Skip to main content
. 2022 Feb;11(1):13–24. doi: 10.21037/hbsn-19-870

Table 2. Performance of ANN model and LR model in differentiating different histological grades.

Models AUC (95% CI) Sensitivity Specificity
Training set ANN-AP 0.945 (0.865–1.000) 0.980 0.962
LR-AP 0.805 (0.710–0.901) 0.627 0.962
ANN-HBP 0.975 (0.925–1.000) 1.000 0.970
LR-HBP 0.820 (0.724–0.917) 0.783 0.788
ANN-AP + HBP 0.953 (0.907–0.998) 1.000 0.792
LR-AP + HBP 0.921 (0.856–0.986) 0.773 0.979
Test set ANN-AP 0.889 (0.804–0.974) 0.913 0.882
LR-AP 0.777 (0.681–0.864) 0.652 0.882
ANN-HBP 0.941 (0.886–0.995) 0.979 0.926
LR-HBP 0.819 (0.742–0.895) 0.883 0.722
ANN-AP + HBP 0.944 (0.887–0.996) 0.840 0.998
LR-AP + HBP 0.792 (0.681–0.904) 0.680 0.854

ANN, artificial neural network; LR, logistic regression; AP, arterial phase; HBP, hepatobiliary phase; AUC, area under the receiver operating characteristic curve; CI, confidence interval.