundaries were

Fig. 4 Sequence similarity of 4 Selenicereus species by using

S.validus as a reference sequence and visualized in mVISTA.

Different color markers represent different areas, the pink regions

are conserved noncoding sequences, the purple regions are protein-

coding sequences, the light blue regions are tRNA or rRNA and the

gray arrows are the gene and its direction. The percentage of identity

ranges from 50 to 100%, shown on the Y-axis

Fig. 5 The nucleotide diversity (Pi) of four Selenicereus plastomes

(analyzed using DnaSP with a sliding window analysis (window

length: 500 bp, step size: 500 bp)). The horizontal and vertical axes

respectively represent the midpoint position of the window and the Pi

value of each window. Pi values in one intergenic (trnF-GAA-rbcL,
0.05567) and two protein-coding genes (accD, 0.00667–0.167; ycf1,
0.004–0.059) were greater than 0.05
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also changed in the four Selenicereus plastomes. Although

the two SSC/IR boundaries were similar to R. baccifera,

the second exon of atpF captured by the IR region, while

the first exon of atpF was still located in the LSC region.

Thus, a previously unreported LSC/IR boundary at the

intron region of atpF was formed. This result suggested

that the IR boundaries in cacti plastomes were extremely

unstable compared with other Caryophyllales plastomes.

Phylogenetic analysis based on conserved protein-

coding genes

In this study, we constructed phylogenetic trees by using

the 56 shared plastid genes as datasets. The tree recon-

struction based on maximum likelihood (ML) method and

Bayesian Inference (BI) method had a highly consistent

topology. The stable topological structure and high

Fig. 6 Percentage of variable

sites for 67 shared plastidial

genes of 4 Selenicereus species
calculated by MEGA v6.0. The

four genes with the highest

mutation rate have been marked

with an ‘*’ in the figure, and

they are rpl32 (12.34%), accD
(10.05%), clpP (7.44%) and

rpl22 (5.00%), respectively

Fig. 7 Comparision of borders among the LSC, SSC and IR region of 8 species. JLB, JSB, JSA and JLA represents the boundary between LSC/

IRb, IRb/SSC, SSC/IRa and IRa/LSC
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bootstrap/posterior probability support values of each node

indicated the reliability of phylogenetic tree (Fig. 8).

The phylogenetic analysis involved 15 species of the

subfamily Cereoideae and two outgroups (Pereskia

sacharosa and O. quimilo). In our trees, the four Se-

lenicereus species form a monophyletic clade supported by

strong support values. The red-fleshed pitaya

(S. monacanthus) was most closely related to S. antho-

nyanus compared to other two Selenicereus species.

Discussion

Changes in the content of plastomes: gene gain/loss

and intron loss

In this study, we reported the complete plastomes of S.

monacanthus, S. annthonyanus, S. grandiflorus, and S.

Validus. According to the assembly results, the plastomes

of these four taxa were typical quartile structure, with a

pair of inverted repeats separated by a large single-copy

region and a small single-copy region. Interestingly, we

observed two phenomena in this study. Firstly, the phe-

nomenon of massive losses of ndh genes in the plastome

was observed, which was similar to the report by Sander-

son et al. (2015), and only the ndhD gene was relatively

complete. The ndh genes in plastids are important for the

formation of the NADH dehydrogenase-like complex,

which plays a role in the circulating electron flow (CEF) in

the photosystem of most land plants. CEF is attributed to

plant maintenance of effective photosynthesis, water stress

and light protection (Burrows et al. 1998; Wang et al.

2006). Under favorable conditions, plants lacking NADH

dehydrogenase-like complexes usually do not show sig-

nificant growth and development defects (Horváth et al.

2000), most likely because there is a second pathway in

CEF independent of plastid ndh genes. Secondly, we

observed that compared with most species in the cactus

family, the number of intron-containing genes in the

plastomes of Selenicereus species was significantly

reduced, such as O. quimilo plastome includes 16 intron-

containing genes (Köhler et al. 2020). The main reason for

this phenomenon is the losses of exons (ndhB and clpP)

and introns (rpl2 and rpoC1). It was confirmed that the rpl2

intron was lost in the common ancestor of Caryophyllales

(Downie et al. 1991). Plastid-encoded Plastid RNA poly-

merase (PEP) and nucleus-encoded Plastid RNA poly-

merase (NEP) are important in plastid gene transcription in

higher plants during photosynthesis. The rpoC1 gene

encode the DNA-directed RNA polymerase (PEP) subunit

beta, and the lack of PEP activity leads to photosynthetic

defects in plants, and there is no functional copy of rpoC1

Fig. 8 Phylogenetic relationships among 17 Cactaceae species. The

56 shared plastid protein coding genes (atpA, atpB, atpE, atpF, atpH,
atpI, ccsA, cemA, clpP, infA, matK, petA, petB, petD, petG, petL,
petN, psaA, psaB, psaC, psaI, psaJ, psbA, psbB, psbC, psbD, psbE,
psbF, psbH, psbI, psbJ, psbK, psbM, psbN, psbT, rbcL, rpl14, rpl16,
rpl20, rpl22, rpl2, rpoA, rpoB, rpoC1, rpoC2, rps11, rps12, rps14,
rps15, rps19, rps2, rps3, rps4, rps7, rps8 and ycf3) were used as

datasets to construct the phylogenetic trees by using the maximum

likelihood (ML) method and Bayesian inference (BI) method.

Pereskia sacharosa and Opuntia quimilo were used as outgroups.

The scale number 0.05 indicates the length of the branch and the

frequency of substitutions at 0.01 of the base at each site of the

genome
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outside the plastid that can complement the plastid rpo

gene (Serino and Maliga 1998). Introns can effectively

improve the expression level of genes under certain con-

ditions and play an indispensable role in regulating gene

expression (Yi et al. 2012). Whether the loss of rpoC1

intron has an effect on the photosynthesis of Selenicereus

plants still needs further study. This loss has also been

observed in other plastomes of subfamily Cereoideae (Oulo

et al. 2020b; Sanderson et al. 2015; Solórzano et al. 2019b),

and it probably is a feature unique to this clade.

SSRs and the repeats are crucial for the plastome rear-

rangement, and are widely used to detect population

genetic diversity (Khan et al. 2019), as well as being

considered as markers for DNA fingerprinting (Bodin et al.

2013). We analyzed the SSRs and repeat sequences in the

four plastomes. First, the number of SSRs ranged from 55

to 67. Most SSRs were mononucleotide (A/T) polymers,

accounting for 64.60% of all SSRs. This is one of the

reasons for the low GC content in the plastome. Second,

compared with SSRs, there were a lot of dispersed repeats

in the four analyzed plastomes, and the length of for-

ward/palindromic repeats was even more than 400 bp. The

repeated sequences have previously been reported to have

the potential to form secondary structures, they can be used

to identify the recombination process (Kawata et al. 1997).

In our study, these large numbers of short dispersed repeats

most likely facilitated the plastome rearrangement.

Unfortunately, our Illumina short reads have not been able

to confirm this, and the long reads will be needed to con-

firm the presence of genomic recombination in the future.

The expansion of inverted repeats resulted in a rare

boundary

The contraction and expansion of IRs are common in

angiosperms (Zhu et al. 2016), which is also one of the

factors affecting the length of plastome (Xue et al. 2019).

According to the comparative analysis results, we observed

that the length of IR regions in the four Selenicereus

plastomes exceeded 20 kb. Although this phenomenon also

exists in O. quimilo, the IR length of most reported genera

in cacti such as Mammillaria, Carnegiea and Lophoereus

were usually less than 2 kb (Solórzano et al. 2019a). Other

studies have observed that the IR length of R. baccifera

was only 8,530 bp (Oulo et al. 2020a). Apparently, cacti

species have undergone dramatic expansion/contraction

events in IR region. Besides, through the analysis of the IR

boundaries, we noticed that the positions of each gene in

the IR/SC border of the four Selenicereus plastomes were

not significantly different. However, due to the expansion

of IRs, some genes originally located in the LSC region

were access to the IR region and formed a new IR

boundary in the intron region of gene atpF that had not

been reported before. In general, compared with other

plastomes of Caryophyllales (Yao et al. 2019), the IRs of

the cactus family are extremely unstable.

Hypervariable regions were identified based

on plastome sequences

According to the results of sequence similarity analysis by

mVISTA, the four Selenicereus plastomes were highly

conserved, and there were few regions of difference. The

hypervariable regions in plastomes were mainly identified

in non-coding regions, which is consistent with the other

plastomes in angiosperm (Gao et al. 2018; Zhang et al.

2016). Although there is little difference in plastomes as a

whole, some hypervariable regions deserve our attention.

Significant differences were observed in some protein-

coding genes, such as clpP, ycf1, ccsA and accD, particular

in gene accD, the mutation rates were even higher com-

pared to the non-coding region. While in contrast, the gene

with the greatest difference among the other plastomes

usually was observed in gene ycf1. The differences in accD

genes might be due to the presence of a large number of

forward repeats in this region, which tend to mediate

genome rearrangement. A large number of repeats in this

region have been previously observed in passion fruit

(Cauz-Santos et al. 2020), leading to the rearrangement of

plastomes. Our results suggested that this region is also

highly variable in cactus, and that they probably also

contribute to genomic recombination in the genus Se-

lenicereus. The gene accD and ycf1 both are indispensable

for plant adaptation and leaf development (Kode et al.

2005; de Vries et al. 2015), and the high variability of

nucleotide sequences of these two genes might be the result

of environmental adaptation during evolution (Park et al.

2017; Thode and Lohmann 2019; de Vries et al. 2017).

However, whether they cause physiological differences

between Selenicereus and other cactus plants remains to be

observed. On the whole, these hot-spots of mutations could

be used as resources for system biology analysis and

identification of DNA barcodes in plants. Our results pro-

vide a wealth of genetic information for the identification

of species for the development of new DNA barcodes in

Selenicereus (Dong et al. 2012).

Phylogenomic analysis revealed a close relationship

among Selenicereus species

The phylogenetic relationship of the Cactaceae has long

been a problem because of hybridization and complex

evolutionary pattern of convergence in life forms and other

traits (Korotkova et al. 2017). Plastid phylogenomics has

provided new ideas and insights for the phylogenetic

relationship of Cactaceae family and solved some
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taxonomic problems. In this study, we have constructed the

high-resolution phylogenetic tree by using the 56 shared

plastid genes as datasets. The results show undisputed

monophyly of the 4 Selenicereus species. However, it is

worth noting that S. monacanthus, once classified as Hy-

locereus (synonym: H. lemairei), is more closely related to

S. anthonyanus, the traditional Selenicereus species. Our

results support the previous studies, namely the two genera

were not separated, and they have a very close phyloge-

netic relationship (Arias et al. 2005; Gómez-Hinostrosa

et al. 2014; Plume et al. 2013; Miguel Ángel et al. 2016).

However, considering the existence of interspecific or even

intergeneric hybridization for Selenicereus plants (Tel-Zur

et al. 2004), it is one-side to perform phylogenetic infer-

ences about species with hybridization origin based on

organelle genomes, as organelles are matrilineal inheri-

tance (Liu et al. 2016). The combination of nuclear and

organelle genes should be considered and used for phylo-

genetic inference in the future. In addition, future studies

on Selenicereus can consider comprehensively exploring

the delimits of unknown species, such as S. triangularis, S.

murrillii and S. costaricensis, based on a wide range of

molecular, morphological and ecological data.

Conclusion

In this study, we reported the complete plastomes of four

Selenicereus species. The plastomes of these four species

were similar to those of other angiosperms with typical

quadripartite structure. In general, the genomic changes of

the four plastomes were interesting: The large losses of ndh

genes and the losses of introns/exons for several split genes

(ndhB, rpoC1, clpP and rpl2). This implies that these

changes of plastome in Selenicereus species is likely cor-

related with the adaption of arid climate. Furthermore, the

IR region underwent a dramatic expansion and formed a

previously unreported SC/IR border in the intron region of

the atpF gene. These observations provide new insights

into the plastome evolution associated with drought-toler-

ant plants and deepen our understanding of the genetics of

Cactaceae plants.
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