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Abstract

Purpose——Drug induced cardiac toxicity is a disruption of the functionality of cardiomyocytes 

which is highly correlated to the organization of the subcellular structures. We can analyze cellular 

structures by utilizing microscopy imaging data. However, conventional image analysis methods 

might miss structural deteriorations that are difficult to perceive. Here, we propose an image-based 

deep learning pipeline for the automated quantification of drug induced structural deteriorations 

using a 3D heart slice culture model.

Methods——In our deep learning pipeline, we quantify the induced structural deterioration from 

three anticancer drugs (doxorubicin, sunitinib, and herceptin) with known adverse cardiac effects. 

The proposed deep learning framework is composed of three convolutional neural networks that 

process three different image sizes. The results of the three networks are combined to produce 

a classification map that shows the locations of the structural deteriorations in the input cardiac 

image.

Results——The result of our technique is the capability of producing classification maps that 

accurately detect drug induced structural deterioration on the pixel level.

Conclusion——This technology could be widely applied to perform unbiased quantification of 

the structural effect of the cardiotoxins on heart slices.
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INTRODUCTION

Drug induced cardiotoxicity is a major cause of market withdrawal.17 In the last decade 

of the twentieth century, eight non-cardiovascular drugs were withdrawn from clinical use 

because they prolonged the QT interval,3 resulting in ventricular arrhythmias and potentially 

sudden death. In addition, cancer therapies (while in many cases effective) can lead to a 

number of cardiotoxic effects including cardiomyopathy and arrhythmias. For example, both 

traditional (e.g., anthracyclines and radiation) and targeted (e.g., herceptin) breast cancer 

therapies can result in cardiovascular complications in a subset of patients.16 Thus, there is 

a growing need for reliable preclinical screening strategies for CV toxicities associated with 

emerging breast cancer therapies prior to human clinical trials.

The lack of availability of culture systems for human heart tissue that is functionally and 

structurally viable for more than 24 h is a limiting factor in reliable cardiotoxicity testing. 

Therefore, there is an urgent need to develop a reliable system for culturing human heart 

tissue under physiologic conditions for testing drug toxicity. The recent move towards 

the use of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in 

cardiotoxicity testing has provided a partial solution to address this issue; however, the 

immature nature of the hiPS-CMs and loss of tissue integrity compared to multicellular heart 

tissue are major limitations of this technology.23 Moreover, the heart tissue is structurally 

more complicated, being comprised of a heterogeneous mixture of various cell types 

including endothelial cells, neurons and various types of stromal fibroblasts linked together 

with a very specific mixture of extracellular matrix proteins.21 This heterogeneity of the 

non-cardiomyocyte cell population5,11,12 in the adult mammalian heart is a major obstacle in 

modeling heart tissue using individual cell types.

Culturing human heart slices is a promising model of intact human myocardium. This 

technology provides access to a complete 3D multicellular system that reflects the human 

myocardium; however, its use has been severely limited by the short period of viability 

in culture, which does not extend beyond 24 h using the most robust protocols reported 

to date10,20,29 due to multiple factors including not incorporating physiologic mechanical 

loading, air–liquid interface, and use of a simple medium that does not support the demands 

of the cardiac tissue. We have previously used electrical stimulation and an optimized media 

to keep cardiac tissue slices viable for up to 6 days.18,19 This culture system has the potential 

to become a powerful predictive human in situ model for cardiotoxicity testing to close the 

gap between preclinical and clinical testing results. We recently provided a proof of concept 

that the heart slice culture system outperformed the hiPSC-CMs in predicting functional 

cardiotoxicity.14 However, this technology is still limited by the inability to quantify 

structural cardiotoxicities such as the troponin expression and the gap junction protein, 

connexin43, expression and localization. Here we are using the artificial intelligence6–8 and 
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the deep learning framework to reliably quantify the effect of cardiotoxins on cardiac tissue 

structural integrity in an automated and unbiased manner.

MATERIALS AND METHODS

Harvesting Porcine Heart Tissue

All animal procedures were in accordance with the institutional guidelines and approved by 

the University of Louisville Institutional Animal Care and Use Committee. The protocol 

for harvesting pig hearts has been described in detail.18,19 Briefly, following deeply 

anesthetizing the pig with 5% isoflurane, pig heart was quickly excised out and the heart 

was clamped at the aortic arch and perfused with 1 L sterile cardioplegia solution (110 mM 

NaCl, 1.2 mM CaCl2, 16 mM KCl, 16 mM MgCl2, 10 mM NaHCO3, 5 units/mL heparin, 

pH 7.4), then the heart was preserved on an ice-cold cardioplegic solution and immediately 

transported to the lab on wet ice.

Heart Slicing and Culturing

Slicing and culturing 300 μm thick heart tissue slices were performed as previously 

described in Refs. [18,19]. A refined oxygenated growth medium was used (Medium 199, 

1× ITS supplement, 10% FBS, 5 ng/mL VEGF, 10 ng/mL FGF-basic, and 2× Antibiotic-

Antimycotic), and changed 3 times/day. Sunitinib (Tocris Inc.) (100 nM, 1μM, and 10 μM), 

herceptin (In-vivoGen Inc.) (1, 10, and 100 μg), or doxorubicin (Sigma Millipore Inc.) (100 

nM, 1μM, and 10 μM, and 50 μM) was added freshly to the culture medium at each medium 

change. Control slices received DMSO at the same dilution factor as the drug-treated slices.

Heart Slice Fixation, Mounting and Immunofluorescence

Heart slices were fixed with 4% paraformaldehyde for 48 h. Fixed tissue was dehydrated 

in 10% sucrose for 1 h, 20% sucrose for 1 h, and 30% for overnight. The dehydrated 

tissue was then embedded in optimal cutting temperature compound (OCT compound) and 

gradually frozen in isopentane/dry ice bath. OCT embedded blocks were stored at −80 °C 

until sectioning. 8 μm sections were cut and immunolabeled for target proteins using the 

following procedure: To remove the OCT compound, the slides were heated for 5 min at 

95 °C until the OCT compound melted. Then 1 mL of PBS was added to each slide and 

incubated at RT for 10–30 min until the OCT compound washed off. Sections were then 

permeabilized by incubating for 30 min in 0.1% Triton-X in PBS at RT. The Triton-X was 

removed, and non-specific antibody binding of the sections were blocked with 3% BSA 

solution for 1 h at RT. After washing the BSA off with PBS, each section was marked 

off with a wax pen. After marking sections off, the primary antibodies (1:200 dilution in 

1% BSA) connexin 43 (Abcam; #AB11370), troponin-T (Thermo Scientific; #MA5–12960)] 

were added to each section and incubated for 90 min at RT. The primary antibodies were 

washed off with PBS three times followed by the addition of the secondary antibodies 

(1:200 dilution in 1% BSA) anti-Ms AlexaFluor 488 (Thermo Scientific; #A16079), anti-Rb 

AlexaFluor 594 (Thermo Scientific; #T6391) and incubated for 90 min at RT. The secondary 

antibody was removed by washing the sections 3 times with PBS. To distinguish the bona 

fide target staining from the background, we used a secondary antibody only as a control. 

After 3 times PBS washes, DAPI was added for 15 min. The sections were washed again 3 
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times with PBS. Finally, slices were mounted in vectashield (Vector Laboratories) and sealed 

with nail polish. All immunofluorescence imaging and quantification were performed using 

a Cytation 1 high content imager and the fluorescent signal quantification and masking were 

performed using the Gen5 software.

The Classification Task

To perform image classification, we utilized deep learning25 where a convolutional neural 

network (CNN) was trained to differentiate between two groups of images categorized by 

their class labels.22 In our study, the two groups of images to be distinguished are control 

cells treated with a vehicle and drug treated cells. The aim of the CNN-based deep learning 

framework is to determine whether the two groups are distinguishable or not and quantify 

the detected differences. We developed our deep learning framework to perform a series 

of two class trainings in which it compares images of each test condition (drug dose k ∈ 
{1, , N}) to reference images of the cells treated with vehicle-only, where N is the total 

number of the tested doses. As illustrated in Fig. 1 we designed our experiment by having 

six cross-sections per drug dose. We dedicated the images collected from four cross-sections 

for training; i.e., teaching our deep learning framework to incorporate particular image 

features with a specific class. We dedicated the images of the remaining two cross-sections 

for validation. During each training, our deep learning framework determines whether the 

set of images treated with a vehicle are distinguishable from the set of images treated 

with a specific drug dose. If they are distinguishable, the percentage of the structural 

deterioration is assessed. The images used in our pipelines are the result of the merge 

between three independent cellular markers; DAPI stain to stain nuclei (represented by 

blue color), troponin-T cardiac marker (represented by green color), and connexin 43 gap 

Junction Protein (represented by red color). An expert has annotated the images to identify 

the location where structural deterioration occurred.

Patches Generation

For each drug dose, we dedicated the images of four cross-sections for training and the 

images of the remaining two cross-sections for validation. The images of the training set 

were divided into overlapping patches with three different sizes: 75 × 75 pixels, 100 × 100 

pixels, and 125 × 125 pixels. The degree of overlap between each patch and the next one 

is 50%. We stored each patch size in a separate folder. Therefore, for each drug dose we 

have three folders dedicated for training. The generation of overlapped patches helps our 

deep learning framework to learn various viewpoints in the image. We removed the patches 

that contains only background. In a similar manner, we divided the images of validation set 

into overlapped patches with the three mentioned sizes. The degree of overlap was about 

seventy-five percent. Therefore, the degree of overlap in the validation set was increased. 

Therefore, during testing we will have various labels for the same area. The validation set 

will be used to perform pixel-wise classification as we will discuss in Sect. 2.7.

The Proposed Deep Learning Framework

The usage of deep learning techniques, particularly CNNs is at the core of our deep learning 

framework. CNNs have excellent performance in computer vision applications, such as 

image classification.22 The architecture of the CNN is composed of an input layer, output 
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layer, and hidden layers. The hidden layers include convolutional layers, rectified linear 

unit layers, pooling layers, and fully connected layers. The depth of the CNN is identified 

by the number of the hidden layers. The weights of the CNN are the parameters of the 

hidden layers. Through iterative optimization the CNN can be trained by a set of labeled 

images. The result of training is that the CNN learns its weights that maximize the number 

of correctly classified samples during prediction.

Our deep learning framework is composed of three CNNs which process three patch sizes 

as shown in Fig. 2. The first CNN is fed with 75 × 75 patches, the second CNN is fed 

with 100 × 100 patches, and the third CNN is fed with 125 × 125 patches. We designed the 

three CNNs to have the same architecture. As illustrated in Fig. 2, each CNN is composed 

of a series of convolutional layers interspersed with max-pooling layers followed by two 

fully-connected layers. The output of the second fully-connected layer is fed to a soft-max 

layer to produce output probabilities. The purpose of the convolutional layer is to convolve 

the input with filters and the result of this operation is feature maps that represent the 

object in the input. We used multiple filters in each convolutional layer. Therefore, a volume 

of feature maps results in from each convolutional layer. In our design, There are three 

convolutional layers that contain filters with size 3 × 3 that have stride equals to 1. The 

purpose of the max-pooling layers is to reduce the spatial dimension by a factor of 2. 

This operation removes the less prominent features and keeps the most important features 

in the feature map. Furthermore, the computational cost and training time are reduced by 

max-pooling operation. In our design, a stride of 2 was used in the max-pooling layers. A 

12 neurons was used in the first fully connected connected layer. The second layer contains 

2 neurons for the 2 classes classification. The purpose of the final soft-max layer is to 

produce probabilities for multi-class classification. The probabilities are in the range of 

0 to 1. Now, we can obtain a probability for each class and the highest value represents 

the classification result for the input sample. We used the cross-entropy loss to train each 

the three CNNs. Specifically, the cross-entropy between the ground truth labels and the 

predicted probabilities is minimized. To avoid overfitting while training the CNNs, we used 

a dropout with a rate of 0.2 in the convolutional and fully-connected layers.

Pixel-Wise Classification

Each CNN can provide patch-wise classification and pixel-wise classification for the 

input tested image. It is easy to think about patch-wise classification while pixel-wise 

classification requires an illustration. During testing, we give a label for the tested patch then 

we assign the same label to the pixels of that patch. Because there is an overlap between 

patches, each pixel can lie in various patches and therefore each pixel have multiple labels. 

We apply majority voting for the labels of each pixel to obtain a single label. This is how our 

CNNs provide pixel-wise classification. To obtain better pixel-wise classification, the result 

of the three CNNs is combined through majority voting (fusion). Now, we have a labelled 

map for the input image where our classification is on the pixel level. We have two classes: 

pixels that belong to drug treated cells and pixels that belong to vehicle treated cells. The 

percentage of the drug treated pixels is estimated. This value represents the percentage of the 

structural deterioration in the tested image.
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Validation of the CNN Prediction by Expert Eye

In order to assess the performance of our method for structural deterioration quantification, 

pixels which were identified as structurally deteriorated by our pipeline were compared with 

a manual annotation by an expert. Figure 3 demonstrates the labeling of one cardiomyocytes 

image where (a) in the figure represents the expert labeling of the regions of structural 

deterioration. Our initial deep learning structure of CNN gave a different interpretation from 

the expert eye detected deteriorations (see image (b) in Fig. 3). Then, we modified the 

CNN structure to produce image (c) in Fig. 3. The modification resulted in the detection of 

approximately the same deteriorations as the expert eye. Please refer to (d) and (e) in Fig. 3 

for the analysis of the results. The CNN modifications included architecture optimization as 

well as the usage of three smaller patch sizes to increase the accuracy of detection. Accuracy 

of detection was 93%, sensitivity was 92%, and specificity was 94%.

EXPERIMENTAL RESULTS

The deep learning library Tensorflow1 was used to implement our deep learning framework. 

Determining the optimal parameters of any deep learning framework is an essential 

component. Therefore, we evaluated the system performance as a function of the parameters. 

To obtain the optimal parameters we performed a grid search. We searched for the following 

parameters: The number of layers, number of filters, kernel size, stride, initialization of 

the convolutional layers, patch size, number of epochs, type of the optimizer, and learning 

rate. The grid search resulted in the following settings: six convolutional layers, nine filters 

in each convolutional layers, kernel size = 3 × 3, convolutional layers have a stride = 1 

and the max-pooling layers have a stride = 2, He initialization9 was used to initialize the 

convolutional layers. patch size = 32, number of epochs = 50, Adam optimizer was used 

with 0.001 learning rate. We transformed each patch in the training set by random flipping 

and random rotation by angles 90, 180, and 270. This technique is called data augmentation, 

which is used to increase the size of the training data. Increasing the size of the training data 

boosts network performance.

We estimated the percentage of the structural deterioration for the cells treated with a 

vehicle only and drug treated cells. Three drugs were analyzed: Doxorubicin, Herceptin, and 

Sunitinib. The cells were treated by three doses from each drug: 0.1, 1, and 10 micro-Mole 

for Doxorubicin and Sunitinib and 1, 10, and 100 μg for Herceptin. Our deep learning 

framework produces patch-wise classification and pixel-wise classification for each cardiac-

cells image in the validation set. Then, the percentage of the structural deterioration is 

assessed. Tables 1, 2, 3, and 4 show the resultant percentage of the structural deterioration 

from patch-wise classification and pixel-wise classification for cells treated with vehicle 

only, Doxorubicin, Sunitinib, and Herceptin, respectively. From Table 1, we can see that 

small structural deteriorations were detected by our method in the three patch sizes. Patch 

size 75 × 75 had the highest structural deterioration. In the fusion process, we apply majority 

voting for the pixel-wise classifications. The value of the structural deterioration resulted 

by the fusion process is always some value between the range of pixel-wise classification. 

Fusion gives better estimate of structural deterioration. From Table 2, we can see that high 
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structural deteriorations were detected by our method. patch size 100 × 100 had the highest 

structural deterioration.

As shown in Tables 2, 3, and 4, among the cells treated by drugs, cells treated by sunitinib 

gave the lowest structural deterioration. Again, the highest structural deterioration was 

detected form patch size 100 × 100. Cells treated by Herceptin gave higher structural 

deterioration than cells treated by sunitinib and gave lower structural deterioration than cells 

treated by Doxorubicin. Figures 4, 5, 6, and 7 show samples of pixel-wise classifications for 

the cardiac cells treated by vehicle only, Doxorubicin, Sunitinib, and Herceptin, respectively. 

The figures show original cardiac-cells images and the same images with a yellow overlays 

(opacity 60%) that represent the locations of structural deterioration. From Fig. 4, we can 

notice minor yellow areas. From Figs. 5, 6, and 7, we can notice that the yellow areas 

increase in size by increasing the drug dose. Figure 8 shows the amount of structural 

deterioration vs. drug dose for the three drugs.

Additionally, we have validated our approach to detect structure deterioration at different 

time-points using independent dataset. Specifically, we imaged the human cardiomyocytes 

at day 0, 2, 10, and 12. Day 0 and day 2 are expected to show normal tissue structure, 

while day 10 and day 12 are expected to show structural deterioration. We trained our 

deep learning framework using data from day 0 and day 12. Then, our aim was to detect 

the similarity between the cardiac structures in heart slices between day 0 and day 2 in 

culture as well as day 10 and day 12 in culture. In other words, when we perform two class 

classification, images of day 0 should be classified as day 0, images from day 2 should be 

classified as day 0. images from day 10 should be classified as day 12, and images from 

day 12 should be classified as day 12. Figure 9 shows the probability of being class day 12 

for the tested images. Day 0 is correctly classified by a 100% accuracy. Day 12 is correctly 

classified with 99% accuracy. We can notice that day 2 is similar to some degree to day 0 

and day 10 is similar to some degree to day12.

DISCUSSION

Drug-induced cardiotoxicity is a major cause of drug attrition.17 Therefore, there is a 

pressing need for predictable preclinical screening strategies for cardiovascular toxicities 

associated with emerging new drugs prior to clinical trials. The recent consideration of 

hiPSC-CMs for testing drug toxicity provided a partial solution for some contexts of use 

but did not solved the overall need in predicting effects in a diversity of functional cardiac 

modes of failure. In addition to fetal-like properties, A single cell type does not replicate the 

complexity of a 3D heart tissue that contains multiple cell types and biological connections.

There have been several studies that investigated the effect of anticancer drugs on 

human cardiomyocytes. Zhao et al.30 studied the cardiotoxicity induced by doxorubicin 

in hiPSC-CMs. They stated that doxorubicin can cause dose-dependent problems that 

range from strange deteriorations in myocardial structure to serious health problems such 

as cardiomyopathy and congestive heart failure. Cardiotoxicity due to doxorubicin was 

found at a low dose of 0.5 μM. Maillet et al.13 found that doxorubicin is responsible for 

dose-dependent apoptotic cell death and the incidence of congestive heart failure is 18% 
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at cumulative doses of 550 to 600 mg/m2. The cardiotoxicity induced by sunitinib was 

studied by Wang at al.27 They found that death in hiPSC-CMs was induced by sunitinib at 

doses lager than 3 μM and exposure times over 5 days. Inhibition of autophagic activity in 

human cardiomyocytes was noticed in a dose-dependent manner when the cardiomyocytes 

were exposed to 10, 20, and 50 μg/mL doses of Herceptin for 1 day.15 They reported 

that the most efficient inhibition was at 50 μg/mL dose. Inhibition of autophagy increases 

DNA damage and production of reactive oxygen species. From Fig. 8, we can conclude 

that the percentage of structural deterioration in cardiomyocytes is dose-dependent and 

increases with the applied dose. This finding is consistent with what was reported by Refs. 

[13,15,27,30]. From Table 2, we can notice that a small dose of doxorubicin (0.1 μM) results 

in a high percentage of structural deterioration (87.5%). This finding is consistent with30 

who reported that doxorubicin-induced cardiotoxicity starts at a dose of 0.5 μM. Wang et 

al.27 reported that death of cardiomyocytes due to sunitinib occurs at doses larger than 3 μM. 

These doses lie in the range of our used sunitinib doses. Similarly, we used doses that induce 

structural deterioration as stated in Ref. [15], in the case of herceptin.

Recent advances in heart slice technology provided a promising platform for reliable 

cardiotoxicity testing.4,19,28 We were able to demonstrate the clinical cardiotoxic phenotype 

of three different categories of cardiotoxic drugs using a 3D heart slice culture model.14 

We have been able to quantify the effect of cardiotoxins on the heart slice functionality; 

however, it was not possible for unbiased quantification of the structural effects of the 

cardiotoxins. We selected three anticancer drugs with known adverse cardiac side effects: 

doxorubicin, an anthracycline with a long history of cardiotoxicity; Herceptin, a monoclonal 

antibody target HER2; and, sunitinib, a small molecule multi-targeted kinase inhibitor 

(TKI) with potent activity against VEGF and PDGF receptors.16 All three drugs have 

been associated with cardiomyopathy through different mechanisms.16 As the maximum 

blood concentration of doxorubicin ranges between 100 and 300 nM,2 we used 100 nM, 

1 μM, 10 μM concentrations. We used 1, 10 and 100 μg/mL concentrations for herceptin 

as the blood level is ranging between 1 and 10 μg/mL.24 Sunitinib concentrations of 100 

nM, 1 μM, 10 μM were used as the normal blood concentration range is 100–200 nM.26 

Here, we generated a deep learning framework that can automatically quantify the effect 

of cardiotoxins on cardiac tissues. Our deep learning framework is composed of three 

CNNs that process the cardiac images from multiple views. Furthermore, our framework 

can quantify the structural deterioration on the patch and pixel levels. In other words, the 

images of training cross-sections were divided into overlapping patches and were fed to 

the deep learning framework to teach it how to classify between drug treated cells and 

vehicle treated cells. This classification corresponds to cells affected by the drug and cells 

not affected or structural deterioration and normal structure. Then, during the validation, the 

framework was able to classify the inputted patches into patches with structural deterioration 

and patches without. Furthermore, due to the fact that there is an overlap between the 

patches, the pixels of the cardiac image can have multiple labels from the classified patches. 

By applying majority voting, we can obtain a classification for each pixel. The results of the 

three CNNs is combined again by majority voting to obtain final classification for each pixel 

in the cardiac image. Therefore, one of the advantages of our technique is the capability of 

producing classification maps that detect drug induced structural deterioration on the pixel 
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level. This technology could be widely applied to perform unbiased quantification of the 

structural effect of the cardiotoxins on heart slices.
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FIGURE 1. 
Schematic illustration of our proposed pipeline for structural deterioration quantification. (a) 

The input to our pipeline was a collection of cardiac cells images annotated and imaged at 

different drug doses and different time points, and a set of reference cardiac cells images 

treated by applying the vehicle only. (b) Our pipeline utilizes deep learning to quantify 

structural deteriorations induced by the applied drug by comparing images from the vehicle 

wells to each drug dose k ∈ {1, , N} where N is the number of the tested drug doses. For 

each drug dose, a deep learning framework that is composed of three convolutional neural 

networks (illustrated in Fig. 2) was trained to classify between vehicle and drug images. 

The trained framework was then used to classify the images of the validation wells. (c) The 

output of our pipeline was an estimate for the structural deterioration vs. all drug doses.
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FIGURE 2. 
Schematic illustration of our proposed deep learning framework. This figure is a 

magnification for the deep learning framework box in Fig. 1. The input to the framework is 

the merged image where nuclear DAPI (Blue), cardiac troponin-T (green), and gap junction 

protein (connexin 43) (red). Our framework is composed of three CNNs (small, medium, 

and large) which process three patch sizes to form a pyramidal CNN. The first CNN (CNNS) 

is fed with a small patch size of 75 × 75, the second CNN (CNNM) is fed with a medium 

patch size of 100 × 100, and the third CNN (CNNL) is fed with a large patch size of 125 

× 125. We designed the three CNNs to have the same architecture as shown in the zoomed 

part (lower panel). The CNNs classify overlapped patches into two classes. Then, we apply 

majority voting for each CNN to obtain a pixel-wise classification. Finally, a majority voting 

is applied again across the three CNN to get a final pixel map for the locations of the 

structural deterioration in the input image.
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FIGURE 3. 
An example of labeling of one cardiomyocytes image. The cardiomyocytes image is shown 

as a colored image in (a)–(c) where nuclear DAPI, cardiac troponin-T, and gap junction 

protein (connexin 43) are shown in, blue, green and red colors, respectively, and the yellow 

overlay (opacity 60%) labels the region of structural deterioration: (a) is the expert labeling 

(ground truth), (b) is the initial result from our framework before optimization, and (c) is the 

optimal result from our framework after optimization. Detection accuracy for the images in 

(b) and (e) are shown in (d) and (e) respectively, where the original cardiomyocytes image 

is shown as a background gray image. The green, blue, red, and yellow colors in (d) and (e) 

refer to the true positive, true negative, false positive, and false negative pixels, respectively.
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FIGURE 4. 
The detected structural deterioration in the images of cells treated by vehicle only. (a) is 

the original image where nuclear DAPI (Blue), cardiac troponin-T (green), and gap junction 

protein (connexin 43) (red). (b) is the original image with structural deterioration areas 

overlaid with yellow color that has opacity of 60%.
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FIGURE 5. 
The detected structural deterioration in the images of cells treated by doxorubicin. (a) is 

the original image where nuclear DAPI (Blue), cardiac troponin-T (green), and gap junction 

protein (connexin 43) (red). (b) is the original image with structural deterioration areas 

overlaid with yellow color that has opacity of 60%.

Abdeltawab et al. Page 15

Cardiovasc Eng Technol. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 6. 
The detected structural deterioration in the images of cells treated by sunitinib. (a) is the 

original image where nuclear DAPI (Blue), cardiac troponin-T (green), and gap junction 

protein (connexin 43) (red). (b) is the original image with structural deterioration areas 

overlaid with yellow color that has opacity of 60%.
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FIGURE 7. 
The detected structural deterioration in the images of cells treated by herceptin. (a) is the 

original image where nuclear DAPI (Blue), cardiac troponin-T (green), and gap junction 

protein (connexin 43) (red). (b) is the original image with structural deterioration areas 

overlaid with yellow color that has opacity of 60%.
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FIGURE 8. 
The percentage of structural deterioration in the cells treated by doxorubicin (a), sunitinib 

(b), and herceptin (c) vs. drug dose. We can notice that for the three curves that the 

percentage of the structural deterioration increases with the drug dose. The analysis was 

performed on a total of 375 images for each drug dose.
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FIGURE 9. 
Classification of the tested images that belong to different time-points where D0, D2, 

D10 and D12 refer to fresh heart slices (D0) or cultured for 2 days, 10 days or 12 days, 

respectively. The column bar graph shows the probability of the images in being class of day 

12 (Total number of images = 300).
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