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Introduction

There are approximately 4.7 million people in the United 
Kingdom living with diabetes and neuropathy affects up to 
50% of these patients.1,2 Diabetic neuropathy (DN) may be 
completely asymptomatic, but can cause numbness, tingling, 
or even painful burning sensations in the lower limbs, rarely 
affecting the upper limbs.3 As neuropathy is a very insidious 
complication it may remain undiagnosed for several years, 
so routine regular screening is vital to identify the “at risk” 
foot.4 Resultant foot ulceration and limb amputation are very 
serious complications of neuropathy with serious conse-
quences on patients’ quality of life and survival.

Commonly used neuropathy screening tools utilize pres-
sure/touch sensation such as the 10 g Semmes Weinstein 
monofilament, and vibration perception (eg,125 Hz tuning 
fork, biothesiometer and neurothesiometer). Devices that 
use vibration perception are generally considered as the 
gold standard for neuropathy assessment as they can quan-
titatively predict the onset and progression of the complica-
tion.5 The 128 Hz tuning fork was the first tool to use 
vibration perception but its application was very limited by 
both observation technique and patient response.6 The 

development of the Biothesiometer was based on mechani-
cal and more standardized vibration perception, and was 
subsequently replaced by the neurothesiometer, which 
operates on the same principle but is battery-operated. The 
neurothesiometer produces mechanical vibration with a 
fixed frequency of approximately 100 Hz while the vibra-
tion amplitude is controlled manually using a rotatory con-
trol knob. The knob is used to adjust the voltage applied 
and ranges from 0 to 50 V (0-250 µm in amplitude). The 
operator applies the handheld probe to the pulp of the great 
toe and the vibration stimulus gradually increased, until the 
subject feels the vibration sensation. The voltage displayed 
on the neurothesiometer is the measured vibration percep-
tion threshold (VPT). The major drawback of such a device 
is its manual observer-dependent operability and its limited 
vibration intensity.7,8
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Abstract
Background: A risk assessment tool has been developed for automated estimation of level of neuropathy based on the 
clinical characteristics of patients. The smart tool is based on risk factors for diabetic neuropathy, which utilizes vibration 
perception threshold (VPT) and a set of clinical variables as potential predictors.
Methods: Significant risk factors included age, height, weight, urine albumin-to-creatinine ratio, glycated hemoglobin, total 
cholesterol, and duration of diabetes. The continuous-scale VPT was recorded using a neurothesiometer and classified into 
three categories based on the clinical thresholds in volts (V): low risk (0-20.99 V), medium risk (21-30.99 V), and high risk 
(≥31 V).
Results: The initial study had shown that by just using patient data (n = 5088) an accuracy of 54% was achievable. Having 
established the effectiveness of the “classical” method, a special Neural Network based on a Proportional Odds Model was 
developed, which provided the highest level of prediction accuracy (>70%) using the simulated patient data (n = 4158).
Conclusion: In the absence of any assessment devices or trained personnel, it is possible to establish with reasonable 
accuracy a diagnosis of diabetic neuropathy by means of the clinical parameters of the patient alone.
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With the worldwide increasing prevalence of diabetes, 
there is a need for more intuitive, operator-independent and 
smarter diagnostic devices. In the absence of assessment 
devices or trained personnel, it may be difficult to establish 
the accurate level of neuropathy, bearing in mind that the 
clinical parameters of the patient may also play a key role in 
diabetes. This motivated us to develop an intelligent risk 
assessment tool based on patient data that can predict the risk 
level of DN. The software uses patient data and is shown to 
provide an acceptable level of accuracy, which will continue 
to improve in performance as quality data are collected over 
time. As the software is likely to perform better if trained on 
a larger dataset, we have interfaced it with a newly devel-
oped device (VibraScan),9 which measures the subject’s 
VPT. With the larger integrated dataset this device can be 
used as a comprehensive diagnostic tool for DN, while tak-
ing into account changing patient parameters.

Methods

VPTs and various clinical measurements were used to develop 
a tool for automated prediction of neuropathy. VPT measure-
ments (neurothesiometer) were used to identify the level of 
DN and were correlated with potential predictors obtained 
from a clinical diabetes database (n = 5088). Potential predic-
tors included duration of diabetes mellitus, age, height, weight, 
body mass index, urinary albumin-to-creatinine ratio (ACR), 
blood glucose, glycated hemoglobin (HbA1c), total choles-
terol, and triglyceride. These variables represented the average 
of a small number of measurements taken at clinic visits in a 
hospital setting over a 28-year period, and measured at least 
once a year, and if measured more frequently, averaged over a 
year. These data were collected repeatedly over this time 
period for the same subjects. The data were not specifically 
collected for this study, so no specific protocol was followed 
and we did not differentiate on the basis of demographic fea-
tures. There was the possibility of unintended missing data or 
loss to follow-up, both of which can commonly occur in lon-
gitudinal trials. In order to provide data with properties similar 
to the patient data, 4158 cases were simulated with patients’ 
mean and covariance from the data to improve precision. A 
Neural Network based on a Proportional Odds Model 
(NNPOM) was trained using the simulated patient dataset 
where VPT (volts) was encoded into three categories—low, 
medium, and high-risk level of neuropathy.

For data classification many conventional statistical 
methods can be used, but for developing a risk assessment 
tool a classifier that can handle the data precisely should be 
used. In a study on 110 patients with diabetes, the Michigan 
Neuropathic Diabetic Score was used to differentiate normal 
and abnormal cases. In this study nerve conduction studies 
were used to assess DN and showed that age, duration of 
disease, gender, and quality of diabetes control all have a 
significant relationship with DN, but no correlation was 
found with hyperlipidemia, blood pressure, or smoking.10 In 

another study, assessment of DN was performed using the 
Michigan Neuropathy Screening Instrument questionnaire-
based examination. This focused on the relationship between 
risk factors and the prevalence of DN in youths.11

Another study was performed to identify risk factors asso-
ciated with DN by comparing the prevalence of neuropathy 
in subjects with known diabetes mellitus and those with new-
onset diabetes. In this study the 10 g monofilament test, pin-
prick, and VPT were used to categorize patients into normal, 
and into mild, moderate, and severe neuropathy. A total of 
586 patients with established DN were identified. Regression 
analysis was used to identify the risk factors associated with 
DN. It was found that age, dyslipidemia, alcohol status, and 
macro- and microvascular complications were significant 
risk factors for DN.12

For optimal contribution of each variable the right type 
of transformation should be considered, and we used 
Box–Cox family13,14 transformations to identify signifi-
cant variables. The analysis result (Table 1) shows that out 
of the 13 commonly used variables for assessment of DN, 
only 7 are found to be statistically significant predictors 
(P < .05). These are duration of diabetes, age, height, 
weight, glycemic control (HbA1c), ACR, and cholesterol. 
These can be considered as the risk factors for develop-
ment of the DN tool.

These variables can be used to obtain the point predic-
tion of VPT or the predicted VPT within the confidence 
interval (Table 1). In order to simplify the interpretation of 
the outcome variable (VPT) for both clinicians and patients, 
it was useful to interpret the VPT prediction in terms of 
cumulative risk levels. For solving this problem in terms of 
classification, the first step was to divide the data into spe-
cific categories based on VPT thresholds. By considering 
the clinician’s expertise in the field of DN, the dataset was 
categorized into three classes based on VPT measure-
ment—low risk (0-20.99 V), medium risk (21-30.99 V), 
and high risk (≥31 V).

The structure of the neural network classifier is shown in 
Figure 1 and uses a feedforward learning algorithm. It is a 
three-layer feed-forward neural network, which consists of 
the input layer, hidden layers, and output layers. These layers 
have 13 nodes in the input layer (as per input variables), a 
number of nodes in the hidden layer, and 3 nodes in the out-
put layer (required classification).

In order to train the network, various training algorithms 
are available, of which resilient backpropagation algo-
rithms and scaled conjugate gradient algorithms are used 
for fast pattern classification of artificial neural network 
(ANN).15 At the output node, the softmax activation func-
tion is used that yields the probability values of the classifi-
cation provided by the nodes. The softmax usually takes the 
un-normalized vector and normalizes in terms of probabil-
ity distribution over predicted output classes. Here x is the 
input, which incorporates the value of all the 13 attributes 
= …( , , , , )x x x x1 2 3 13 , y is the output of the classifier and is 
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one of the three classes of probabilities y y y yi = ( )1 2 3, , . 
Each yi  represents the output values belonging to class i. 
The softmax function is applied to output probabilities of 
multiple output classes and can be given as the input x mul-
tiplied by weights W and added to bias b to generate the 
predicted output yi as in Eq. (1).

y softmax W x bi i j i ij
= +∑( ). 	 (1)

The softmax function normalizes the three-dimensional vec-
tor into the range of [1, 0] and yi is the predicted probability 
as the risk factor. In order to evaluate how well the classifier 
is working, the loss function is used to measure the inconsis-
tency between the predicted output and actual output. The 
loss function is known as the performance goal. Here the 
cross-entropy loss function is given by Eq. (2) to get the clas-
sification success.

crossentropy label y label yi ii
,( ) = − ( )∑ log 	 (2)

The neural network implementation was achieved using pat-
tern classification feature of neural network toolbox on 
MATLAB platform16 with the following steps:

1.	 Preprocess the medical data to achieve the class bal-
ance before using a neural network for classification.

2.	 Follow the file format like (labels, attr1, attr2, 
attr3,.  .  . attrN) where labels should be encoded as 
[1,0,0], [0,1,0], and [0,0,1] and attr means attributes 
for risk factors of DN.

3.	 Divide dataset into three sets as training (70%), test-
ing 15% (unseen data), and validation sets (15%).

4.	 Adjust the important hyperparameters such as hidden 
neurons, hidden layers, learning rate, and iterations 
and measure the epochs.

5.	 Train the neural network using resilient backpropa-
gation and scaled conjugate gradient algorithm.

6.	 Train neural network with 13 attributes using train-
ing, test, and validation set. Select the model that 
gives optimal result by changing the values of 
required hyperparameters.

Table 1.  Significant Variables for DN Prediction.

Box–Cox transformed variables (except sex)

95% confidence interval

Coefficients t-statistics UB LB

Sex 0.002 (0.14) −0.036 0.041
Duration of diabetes 0.002* (2.72) 0.001 0.004
Age 0.020*** (73.21) 0.019 0.021
Height 0.006*** (5.57) 0.004 0.009
Weight 0.004*** (3.55) 0.002 0.006
BMI −0.004 (–1.38) −0.011 0.002
HbA1c 0.032*** (6.01) 0.022 0.043
HDL 0.006 (1.04) −0.006 0.019
LDL 0.016 (1.58) −0.004 0.037
ACR 0.002*** (6.17) 0.001 0.002
RBG 0.002 (1.04) −0.002 0.005
Triglyceride −0.002 (–0.31) −0.016 0.011
Cholesterol 0.023** (2.78) 0.007 0.039
Observations 3691  
R 2 0.656  

ACR, urine albumin-to-creatinine ratio; BMI, body mass index; DN, diabetic neuropathy; HbA1c, glycated hemoglobin; HDL, high-density lipoprotein; LB, 
lower bound; LDL, low-density lipoprotein; RBG, random blood glucose; UB, upper bound.
*P < .05, **P < .01, ***P < .001.

Figure 1.  Neural network structure for diabetic neuropathy 
classification.
ACR, urine albumin-to-creatinine ratio; BMI, body mass index; FBG, 
fasting blood glucose; HbA1c, glycated hemoglobin; HDL, high-density 
lipoprotein; LDL, low-density lipoprotein; RBG, random blood glucose.
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7.	 Confusion matrix is computed to assess the neural 
network performance.

8.	 Based on the classification success of training, test-
ing, and validation sets, calculate overall accuracy 
for comparison.

9.	 Repeat steps 2-8 to train the neural network using 
seven best predictors.

10.	 Compare the accuracies of the dataset with a different 
set of attributes.

Results

To the best of our knowledge, there are currently no available 
tools that can determine DN risk by analyzing patients’ clini-
cal data. The focus here was to develop a risk assessment 
tool to help clinicians analyze a complex relationship 
between risk factors and the level of DN. After obtaining the 
results of the classical statistical analysis, which was based 
on summarized patient data, an accuracy of 54% was 
achieved.17 However, after looking into the complexity and 
nonlinearity of the data, the idea of using an ANN as classi-
fier was considered.

A simulation was run on the neural network with 13 attri-
butes and some of the basic hyper-parameters were kept 
fixed. The confusion matrix of the overall data set (consist-
ing of testing, validation, training sets) is shown in Table 2. 
The confusion matrix is the summary of prediction results on 
classification problems and presents the accuracy of the clas-
sifier. It gives correct classification as “true positive” or “true 
negative” as shown in green-colored boxes (diagonal of the 
square) and incorrect classification is listed by “false posi-
tive” and “false negative” as shown in red-colored boxes 
(adjacent to the diagonal). The numbers in the boxes are cor-
rectly classified predictions out of 5088 instances.

When the neural network was trained using seven attri-
butes (the significant predictors) there was a slight decrease 
in classification from 67.9% to 67.4%; so the dataset with 

significant predictors is used for further analysis. Note that 
all 13 variables in Figure 1 were merely to show that all the 
commonly used factors for DN were considered but the 
simulation was done with only 7 variables in order to reduce 
the computational load while still achieving the equivalent 
results.

In order to improve accuracy, the data need to be either 
collected precisely or processed in a way to reduce noise. 
Instead of choosing the prolonged process of collecting 
patient data again, the second option of increasing predictor 
precision was to generate a simulated patient dataset. For gen-
erating simulated patient data with similar properties, the real 
patient data mean and covariance of each predictor were used 
with reduced standard error in order to increase the precision 
of data. By this method a larger dataset was obtained for 
improving prediction. The simulated data were generated 
using the R-code of simstudy software with genData func-
tion.18 Using this function, it generates multivariate normal 
data. It requires the mean, standard error, correlation matrix, 
or correlation coefficient of real patient data. If data are gen-
erated by using the same standard error of the real patient data 
then the spread of the data may remain the same for each pre-
dictor; therefore, standard error was reduced for independent 
variables. By comparing the summary of the simulated data 
with the real patient data it was possible to reduce the skew-
ness of the simulated data and the accuracy was significantly 
increased by reducing the standard error of each predictor.

Many available classifiers can predict the numerical val-
ues from labeled patterns but less consideration has been 
given to ordinal classification problems where labels of the 
dependent variables or targets have a natural ordering. In the 
current scenario, labels are ordered as low, medium, and high 
risk. While dealing with the problems of misclassification it 
would be more erroneous if a patient of low risk was classi-
fied as high risk rather than as medium risk. This encouraged 
us to use an ordinal classification model to carefully handle 
ordinal labels.19 However, in order to adopt a probabilistic 

Table 2.  Confusion Matrix with a Dataset of 13 Attributes.
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framework, NNPOM was considered to be more useful.20,21 
The model approaches ordinal classification by estimating 
the latent variable belonging to ordinal categories and is seen 
to perform well when classes are defined from a discretized 
variable.19 This model is adjusted such that it updates the 
weights by minimizing the cross-entropy loss in each itera-
tion. NNPOM is a linear combination of nonlinear basis 
functions, which can be adjusted by three hyper-parameters 
as hidden neurons (M), number of Iterations (iter), and the 
value of regularization parameter (λ).22

The training of NNPOM was performed on MATLAB 
framework.16 The model was trained with prior setting of all 
the hyper-parameters and the range was explored using dif-
ferent numbers of hidden neurons M ϵ {10, 40, 60, 80, 85, 
120, 130}, iter ϵ {1000, 1500} and λ ϵ {0.01, 0.001}. The 
accuracy of the model is calculated based on the percentage 
of correctly classified class. By increasing the hidden units, 

training time increases and by changing these hyper-parame-
ters, the results change from 68.25% to 70.1%. However, by 
selecting M = 120, iter = 1500, and λ = 0.01, the highest 
level of correctly classified output obtained was 70.1%. This 
version of trained model with highest accuracy was selected 
for the risk assessment tool.

To make it user-friendly, an application was developed as 
shown in the example illustrated in Figure 2 using the trained 
neural network model. Based on the input values provided to 
the tool, VPT probabilities were predicted from the learnt 
model with 2% chance of low risk, 23% chance of medium 
risk, and 75% chance of high risk. The result shows that this 
subject is very likely to have DN.

Another example was tested by keeping all the parameters 
the same and just decreasing the age by 10 years to determine 
the categories and observe the change in the risk level. As 
seen in Figure 3, by keeping all the other inputs (apart from 

Figure 2.  Risk assessment tool with clinical variables.
HbA1c, glycated hemoglobin.

Figure 3.  Diabetic neuropathy prediction with changed variables.
HbA1c, glycated hemoglobin.
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age) the same, the risk level of DN is reduced from high to 
medium risk. Thus, based on a combination of clinical inputs, 
the tool can predict the subject’s VPT and determine the risk 
level of DN.

Discussion

This risk assessment tool is the first of its kind to provide a 
novel method for the reliable screening, diagnosis, and mon-
itoring of DN. The study was conducted by using both the 
longitudinal data and continuous VPT measurements. Out of 
13 variables, 7 variables were identified as significant pre-
dictors. For easy interpretation of the risk level of DN, VPT 
was divided into three categories based on VPT thresholds. 
We initially considered all 13 variables for training with 
these attributes, and the model achieved an accuracy of 
67.9%. The ANN was then trained with seven best predictors 
and achieved an accuracy of 67.4%. This comparison gave 
us a good indication to use only significant predictors rather 
than all the attributes.

In order to improve the precision of summarized patient 
data (which provided only 54% accuracy due to missing 
data), data with similar properties were simulated with cova-
riance and the mean value of patient data, but with reduced 
standard errors. The NNPOM was trained on simulated data 
and achieved an accuracy of 70.1% with the seven predic-
tors. Considering the noise and imbalance in data this method 
worked significantly well for a risk assessment tool for DN. 
The limitation of quality of data was handled by using simu-
lated patient data and the quality of data was improved by 
increasing the precision of variables. As a result the achieved 
accuracy can be further improved by collecting clinically 
significant patient data over time. We recognize that perfor-
mance may not improve by leveraging larger datasets and 
may hit the ceiling; however, it is imperative that if more 
quality data are collected over time, the performance may 
increase for a particular country or population. Since the cur-
rent level of accuracy is based on the summarized or simu-
lated patient data, we found that the results were good enough 
when compared with the validation data. We intend to evalu-
ate this further and this paper highlights an important step in 
that direction.

Conclusion

In the absence of established assessment devices or trained 
personnel it may prove difficult to get a diagnosis of DN. The 
undoubted importance of patient clinical characteristics led 
us to develop a risk assessment tool based on patient data 
alone. This intelligent software-based tool is both user-
friendly and can provide the risk level of DN with reliable 
accuracy. As the software would perform better if trained on 
a larger dataset, its performance will continually improve as 
quality data are collected over time. We, therefore, interfaced 
this software with our neuropathy device (VibraScan23) in 
order to enrich quality patient data. The resultant larger  

integrated dataset enables the device to be used as a compre-
hensive tool for the risk assessment of DN.

Consensus for screening for DN has been historically 
very difficult to standardize and lags behind the much more 
state-of-the-art digital screening for retinopathy for example. 
As this intuitive artificial intelligence device aptly offers a 
low or noncontact patient facility, it provides a platform for 
the safe, quick, and effective screening of the diabetes popu-
lation at large.24 With a current global prevalence of diabetes 
of 9.3% (just under half a billion people), and an estimation 
to rise by 50% in 2045, this innovative technique certainly 
opens a new horizon in modern diabetes care.25
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