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Abstract

Background: Automatic classification techniques provide tools to analyze complex data and 

predict disease progression.

Methods: A total of 305 cognitively normal (CN); 475 patients with amnestic mild cognitive 

impairment (aMCI); and 162 patients with dementia were included in this study. We compared 

performance of 3 different methods in predicting progression from aMCI to dementia: 1) Index-

based model; 2) Logistic regression (LR); and 3) ensemble linear discriminant (ELD) machine 

learning (ML) models. LR and ELD models were trained using data from CN and dementia 

subgroups, and subsequently were applied to aMCI subgroup to predict their disease progression.

Results: Performance of ELD models were better than LR models in prediction of conversion 

from aMCI to AD at all time-frames. ELD models performed better when a larger number of 

features were used for prediction.

Conclusions: ML models have substantial potential to improve predictive ability for cognitive 

outcomes.

Keywords

Alzheimer’s disease; MCI; dementia; Machine learning; predictive analytics

1. Introduction

Identifying individuals who will progress to Alzheimer’s dementia (AD) over specified time 

intervals with high probability has been difficult. Quantitative risk prediction for AD using 

structured data sources and classical statistical methods have been available for many years1. 

Over the last decade and with the rapid growth of information on individuals’ health and 

the increased availability of biomarkers, investigators are shifting toward using advanced 
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multivariate methods such as clustering, latent class analysis (LCA)2 and machine learning 

(ML)3 to improve classification and quantitative risk prediction of cognitive decline4.

Despite the potential advantages of ML techniques, their use in clinical AD research has 

remained limited. This is in part due to doubts over efficiency of these models and lack of 

head to head comparison with conventional methods. In this study, we aimed to compare 

the performance of different models in predicting progression from amnestic mild cognitive 

impairment (aMCI) to AD using data from the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI).

2. Methods

2.1. Study design and participants

Data used for this analysis were obtained from the ADNI database (www.adni.loni.usc.edu). 

The ADNI is an ongoing cohort, which was launched in 2003 as a public–private 

partnership. The individuals included in the current study were initially recruited as part of 

ADNI-1, ADNI-GO, and ADNI-2. This study was approved by the IRB of all participating 

institutions. Informed written consent was obtained from all participants at each site.

Eligible participants for this study had neuropsychiatric measures, CSF biomarkers and 

MRI measures at the baseline visit, and at least 6 months of follow up. Considering that 

missing data can affect performance of classifiers, making head-to-head comparison of them 

impractical, cases with missing data were deleted listwise and not considered for further 

analysis. Participants. A total of 942 participants met the criteria for inclusion in this study. 

Table, Supplemental Digital Content 1 summarizes characteristic of participant.

2.2. Study measures (features)

Study features included cognitive test scores, APOE4 gene status, volumetric MRIs and CSF 

biomarkers. For details about study measures see Table, Supplemental Digital Content 2.

2.3. Study Feature-sets

The following sets of features were used in the statistical analysis:

• Feature-set-1 (5 features) was adapted based on the study by Steeland et al5: 

ApoE4 status, memory summary score, Functional Activities Questionnaire 

(FAQ) score, hippocampal volume, and CSF Tau/Aβ ratio.

• Feature-set-2 (14 features) was an expansion of variables included in feature-set 

1: Demographics (age, gender, education), ApoE4 status, composite scores for 

the memory and executive function domains, CSF biomarkers (Aβ1–42, Tau, 

P-tau181p), volumetric MRI measures (hippocampus, entorhinal cortex, middle 

temporal lobe, fusiform gyrus, and whole brain volume).

Since data normalization is considered to be essential for improving performance of ML 

models, continuous measures were normalized using standardized scores.
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2.4. Data analysis

Three different methods were used for prediction of outcomes:

Method 1: Prediction using an established index score. Using feature set 1 and 
based on the algorithm suggested by Steeland et al5, we created an index score 

and assigned aMCI participants into 2 groups: Dementia-like, those who had all 

the harmful risk factors (APOE4 positive, FAQ>0.5, memory summary score <0.26, 

hippocampal volume<6696mm3, Tau/Aβ ratio≥0.43 (Dementia-like), and CN-like, 

those who were negative for at least one of these risk factors. CN-like, were those 

individuals who did not meet the criteria mentioned above.

Method 2: Conventional multivariate statistical modeling. The traditional 

approach to develop clinical risk prediction models involves the use of regression 

models, such as logistic regression (LR) to predict outcomes.

Method 3: Ensemble Linear Discriminant (ELD) models. While many ML models 

have proven to be effective tools for predictions of outcomes, in a previous study4 we 

showed that ELD perform exceptionally well in ADNI data. Therefore, ELD model 

was selected for this study.

ELD is among the family of classification methods known as ensemble learning, in which 

the output of an ensemble of simple and low-accuracy classifiers trained on subsets of 

features are combined (e.g., by weighted average of the individual decisions), so that the 

resulting ensemble decision rule has a higher accuracy than that obtained by each of the 

individual classifiers. Linear Discriminant Analysis (LDA) was proposed by R. Fischer 

in 1936.6 It consists of finding the projection hyperplane that minimizes the interclass 

variance and maximizes the distance between the projected means of the classes. Similar 

to PCA, these two objectives can be solved by solving an eigenvalue problem with the 

corresponding eigenvector defining the hyperplane of interest. This hyperplane can be used 

for classification. In this work, we combined linear discriminant functions (i.e., hyperplanes 

that dichotomize the samples based on subsets of features) to construct the ensemble 

classifier.

For both method data-driven methods (LR, and ELD), baseline data was used to train 

models to learn classifying cognitively normal individuals from individuals with dementia. 

Subsequently, for validation, baseline data from MCI participants were used to classify 

them into those more similar to cognitively normal individuals (CN-like), or those who 

were more similar to individuals with dementia (Dementia-like). The accuracy of the 

predicted outcomes (CN-like or Dementia-like) for aMCI population for each of the methods 

described above was evaluated using the available clinical outcomes from the longitudinal 

follow-up data. Considering change in proportion of MCI subgroups over time (due to drop 

outs, death, etc.), the accuracy is reported separately for each wave of follow-up at 6, 12, 

24, 36, and 48 months. Furthermore, we computed sensitivity, specificity, positive predictive 

value (PPV), and negative predictive value (NPV) of the models for predicting conversion to 

Dementia at each follow-up time-point.
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For simplicity, we refer to LR and ELD model applied to feature-set 1 and feature-set 2 as 

LR1/ELD1 and LR2/ELD2, respectively.

Comparison of classification performance.—We used the McNemar test to compare 

the performance of classification models.7

RESULTS

2.5. Demographics and baseline characteristics

Participants’ characteristics are summarized in Table, Supplemental Digital Content 1. 

Follow-up data was available for 475 aMCI cases at 6 months, 463 cases at 1y, 403 cases 

at 2y, 345 cases at 3y, and 238 cases at 4y. The cumulative proportions of individuals who 

progressed from aMCI to dementia at 6m, 1y, 2y, 3y, and 4y were 6.3%, 14.5%, 25.8%, 

28.1%, and 31.5%, respectively.

2.6. Performance of different methods in predicting conversion from aMCI to AD (table 1)

Method 1 (index-based): Using the developed index score yielded predictions with poor 

sensitivity, declining from 46.6% at 6m to 26.6% at 48m, but high specificity, increasing 

from 87.6 at 6m to 99.4 at 48m.

Method 2 (Logistic Regression): Relative importance of predictors for LR1 and LR2 

models are summarized in Table, Supplemental Digital Content 3. LR1 showed high 

sensitivity, declining from 93.3 at 6m to 77.3 at 48m, while specificity increased from 60.0% 

to 85.2%. LR2, had lower sensitivity (ranging from 53.3% at 6m to 34.6%) and higher 

specificity (ranging from 83.1% at 6m to 94.5% at 48m) in comparison with LR1.

Method 3 (Ensemble Linear Discriminant): Prediction sensitivities for conversion 

from aMCI to AD for ELD1at 6, 12, 24, 36, and 48 months were 83.3, 76.1, 68.2, 65.9, and 

58.6, respectively. Specificities for this model at 6, 12, 24, 36, and 48 months were 72.3, 

77.3, 84.9, 90.3, and 93.8, respectively. ELD2 had slightly higher sensitivities, ranging from 

86.6 at 6m to 68.0 at 48m, and lower specificity, ranging from 64.4 at 6m to 90.1 at 48m, in 

comparison with ELD2.

2.7. Comparison of performance of all three methods.

Next, we compared head-to-head performance of different models based on correct 

classification using McNemar test (see Table, Supplemental Digital Content 4). Both 

LR1 and ELD1 performed better than method 1 (index score) in prediction of disease 

progression. LR models performed better when using feature-set 1 in comparison with 

feature-set 2 (p<0.001 for prediction at all follow-up periods). However, ELD models using 

feature-set 2 outperformed ELD models using feature-set 1 at all time-frames (p<0.001). 

ELD models persistently and across all time frames performed better than LR models.

Discussion

In this study, we showed that classifiers such as logistic regression and ELD models 

are effective tools for prediction of disease progression in patients with aMCI. These 
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multivariate models outperform index scores created based on individual variable cutoffs. 

Owing to its flexibility and easier handling of a larger number of potential predictors, ML 

is claimed to outperform traditional statistical modeling8, however, a recent systemic review 

of literature9 showed that logistic regression models often perform remarkably well9. To 

compare these two approaches, we ran all models in the same data set using two feature set: 

a smaller, previously selected feature set, and a larger feature set and endeavored to make 

the comparison as fair as possible. While performance of ELD models were better than LR 

models based on some performance metrics, these differences were not always consistent or 

significant. The observed differences in performance might be due to several factors such as 

model characteristics, signal-to-noise ratios, ratio of features to sample size and how models 

handle it. Testing this hypothesis rigorously may require independent sample validation.

We showed that performance of LR models decreased when a larger feature-set was used. 

This is likely to be due to a few factors: The key to developing a high performance LR 

model is to choose the correct variables to enter into the model. While it is tempting to 

include as many features as possible, this can negatively impact effect of true predictors on 

prediction performance and lead to large standard errors with wide and imprecise confidence 

intervals, or, conversely, lead to identifying false predictors. Prior studies indicate that if 

input variables are highly correlated with one another (also known as multicollinearity), 

then the effect of each on the regression model becomes less precise.10 it is recommended 

that when a pair of variables are highly correlated (i.e., correlation coefficient of >0.8), 

one of them should be removed from the model. None of the variables used in our models 

correlated at that level, however some of our input variables such as volumetric MRI 

measures had moderate correlations with each other (correlation coefficient rang: 0.3–0.5), 

which might negatively affect performance of LR models. Furthermore, we showed that 

performance of ML models improved with increased number of predictors. This is in line 

with prior studies that have suggested that ML models might perform better than LR models 

when complexity and number of predictors are increased.11

One strength of this study was having separate training and test samples. Another strength 

was using and comparing three different methods for prediction of disease progress. 

However, a few limitations should be noted. Variables included in feature-set 1 were selected 

based on knowledge from another study, but they were not specifically selected and tuned 

to be used as classifiers. No formal feature-selection was used for feature-set 2. This 

approach can negatively affect performance of predictive models, specially LR models. For 

the purpose of simplicity, we only compared performance of LR models with one ML 

models, while other models might have incremental value in progression-prediction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1.

Performance of different models in prediction of progression from aMCI to dementia.

Feature- 
set

Model Follow-
up, 

years

Sensitivity, 
%, 95% CI

Specificity, 
%, 95% CI

PPV,
%, 95% CI

NPV,
%, 95% 

CI

Accuracy,
%, 95% CI

AUC Progression 

rate, %
a

N

1 Index 0.5 46.6 87.6 20.2 96.0 85.0 0.67 6.3 475

1 41.7 90.4 42.4 90.1 83.3 0.66 14.5 463

2 32.6 94.9 69.3 80.2 78.9 0.64 25.8 403

3 28.8 97.5 82.3 77.8 78.2 0.63 28.1 345

4 26.6 99.3 95.2 74.6 76.4 0.63 31.5 238

LR 0.5 93.3
(77.9–99.1)

60.0
(55.3–64.5)

13.5
(11.9–15.4)

99.2
(97.2–
99.8)

62.1
(57.6–66.4)

0.77 6.3 475

1 88.0
(77.8–94.7)

65.1
(60.2–69.8)

29.9
(26.7–33.4)

96.9
(94.4–
98.4)

68.4
(64.0–72.7)

0.77 14.5 463

2 80.7
(71.8–87.8)

73.9
(68.5–78.8)

51.8
(46.5–57.1)

91.7
(88.1–
94.3)

75.6
(71.2–79.8)

0.77 25.8 403

3 76.2
(66.6–84.3)

79.0
(73.4–83.9)

58.7
(52.1–65.0)

89.5
(85.5–
92.4)

78.2
(73.5–82.5)

0.78 28.1 345

4 77.3
(66.2–86.2)

85.2
(78.9–90.3)

70.7
(62.1–78.1)

89.1
(84.3–
92.6)

82.7
(77.4–87.3)

0.81 31.5 238

ELD 0.5 83.3
(65.3–94.4)

72.3
(68.0–76.4)

16.8
(14.0–20.2)

98.4
(96.6–
99.3)

73.0
(68.8–77.0)

0.78 6.3 475

1 76.1
(64.1–85.7)

77.2
(72.8–81.3)

36.1
(31.1–41.5)

95.0
(92.5–
96.7)

77.1
(73.0–80.9)

0.77 14.5 463

2 68.2
(58.4–77.0)

84.9
(80.4–88.8)

61.2
(53.9–68.0)

88.5
(85.3–
91.1)

80.6
(76.4–84.4)

0.77 25.8 403

3 65.9
(55.6–75.3)

90.3
(85.9–93.7)

72.7
(64.0–80.0)

87.1
(83.7–
90.0)

83.4
(79.1–87.2)

0.78 28.1 345

4 58.6
(46.7–69.9)

93.8
(89.0–97.0)

81.4
(70.0–89.2)

83.1
(79.0–
86.6)

82.7
(77.3–87.3)

0.76 31.5 238

2 LR 0.5 53.3
(34.3–71.6)

83.1
(79.3–86.5)

17.5
(12.5–24.0)

96.3
(94.7–
97.4)

81.2
(77.4–84.7)

0.68 6.3 475

1 35.8
(24.5–48.5)

83.5
(79.6–87.1)

26.9
(20.0–35.3)

88.5
(86.5–
90.2)

76.6
(72.5–80.4)

0.60 14.5 463

2 38.4
(29.0–48.5)

90.3
(86.4–93.4)

57.9
(47.5–67.8)

80.8
(78.3–
83.1)

76.9
(72.5–81.0)

0.64 25.8 403

3 38.1
(28.5–48.5)

93.5
(89.7–96.2)

69.8
(57.5–79.8)

79.4
(76.7–
81.9)

77.9
(73.2–82.2)

0.66 28.1 345

4 34.6
(24.0–46.5)

94.4
(89.8–97.4)

74.2
(25.6–37.8)

75.8
(58.8–
85.4)

75.6
(72.6–78.8)

0.65 31.5 238
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Feature- 
set

Model Follow-
up, 

years

Sensitivity, 
%, 95% CI

Specificity, 
%, 95% CI

PPV,
%, 95% CI

NPV,
%, 95% 

CI

Accuracy,
%, 95% CI

AUC Progression 

rate, %
a

N

ELD 0.5 86.6
(69.3–96.2)

64.4
(59.8–68.9)

14.1
(12.0–16.6)

98.6
(96.6–
99.4)

65.8
(61.4–70.1)

0.76 6.3 475

1 85.0
(74.2–92.6)

69.1
(64.4–73.7)

31.8
(28.1–35.8)

96.4
(93.9–
98.0)

71.4
(67.1–75.6)

0.77 14.5 463

2 80.7
(71.9–87.8)

78.6
(73.5–83.1)

56.7
(21.6+30.4)

92.1
(88.7–
94.6)

79.1
(74.9–83.0)

0.80 25.8 403

3 79.3
(70.0–86.9)

86.2
(81.4–90.3)

69.3
(62.0–75.9)

91.4
(87.8–
94.0)

84.3
(80.1–88.0)

0.83 28.1 345

4 68.0
(56.2–78.3)

90.1
(84.5–94.3)

76.1
(66.1–83.9)

85.9
(81.4–
89.5)

83.1
(77.8–87.7)

0.79 31.5 238

Note.

a
Represents progression rate from aMCI to AD at each follow up timeframe based on longitudinal data, which is included in the table for the 

purpose of comparison with PPV/NPV derived from the models. See texts for details on variables included in each feature-set.

Abbreviations: N= Number of participants at each follow up; LR= logistic regression; ELD= ensemble linear discriminant; CI= confidence interval; 
PPV= positive predictive value; NPV = negative predictive value.
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