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Abstract

Chemotherapeutic treatment of cancers is a challenging endeavor, hindered by poor selectivity 

towards tumorous tissues over healthy ones. Preferentially delivering a given drug to tumor sites 

necessitates the use of targeting elements, of which there are a wide range in development. In this 

Review, we highlight recent examples of peptide-based targeting ligands that have been exploited 

to selectively deliver a chemotherapeutic payload to specific tumor-associated sites such as the 

vasculature, lymphatics, or cell surface. The advantages and limitations of such approaches will 

be discussed with a view to potential future development. Additionally, we will also examine how 

peptide-based ligands can be used diagnostically in the detection and characterization of cancers 

through their incorporation into imaging agents.
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1. RATIONALE BEHIND USING SMALL MOLECULE PEPTIDES FOR 

TARGETED THERAPIES

Cancer is a complex and deadly series of diseases [1–3]. In many cases, surgery and 

radiation therapy are deficient in their attempts to provide a positive, long-term prognosis, 

especially for instances where the primary tumor has metastasized and spread to multiple 

parts of the body [4]. Conventional anticancer drugs rely on a sufficiently long half-life 

in the blood stream to accumulate in cancerous tissues, exerting their desired biological 

effect through disruption of cell processes that are essential for cellular replication, such as 

DNA transcription [5, 6], cellular division [7] and metabolism [8]. Many anticancer drugs, 

however, possess no inherent means to distinguish healthy and diseased tissues, and it is 
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only the unregulated, more rapid cell growth within tumors that results in a greater extent 

of action and thus gives the appearance of preferential targeting. Unfortunately, healthy 

cells that also grow rapidly, such as endothelial cells and leucocytes, are more strongly 

affected, leading to the notorious side-effects of chemotherapy, such as nausea, hair loss 

and a compromised immune system [9]. These unwanted cellular interactions, combined 

with the development of multi-drug resistance (MDR) [10] by cancer cells, necessitate the 

development of new therapies that specifically target tumors and cancerous tissues [11]. One 

strategy is the use of delivery vehicles, such as nanoparticles, that due to their size and other 

physicochemical characteristics are able to accumulate in tumors by traversing gaps in the 

endothelial cells lining the vascular wall [12, 13]. The utilization of this “leaky” vasculature 

surrounding tumors to deliver drugs is known as the enhanced permeability and retention 

(EPR) effect [14] and represents a passive targeting strategy (Fig. 1). These EPR-based 

therapies, though important, still possess several inherent limitations; for example, the same 

leaky vasculature responsible for the absorption of the therapeutics by solid tumors also 

leads to a non-uniform distribution of the drug [15]. Concerns about its effectiveness for the 

treatment of human metastatic cancers also exist [16, 17]. A major focus in recent years has 

been the development of “smart” drugs, which actively target tumors through the interaction 

of phenotype-specific ligands that are conjugated to the drug (or the drug-carrying delivery 

vector) [18, 19]. By binding with the corresponding receptors on the tumor and/or in its 

microenvironment, a greater build-up of drugs at the tumor site can be achieved than would 

otherwise be possible using a passive strategy (Fig. 1). Additionally, binding to certain 

receptors may help trigger internalization and potentially help avoid any drug resistance 

mechanisms that have arisen [20]. There is evidence to suggest that this internalization 

may play the major role in improving drug efficacy when compared with non-targeted 

counterparts [21, 22], rather than through accumulation alone, but at this stage it is unclear if 

this is a general trend or specific to certain tumors and/or targets.

Cells in the body possess a large number of protein-based receptors on their membrane 

surface that are responsible for communication between the intra- and extracellular 

environment and among different cells. These receptors bind signaling molecules (cytokines, 

hormones, and growth factors for instance) that then triggers some changes in the cell 

function. Cancer cells often express a great number and variety of receptors on their surface, 

particularly those that will facilitate important biological functions associated with tumor 

growth [23], migration [24], invasion and metastasis [25, 26]. In theory, this would make 

the tumor cell surface an attractive target for both therapy and imaging, but in practice it is 

difficult as many of the cells may not be accessible due to the heterogeneity of the tumor 

mass [15, 27]. Furthermore, cultured cells that are utilized for screening purposes may not 

possess the same characteristics as the corresponding in vivo tumor cells, i.e. they may lose 

tissue-specific characteristics or abnormally express molecules that in vivo cells would not. 

A more attractive proposition is the targeting of endothelial cells in the tumor vasculature 

rather than the tumor cells themselves [28–30]. This approach possesses several advantages, 

the most notable of which being the readily accessible nature of vasculature endothelial 

cells to intravenously introduced agents. Extensive studies have indicated that cancerous 

endothelial cells display a distinct pattern of surface receptors that is a product of their 

tissue type and microenvironment [31]. This differential expression of receptors therefore 
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presents a viable strategy for the specific targeting of tumor endothelial cells over healthy 

endothelial cells. The challenge remains in discovering potential targets and optimizing 

suitable targeting ligands that can exploit them.

To target a specific receptor it is necessary to in some way mimic its natural ligand. One 

of the most effective means to do so is through the use of monoclonal antibodies (mAbs), 

which are possibly the closest entities to Paul Erlich’s “magic bullet” [32] that have been 

developed thus far. Naked mAbs, to which no chemotherapeutic is attached, can be used 

to target and block surface receptors involved in cell proliferation [33], e.g. trastuzumab 

(Herceptin®, Genentech/Roche) for the HER2 protein [34, 35] and Cetuximab (Erbitux®, 

Bristol-Myers Squib) for the EGFR protein [36, 37]. Furthermore, the use of mAbs has been 

shown to elicit an antitumor response from both the innate and adaptive immune system 

through their extra- and intracellular modes of action [38]. Utilizing the specificity of mAbs, 

the conjugation of a drug should in theory deliver the drug to only those cells which possess 

the target protein, though the effectiveness of this largely depends on the method and site(s) 

of conjugation and the tumor microenvironment [39]. As targeting elements, mAbs are not 

without issues of their own as they are expensive to produce, can be heterogeneous, often 

elicit an allergic response in the patient, and can have side-effects related to the targeted 

antigen. One targeting strategy of particularly great interest, and the focus of this review, 

is the use of small molecule peptides that, unlike mAbs, can be used in combination with 

drug delivery vehicles. Compared with mAbs, peptides have many important advantages: 

facile synthesis and design, lower risk of allergic response, their drug conjugates have better 

tumor penetrating properties, and an antigenic target is not required [40, 41]. Furthermore, 

they are naturally degraded by cellular catabolism. A major disadvantage to peptides, 

however, is their short half-life in plasma (on the order of minutes), suffering from both 

rapid degradation and renal clearance that limits their use as drugs outright and as targeting 

elements when conjugated to small molecular drugs. Fortunately, these otherwise adverse 

attributes are largely negated when the peptide is affixed to a larger entity such as a delivery 

vehicle, and chemical modification strategies exist that can prolong their circulation as 

smaller entities [42]. As a whole, peptides possess immense potential in the development of 

increasingly specific and advanced cancer therapies. We will venture to outline engineered 

systems that are harnessed by such therapies.

The rational design of synthetically engineered peptides for drug delivery applications is 

dependent upon finding amino acid sequences that can “home in” on the ligand of interest 

[43]. One of the most common methods employed to find homing peptides is the use of 

phage display libraries [44]. The phage display technique records how phages containing 

proteins on their surface interact with other ligands and biomarkers, thus shedding light 

on new protein- and peptide-based interactions [45]. This knowledge has proven invaluable 

in the discovery of ligands that selectively bind to specific tumor types and environments. 

A common strategy that employs this information is the development of antibodies with 

domains that preferentially bind to extracellular receptors of certain cancer phenotypes [46]. 

In addition, efforts in computational biology and the construction of phage display libraries 

have elucidated a host of information on the primary sequence and structure of these target 

ligands; as such, it has been possible to more easily synthesize small-molecule peptides 

that can preferentially bind to target tissues in the same manner as their larger antibody 
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or protein counterparts [47]. These tumor-homing small-molecule peptides have served the 

field of drug delivery in various ways, the most common being the surface decoration 

of a cargo-carrying entity, such as dendrimers, liposomes, or microbubbles, with targeting 

peptides [48]. Alternatively, it has also been found that peptides conjugated directly to 

a therapeutic agent can function in a similarly selective manner (instances of which will 

be documented here). This review will seek to expound upon current approaches in the 

engineering of these peptides as the basis of cancer-targeting drug therapies.

2. HOMING PEPTIDES THAT TARGET THE TUMOR VASCULATURE

A critical process in tumor growth is the formation of new blood vessels, through 

angiogenesis, signaling the transition of tumors from a benign to malignant state [31]. 

Since angiogenesis is a process that strongly distinguishes cancerous cells from healthy ones 

[31], it is an attractive target for guided drug delivery strategies. Conveniently, cancer cells 

and tumor endothelial cells express their own distinct sets of receptors on their surfaces 

that vary significantly from normal vasculature and other healthy cells; this makes tumor 

vasculature a more realistic target for ligand-mediated delivery strategies [49]. Targeting 

tumor vasculature is also advantageous in that tumor endothelial cells are less drug resistant 

than more genetically unstable tumor cells; in addition, they are highly accessible to any 

intravenously delivered therapeutic [50]. An almost ubiquitous strategy to target the tumor 

vasculature is the use of integrin-binding peptides, with peptides based on the RGD motif a 

common sight in reports [51]. Given the wide breadth of literature available on this motif, 

we will instead focus on other strategies and direct the reader to a number of excellent 

reviews on the subject [52–56]. Table 1 contains a non-exhaustive summary of peptide 

ligands and their targets (where known) that have been used to target tumor vasculature.

Given the importance of angiogenesis in tumor progression, it is desirable to develop 

peptide-based therapies that can inhibit this process and, therefore, prevent further tumor 

growth and metastasis [57]. One example of an angiogenesis-specific ligand was developed 

by Travassos et al. [58, 59]; using phage display, the group discovered a new melanoma-

homing peptide termed peptide C, and conjugated it to a bioactive, anti-angiogenic peptide 

sequence (Fig. 2a). The resultant peptide was found to effectively slow tumor progression 

when systemically injected in mice; “proangiogenic” structures were reported to be reduced 

by 40 percent [59]. This newly created peptide sequence also binds the human sonic 

hedgehog protein, a protein prevalent in multiple tumor microenvironments, including 

melanoma [60]. The use of anti-angiogenic peptides, as it happens, is a valid strategy in the 

treatments of many types of high-risk tumors. One important example is given by Cohn et 
al., who show promising work in tumor-homing peptides called SPARC peptides (Secreted 

Protein, Acidic and Rich in Cysteine) that inhibit angiogenesis in neuroblastoma tumors 

[61]. Although its exact inhibitive mechanism is not fully understood, SPARC is able to 

interfere with a variety of growth factors, such as VEGF, PDGF, and bFGF, and reduce their 

ability to stimulate angiogenesis [62]. The same group then synthesized various peptides 

mimicking conserved SPARC domains, and found that one, named FSEC (Fig. 2b), not only 

potently inhibited angiogenesis but also inhibited neuroblastoma progression in a preclinical 

model [61].
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Targets for angiogenesis are not limited to endothelial cells, as proteins in the extracellular 

matrix such as collagen IV play an important role in the angiogenic process, and are 

therefore suitable candidates for tumor-targeting therapies [63, 64]. Essler et al. have 

discovered a tumor-homing peptide through phage library screening that specifically binds 

to collagen IV after it has been cleaved by matrix metalloproteinase 2 (MMP-2) [65]. This 

peptide, of sequence TLTYTWS, was found to block angiogenesis through the targeting of a 

molecular mechanism necessary for it to occur: the cleavage of the basement membrane 

by matrix metalloproteinases [66, 67]. This ability to selectively target different types 

of biomarkers, from overexpressed receptors to by-products of a molecular mechanism, 

demonstrates the versatility of using peptides as targeting entities.

Angiogenesis is not the only novel characteristic of the tumor microenvironment. Lymphatic 

vessels in tumors also possess specialized markers that differentiate them from their non-

tumorigenic counterparts. Studies have shown that it is even possible to differentiate tumor 

types in terms of their lymphatic vasculature [68, 69]. In fact, the physical characteristics of 

a tumor’s lymphatics such as size, number, and expressed growth factors have been shown to 

be an important factor in tumor metastatic capability [70]. Consequently, metastasis may be 

combated by targeting not just tumor angiogenesis but also the lymphatic structure of tumors 

as well. This strategy was employed by Ruoslahti et al., who demonstrated the potential 

of a lytic peptide to reduce metastasis by targeting tumor lymphatics (Fig. 2c) [71]. The 

peptide in question, termed LyP-1 (CGNKRTRGC), was shown to preferentially accumulate 

in breast cancer xenografts following intravenous administration. In addition, LyP-1 was 

found to localize in hypoxic areas within the tumors, induce tumor cell apoptosis, destroy 

tumor lymphatics, and inhibit tumor growth [71].

Ruoslahti and coworkers later determined that LyP-1 binds to p32 (or gC1qR) [72], a cell 

surface protein that is overexpressed on tumor cells and stroma, and undergoes proteolysis to 

produce a C-terminal KRTR motif. It was this feature that was found to be responsible for 

the activity of LyP-1 [73], with a significant number of peptides possessing the consensus 

motif, R/KXXR/K, and similar cell internalization characteristics found by phage display. 

This tissue penetration motif was termed the C-end rule or CendR (“sender”) motif, and it is 

it’s interaction with neuropilin-1 (NRP-1) that triggers the activation of a transport pathway 

through both the vascular wall and tumorous tissues. It was postulated that this CendR tissue 

transport pathway may exist to facilitate the transfer of nutrients that are far from blood 

vessels or in some form of distress, i.e. hypoxic [74]. Overexpression of NRP-1 in tumors 

may be one way in which tumors exploit physiological pathways to promote their continued 

growth. The CendR pathway may also have been hijacked by viruses (e.g. Ebola [75], 

Crimean-Congo hemorrhagic fever [76]), microbial toxins (e.g. anthrax [77]) and venoms 

(melittin in bee venom [78], for example) to aid with cellular entry and spreading through 

tissues, as the CendR motif is a recurring theme in associated peptides/proteins.

Utilizing this knowledge of the CendR pathway, Ruoslahti’s group developed the tumor 

penetrating peptide, iRGD (internalizing-RGD, CRGDKGPDC) [79], in which the RGD 

motif targets overexpressed integrins in the tumor vasculature, with subsequent proteolytic 

cleavage revealing the CendR motif (-RGDK) that then enables tumor penetration. It was 

demonstrated that conjugation of the iRGD peptide to the clinically relevant therapeutic 
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Abraxane (albumin-bound paclitaxel, Celgene) resulted in an eight-fold increase in the 

tumor concentration of the drug after intravenous injection when compared to Abraxane 

alone [79]. Remarkably, it was found that simply co-administering a drug or drug carrier 

with standalone iRGD resulted in increased tumor concentration of the therapeutic and 

enhanced their efficacy [80]. For instance, little difference between the effectiveness of 

Abraxane was found when co-administered with or conjugated to iRGD. The reasoning 

behind this is that the CendR pathway is a bulk transport pathway and allows greater 

systemic accessibility for other payloads to pass through at the same time. The obvious 

appeal of this observation is that it would remove the need for chemical conjugation, thereby 

greatly simplifying the preparation process. More recently, another tumor-penetrating 

peptide was developed in a de novo fashion, replacing the RGD targeting sequence of 

iRGD with the aminopeptidase N targeting NGR motif [28] to give iNGR (CRNGRGPDC) 

[81]. Similar to iRGD, iNGR can be coadministered with or conjugated to the therapeutic 

in order to enhance efficacy. The significance of iNGR, however, lies in its creation 

from known sequence elements that, in theory, points to the possibility of harnessing any 

targeting sequence provided that a ‘cryptic’ CendR motif can be incorporated and effectively 

unmasked upon proteolytic processing.

It should be noted that while the approaches described above have demonstrated great utility, 

it is important to understand the limitations that this tumor vasculature targeting strategy 

possesses. One such limitation is that there are many pathways involved in angiogenesis; 

targeting one in particular could force the tumor cells to adapt and use alternative 

pathways, resulting in resistance to drugs that seek to exploit the targeted pathway [29]. 

The heterogeneity of cancerous tissues, as well as their highly irregular vasculature, also 

raises difficulties for drug delivery strategies that operate by targeting angiogenesis or 

tumor lymphatics [82]. As the distance from the vasculature increases, there is a steep 

drop off in the availability of oxygen that can result in hypoxic regions (Fig. 1). In such 

environments, tumor cells can undergo drastic changes that allow them to avoid death and 

continue proliferating [83, 84]. Destruction of cancerous tissues nearer the vasculature can 

result in increased oxygenation that then promotes further tumor growth and invasion [85]. 

Furthermore, tumor cells that existed at the boundary between the oxygen-rich and poor 

regions can become drug resistant, as they may have been exposed to concentrations of the 

drug that were insufficient to induce apoptosis [86]. Tumor penetrating peptides, such as 

those developed by Ruoslahti, may provide a long-term answer to these challenges, though 

much work remains to be done.

3. HOMING PEPTIDES THAT TARGET SPECIFIC CANCERS

Just as the tumor microenvironment itself contains overexpressed receptors that become key 

identifiers, particular tumor types exhibit significant overexpression of specific extracellular 

receptors (e.g. growth factor receptors). As a result, monoclonal antibodies have been 

utilized as targeting moieties due to their high specificity for their target proteins, with 

a number of antibody-conjugated drugs (ADCs) already approved for clinical use [39], 

e.g. Brentuximab vedotin [112, 113] (Adcetris®, Seattle Genetics) and Adotrastuzumab 

emtansine [114] (Kadcyla® or T-DM1, Genentech/Roche). Tumor-homing peptides specific 

for certain cancers operate around the same concept, with the promise of overcoming 
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some of the shortcomings of their monoclonal antibody counterparts: peptides have a 

comparatively facile synthesis, lower production cost, and increased efficacy in tumor 

targeting, penetration and internalization [41, 115]. It is the goal of many current research 

efforts to identify and develop peptides that can mimic the targeting function of antibodies 

in a more direct and cost-effective way. This section will seek to discuss the utilization of 

peptide-based therapies that target specific cancers on the basis of their affinity for certain 

cancer-specific extracellular biomarkers.

The engineering of peptides that can home in on specific cancers is predicated upon the 

knowledge of which biomarkers to target. Thus, ideal targets for tumor-homing therapies 

are those that are overexpressed or abundant in cancerous tissues, but not in healthy organs, 

providing the basis for differentiating cancer cells from their benign neighbors. As such, it 

is important that the appropriate markers be selected in order for the “smart” therapeutics 

to maintain the selectivity that distinguishes them from their unmodified counterparts. One 

of the most promising targets for the guided delivery of anticancer drugs is the luteinizing 

hormone-releasing hormone (LHRH) receptor; this G-protein coupled receptor has been 

found to be significantly overexpressed in a wide variety of cancer types, including prostate, 

ovarian, breast, pancreas, colorectal, kidney, and bladder cancers [116]. In addition to its 

significant up-regulation in cancer cells, the LHRH receptor is a particularly attractive 

candidate for guided drug delivery strategies because its expression levels in healthy organs 

is incredibly low. This provides a strong motivation to pursue LHRH agonist and antagonist-

based therapies.

The overexpression of LHRH receptors is greatest in human prostate cancer, wherein it 

is reported that the hormone receptor is present in 86% of the cases studied [117]. The 

importance of LHRH in treating prostate cancer is also underscored by the morbidity and 

mortality for which the disease is responsible; as it stands, there is a great need in the 

treatment of prostate cancer for more versatile and effective treatments. In particular, cases 

wherein the cancer has proven to be castration-resistant have resulted in a remarkably 

poor prognosis, with an expected survival rate of less than nineteen months [118]. It has 

been shown that in such instances a lack of viable treatment options exists [119]. Given 

its prevalence in the majority of prostate cancer cases, LHRH receptor has become a 

promising avenue for the development of more effective treatments. In addition to its high 

up-regulation, the LHRH receptor has been demonstrated to maintain a steady expression 

level even after prolonged exposure to LHRH agonists [120]. While its specific role in the 

progression of cancers is still not clearly understood, its mere presence allows the use of 

LHRH receptor targeting moieties in cutting-edge therapies [120, 121].

In the creation of LHRH receptor-targeted strategies, the most straight forward homing 

peptide that can be utilized is the corresponding antigen itself. LHRH is the relatively 

short polypeptide, pyroE-HWTSYGLRPG-NH2, which lends itself to facile synthesis and 

possesses the same advantages as other small-molecule compounds. Indeed, Minko et al. 
have shown that the use of LHRH as a targeting moiety in a drug delivery system (DDS) 

is sufficient to selectively target tumor cells and therefore increase the relative potency 

of the chemotherapeutic camptothecin (CPT) [122]. In their design, a LHRH receptor-

targeted DDS was constructed by conjugating free CPT to a modified LHRH peptide via a 
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polyethylene glycol (PEG) linker. Compared to the free drug, this new compound displayed 

increased efficacy by reducing tumor size in mice while decreasing harmful side effects to 

healthy organs [122]. Using modified LHRH peptides as targeting moieties has also shown 

great promise in clinical trials when conjugated to the chemotherapy drug doxorubicin 

(DOX); the compound AEZS-108 (also called AN-152) consists of a cytotoxic analog of 

LHRH that is conjugated to a molecule of DOX (Fig. 3a) and was shown to achieve disease 

stabilization in 90% of prostate cancer patients during Phase I trials [123]. It is currently 

being developed as a chemotherapy treatment option for a variety of cancer types [124, 125]. 

AEZS-108 exerts its cytotoxic effects by directing the DOX moiety to LHRH receptors, 

where the compound undergoes receptor-mediated endocytosis [126]. This contrasts with the 

passive diffusion across the plasma membrane that allows free DOX to internalize into cells 

[127]. The promise of AEZS-108 lies in its potential to provide a viable therapy to patients 

with castration-resistant prostate cancer (CRPC). Rick et al. have explored this potential in 

the treatment of DU-145 castration-resistant prostate tumors in nude mice, demonstrating 

that the peptide-drug conjugate had notably greater efficacy than unconjugated DOX or free 

LHRH analog alone in the inhibition of tumor growth [126]. The group’s results indicate 

that this formulation of doxorubicin allows for a delayed rate of intracellular uptake that 

changes DOX’s mechanism of action to additionally affect other extranuclear targets. These 

findings illustrate both the utility and importance of homing peptides in the development of 

therapies with poor prognoses.

The LHRH receptor is but one of several important biomarkers that allow for targeted 

therapy. Another well-known cellular component that is overexpressed in several types of 

cancers is the human epidermal growth factor receptor 2 (HER2/neu or HER2). HER2 is 

a receptor tyrosine kinase of the EGFR family and a known oncogene that plays a role 

in several cancer types, including breast, gastric, ovarian, and prostate cancers [128]. In 

particular, HER2 has become an important biomarker in the diagnosis and treatment of 

human breast cancer, being overexpressed in approximately 30% of cases [129]. This plasma 

membrane-bound protein takes part in the transduction of multiple signaling pathways 

that, when uncontrolled, are characteristic of cancerous phenotypes [130]. Patients with 

HER2-positive cancers are associated with more aggressive disease and generally poorer 

prognoses; in light of this, it is desirable to develop HER2-specific therapies that can 

effectively treat these more threatening occurrences [129]. It has been demonstrated that the 

intracellular inhibition of HER2 in breast cancer cells where it is overexpressed promotes 

apoptosis [131]; thus, it can be reasoned that HER2 may prove to be a logical target for other 

guided therapies.

HER2 does not have any known corresponding binding ligand; however, cases have been 

documented that demonstrate the successful creation of artificial ligands which target the 

receptor [128, 132]. In line with these efforts, a monoclonal antibody known as Trastuzumab 

that interferes with the HER2 receptor has been developed as a first-line treatment against 

breast cancer [133]. Unfortunately, Trastuzumab-based therapies are susceptible to the same 

problems encountered by other therapeutic antibodies and antibody-targeted drugs, such 

as poor tumor and tissue penetration and inherent or acquired mechanisms of resistance 

[134]. Once again, peptide-based therapies offer significant advantages due to their small 

size (and consequently excellent tissue penetration), facile synthesis, and flexibility as 
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targeting ligands. Murali et al. successfully created an anti-HER2/neu peptide (AHNP, 

-FCGDGFYACYMDV-) that acts as a mimetic for the full-chain antibody Trastuzumab. 

AHNP has been demonstrated to bind tightly to HER2 receptors and encourage apoptosis of 

tumor cells on an order comparable to its monoclonal antibody counterpart [135]. Treatment 

of HER2-positive cancers with AHNP also exhibited increased efficacy when used in 

conjunction with radiation or other chemotherapeutic agents such as doxorubicin [135]. 

The promise of this antibody-mimicking peptide has also allowed for its use as a targeting 

moiety for HER2-positive cancer cells, providing a versatile platform for the delivery of a 

variety of therapeutic cargo [136, 137]. Other artificial HER2-binding ligands have also 

emerged, including the peptide LTVSPWY, which was developed using phage display 

methods by Shadidi and Sioud [138]. They demonstrated the HER2-homing capability 

of the peptide by conjugation to an antisense nucleotide that was shown to be delivered 

preferentially to HER2-positive cancer cells [138]. This tumor-homing peptide also readily 

mediates delivery of pro-apoptotic agents which are otherwise non-selective in their 

cellular uptake. Neuzil et al. have conjugated LTVSPWY to the pro-apoptotic α-tocopheryl 

succinate (α-TOS) (Fig. 3b), which they found to effectively induce rapid apoptosis 

and slow growth in HER2-positive breast tumors [139]. This ability to enhance uptake 

of otherwise poorly or non-selective therapeutics in a rapid and biomarker concentration-

dependent manner is at the heart of this shift in chemotherapy-based strategies that peptide-

based therapies are leading.

Another biomarker of great interest to the field of peptide-based drug delivery is the 

hormone somatostatin, a cyclic polypeptide that is an important regulator of the endocrine 

system [140]. By binding with G-protein coupled somatostatin receptors, it inhibits the 

secretion of various secondary hormones depending on the location of the receptor, e.g. 

insulin release in the pancreas [141]. Somatostatin occurs naturally in two active forms 

consisting of 14 and 28 amino acids, respectively. Somatostatin is of key interest because the 

class of receptors through which it exerts its effects is overexpressed in a large number of 

tumor types, particularly neuroendocrine tumors [142]. In particular, somatostatin receptor 

2 (SSTR2) was found to exist at high densities in 14 out of 16 common tumor cell 

lines, including breast, prostate, lung, pancreatic, ovarian, cervical cancers, leukemia and 

neuroblastoma [143]. Such ubiquity fosters a high level of interest in SSTRs for those 

attempting to develop novel peptide-based drug delivery systems.

Although somatostatin has a short half-life in the body [143], synthetic analogs of higher 

stability have been successfully created which can still effectively bind SSTRs with high 

affinity via a conserved sequence of amino acids [144, 145]. These somatostatin analogs 

have become useful tumor-localization agents, and analogs such as Lanreotide (Fig. 3c) 

and Octreotide (Fig. 3d) have also demonstrated antitumor effects in and of themselves 

[146]. These peptides have also been recognized for their potential as tumor-homing 

conjugates for chemotherapy agents; the use of Octreotide as a carrier of cytotoxins such 

as doxorubicin has been reported [147]. By simply pairing cytotoxic drugs with the analog 

Octreotide, significant tumor growth inhibition and general toxicity reduction in healthy 

organs can be achieved [148]. Inspired by these successes, Coy et al. developed a novel 

cytotoxic analog called JF-10-81 by conjugating camptothecin to the SST analog JF-07-69 

via a degradable carbamate linker [149]. While selectively targeting SSTR2 and retaining 
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its high binding affinity, this analog is rapidly internalized by tumor cells and inhibits 

proliferation and growth. This was demonstrated in neuroblastoma, pancreatic, leukemia, 

pancreatic carcinoid, and prostate tumors; this analog has also demonstrated the capacity 

to overcome multidrug resistance, inducing potent inhibitory effects in CPT-resistant BON 

pancreatic carcinoid tumors [149]. Other promising SST-analog-drug conjugates currently in 

development have displayed success in enhancing the efficacy of small-molecule drugs as 

well [150, 151].

Peptides may also play an important role in the targeting of many other overexpressed 

receptors, and even intracellular targets, in treating cancer [152, 153]. Table 2 lists many 

more examples of cancer-specific targeting peptides, but an in-depth summary of all 

biomarkers utilized in targeted cancer therapy is beyond the scope of this review. The 

emphasis here has been on some of the main successes in peptide-based targeting strategies 

that have shown potential to alter the core tenets of cancer treatment. The advantages that 

tumor-targeting peptides offer over traditional chemotherapy give them significant potential 

to change the face of a field that currently has a great need for both increased specificity and 

efficacy of treatment.

4. TARGETING BRAIN TUMORS

Targeting tumors that form within the brain or central nervous system poses further 

challenges for effective therapies [199, 200]; an unfortunate happenstance given the most 

common form of primary brain tumor is the aggressive (WHO grade IV) diffuse glioma, 

glioblastoma multiforme (GBM) [201]. With a median survival time of 2–3 years (less for 

the more aggressive forms) [202], it is imperative that advances be made to enable more 

effective treatments that, if not curative, at least further extend survival time and allow a 

higher quality of life. The difficulty in treating gliomas arises from the unique environment 

of the brain, which has evolved to possess a protective barrier that prevents large proteins 

and bacteria from escaping the blood vessels and affecting the brain. The blood-brain barrier 

(BBB) results from the very tight junctions formed by the endothelial cells that prevent the 

diffusion of anything but small or gaseous molecules (water or carbon dioxide) and small 

(<400 Da) lipophilic molecules [203]. Additional protection against the latter is afforded 

by a range of efflux transporters expressed in the brain endothelium, the most abundant 

being the P-glycoprotein (P-gp), a protein that is commonly overexpressed in multidrug 

resistant cancers [204]. It should be noted that there has been some debate over whether the 

BBB is actually a hindrance in the treatment of brain tumors as, like other cancers, gliomas 

have irregular and leaky vasculature that disrupts the BBB in the tumor microenvironment, 

creating what is named the blood-brain-tumor barrier (BBTB) [199]. However, there is 

evidence to support that since it is a localized effect and gliomas readily metastasize to areas 

where the BBB remains intact, the BBB does in fact play a major role in the resistance 

of gliomas to conventional chemotherapies [205]. Regardless of the extent to which either 

barrier exists at the tumor site, it is clear that both present challenges to delivering a drug to 

brain tumors that must be addressed.

While the BBB exists to protect the brain by excluding small molecules, peptides, proteins 

and larger species, at that same time it is required that some of these entities can actually 
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cross the barrier as they are essential for the brain to function properly. The brain needs fuel, 

for example, and so glucose must be able to be pass across the BBB, a task accomplished by 

glucose transporter proteins [206]. Accordingly, there is a wide range of active transporter 

proteins that line the brain endothelium and facilitate the import (and export) of vital 

metabolites and proteins. Exploiting these transport systems through selection of appropriate 

ligands should, therefore, allow the transport of a conjugated drug or drug carrier across the 

BBB via receptor-mediated endo or transcytosis.

One family of receptors that have attracted great interest is the lipoprotein receptor-related 

proteins (LRPs), particularly those for low-density lipoproteins (LDLs) such as LRP-1. 

Béliveau and coworkers developed a family of peptides based on the Kunitz domain of 

aprotinin [207], a 6.5 kDA protease inhibitor that is a ligand for LRPs 1 and 2. These 

peptides, termed Angiopeps, demonstrated a greater transcytosis capacity than aprotinin, 

with Angiopep-2 (TFFYGGSRGKRNNFKTEEY) selected for further studies. One such 

study was the conjugation of three paclitaxel (Taxol, PTX) molecules to the N-terminal 

and lysine side-chain amines of Angiopep-2 (Fig. 4a) [208]. This peptide–drug conjugate, 

ANG1005, exhibited a 15% increase in life span in an intracerebral glioblastoma murine 

model [208] and is currently in Phase II clinical trials (ID NCT01967810), having 

successfully completed Phase I trials (as GRN1005) [209]. Xin et al. have also utilized 

Angiopep-2 to target their PEG-PCL nanoparticle drug delivery system to glioblastomas 

[210]. They demonstrated a potential dual targeting effect of the conjugated peptide that 

allows a PTX-loaded nanoparticle to cross the BBB and preferentially accumulate in the 

vicinity of glioma cells through recognition of overexpressed LPR-1 on their surface. This 

increased accumulation was confirmed through in vivo fluorescence imaging.

Transferrin is an endogenous iron transport protein that is involved in maintaining iron 

concentrations within the brain [211]. Zhang et al. took advantage of the receptor for this 

protein using a dual targeting approach to deliver paclitaxel-loaded micelles to U87 MG 

glioblastomas in a mouse model [212]. Transferrin was grafted to a micelle loaded with a 

c[RGDfK] peptide-modified PTX (Fig. 4b). In circulation, the attached transferrin allows the 

micelles to cross the BBB where the micelle breaks down to release the modified drug. The 

cyclic RGD peptide ensures the drug exhibits a greater selectivity for gliomas over healthy 

tissues due to the overexpression of integrin proteins in the former [213]. In vivo studies 

showed a 26% increase in mean survival time when using the dual targeting strategy (43 

days) over the free drug control and saline controls (34 and 35 days, respectively).

While the above approach to targeting the transferrin receptor relied on the use of the 

endogenous protein, Lee et al. used phage display to develop a small peptide, HAIYPRH 

(T7), which could effectively bind to the transferrin receptor [214]. Fusion of this 

peptide with the green fluorescent protein showed that this ligand could facilitate efficient 

internalization. Jiang and coworkers utilized this peptide to enable their doxorubicin-loaded 

PAMAM dendrimers to cross the BBB [215], demonstrating a significant improvement in 

tumor growth inhibition in vivo when compared to the non-targeted delivery vectors and 

saline.
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Though not an example of cancer targeting, Son et al. exploited the nicotinic 

acetylcholine receptor (nAchR) on neuronal cells to deliver a polymer/DNA across the 

BBB and into neurons [216]. To accomplish this an nAchR-targeting RVG peptide 

(YTIWMPENPRPGTPCDIFTNSRGKfRASNG) was conjugated to the polyplex via 
reducible disulfide linkages in order to transport a gene sequence encoding luciferase into 

neuronal cells. Fluorescence imaging confirmed that transfection of the luciferase gene 

was successful, exhibiting fluorescence only when the RVG peptide was attached to the 

polymer/DNA complex. The potential of this approach to significantly improve targeted 

transfection for gene therapies is evident and will hopefully lead to and inspire other 

successful treatments in the future.

5. TARGETING PEPTIDES IN IMAGING AND THERANOSTICS

As we have seen, peptides possess the potential to play a powerful role in the treatment of 

cancer: they can act as delivery vectors, targeting moieties, and cell- and tumor-penetrating 

agents. One final aspect of peptide utility to be discussed herein is their role in the imaging 

and detection of cancer [217, 218]. This follows the logical progression that the effective 

treatment of disease is linked to, and informed by, the power to image the physiological area 

under treatment. Imaging methods such as PET, CT, and MRI have become the standard for 

approaching cancer cases, relying on the use of contrast agents to differentiate the various 

structures in the body. This section will seek to understand how peptides play a role in these 

tools to enhance current imaging capabilities.

In recent years, it has been shown that contrast agents can be targeted specifically to 

tumors by employing similar strategies used to deliver therapeutics. This has included the 

functionalization of various nanoparticles as intracellular contrast agents via conjugation to 

a peptidic targeting or cell penetrating moiety [219]. One powerful example of this was 

demonstrated by Chen et al., who employed iron oxide (IO) nanoparticles as a molecular 

platform for simultaneous targeted PET and MRI imaging through the addition of functional 

peptide ligands (Fig. 5a) [220]. Polyaspartic acid-coated IO particles were conjugated 

with two functional groups: macrocyclic chelating agent 1,4,7,10-tetraazacyclododecane-

N,N’,N”,N”’-tetraacetic acid (DOTA), and the Arginine-Glycine-Aspartate (RGD) peptide. 

This multifaceted nanoimaging agent contains three capabilities: the DOTA group chelates 

radioisotopes, such as [64] Cu for PET detection; the RGD peptide is a tumor-homing 

moiety that targets αvβ3 integrins overexpressed in tumor vasculature; the IO-nanoparticle 

core serves as a contrast agent for MRI imaging. These nanoparticles were found to localize 

specifically in αvβ3 integrin-positive tumors in vivo (Fig. 5b) [220]; theoretically, these 

multimodal probes may allow for early clinical tumor detection with high sensitivity. This 

innovative design is representative of the potential for tumor-homing and tumor-penetrating 

peptides to change the way that cancer is imaged.

In addition to their utility in the modification of radiological contrast agents, peptides 

can also function as targeting moieties in the development of molecular probes, such as 

quantum dots (QD). QDs are nanoscale crystals made of semiconductor material that, given 

a base solubility and biocompatibility, can be labeled with targeting ligands and utilized as 

fluorescent molecular probes [221, 222]. The potential use of quantum dots for imaging 
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purposes was first demonstrated by Nie et al., who conjugated QDs to prostate-specific 

membrane antigen (PSMA) targeting monoclonal antibodies for the detection of prostate 

cancer [223]. Just as peptides possess advantages over antibodies as drug delivery vectors, 

the same principles apply to peptidic modification of nanoparticles in molecular probes; 

in addition, given their smaller size, a greater number of peptides may be conjugated to 

the surface of a QD than antibodies [224]. Chen et al. report the conjugation of ανβ3 

integrin-targeting RGD peptides to the surface of QD705 (Fig. 5c), a quantum dot with a 

near-infrared emission maximum [225]. This new imaging agent was found to only bind 

to, and fluorescently visualize, integrin-positive cells, resulting in successful in vivo tumor 

vasculature imaging (Fig. 5d and e). It is once again evident that the ability of peptides 

to target imaging compounds selectively and effectively to cancerous sites represents a 

powerful new tool in cancer detection and consequent treatment.

Pomper and colleagues have developed peptidic urea-based inhibitors that can act as 

ligands for PSMA, imbuing a capacity for prostate cancer targeting [226]. Prostate-specific 

membrane antigen is a type II integral membrane glycoprotein that has close correlation 

with human prostate cancer. PSMA is highly expressed in primary prostate cancer and 

lymph node metastases [227–229], and recent evidence suggests that PSMA is also 

expressed in tumor-associated neovasculature [230], making PSMA a potential biomarker 

for prostate cancer imaging and therapeutics. PSMA has two natural ligands or substrates 

including N-acetyl-aspartylglutamate (NAAG, a neurotransmitter) and poly-γ-glutamated 

folate. However, these two peptidic ligands are readily degraded by PSMA due to its 

enzymatic activity [231, 232], preventing their use as targeting ligands for drug delivery and 

imaging. The synthesized ligands were labeled with 125I, 18F and 99mTc through different 

chemistries,226 and the complexes of these imaging agents with PSMA were studied by 

X-ray crystallography, revealing that all the ligands invariably bound with a glutarate moiety 

within the S1′ pocket of the enzyme [233]. The urea linkage that these ligands are based 

on prevents their PSMA-catalyzed degradation. In vivo studies showed that these urea-based 

reagents exhibited very specific binding to PSMA-overexpressed prostate tumors initiated 

by PC-3 PIP and LNCaP cell lines, but not to prostate tumors initiated by PC-3 (PSMA 

negative) and the breast cancer cell line MCF-7 (PSMA negative) [226, 234–236]. These 

results clearly indicate that these urea-based imaging contrasts have great potential in 

prostate cancer diagnosis.

Just as selectivity is important in the delivery of drugs exclusively to diseased tissues via 
recognition of certain biomarkers, it is also desirable to use molecular probes to visualize 

very specific molecular occurrences which play a part in the disease [237]. In recent 

years, activatable imaging probes that respond to specific biochemical events have been 

under development [238, 239]. Conventional “molecular beacons” consist of a fluorophore 

and a quencher connected to a functional peptide; they remain “quenched” until they are 

modified by a biochemical process, such as cleavage by a protease [240, 241]. A major 

hurdle for the development of reliable molecular beacons is their relatively short half-life 

under physiological conditions: for soluble beacon molecules, cleavable linkers designed to 

activate the fluorescent signal are often exposed to the environment, leading to non-specific 

proteolytic degradation (and, consequently, a positive signal with no correlation to the 

target physiological process). To address this problem, Cui et al. developed a new form 
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of amphiphilic, self-assembling supramolecular nanobeacon (NB) that forms core-shell 

micelles under physiological conditions to protect the enzyme-cleavable segment (Fig. 5f) 

[242]. The NB molecule contains a fluorescent dye, 5-carboxyfluorescin (5-FAM), and a 

black hole quencher, BHQ-1, which form a hydrophobic core within the micelles. These 

molecules are conjugated to the hydrophilic, cell-penetrating TAT peptide to facilitate 

internalization of the nanobeacon. Once inside the cell and trafficked to the lysosome, 

the micelles dissociate into monomeric form, wherein the peptide linker, GFLG, that 

connects the 5-FAM dye to the amphiphile is cleaved specifically by the lysosomal enzyme 

Cathepsin B [243]. Cathepsin B is overexpressed in tumor cells and is important for tumor 

growth [244]. The 5-FAM entity thus dissociates from the BHQ-1 and generates a green 

fluorescent signal when irradiated. Experimental data indicated that the NB molecules 

not only effectively penetrated cells, but were also effectively activated intracellularly to 

produce a fluorescent signal (Fig. 5g) [242]. Although the field of peptide-based molecular 

imaging is still in its infancy, the facile synthesis and “tunability” of these supramolecular 

nanomaterials is incredibly promising for the future of imaging and diagnostic methods.

An important point to note is the arrangement of this review might suggest that targeted 

therapeutics and smart imaging and diagnostic methods are compartmentalized issues; the 

fact of the matter is the two ideas must be pursued in a concerted and holistic way. 

More simply put, the new concept of “theranostics” is interested in the development of 

technologies that address a spectrum of medical needs, from diagnosis to treatment [60, 

245–252]. Current and future research areas focus on drug delivery systems which contain 

targeting, imaging, and therapeutic components. Such advances will undoubtedly cause a 

much needed paradigm shift in the field of cancer treatment.

FUTURE PROSPECTS

Incorporating onto a non-targeting object small molecule peptides capable of recognizing 

particular tumor types or tumor-relevant vasculature appears to be a logical choice in 

the construction of targeted drug delivery systems that promise both improved treatment 

efficacy and reduced side effects. In combination with recent progress in delivery technology 

that can facilitate release of the therapeutic cargo at only tumor sites, there is great hope that 

the synergy of the two strategies can realize Paul Erlich’s concept of the “magic bullet” for 

cancer therapy and diagnostics. However, there are still many hurdles ahead in translating 

this promising strategy into clinically useful therapies or tools. The major obstacles in this 

path include the individualized human anatomy and cancer pathophysiology, as well as the 

characteristic tumor heterogeneity, with the former preventing the development of consensus 

peptide sequences that would work for all patients diagnosed with the same tumor type, and 

the latter limiting effective dissemination of the delivered drugs throughout the tumor. The 

key to future successes in the field may lie in our ability to screen and identify targeting 

peptides at the individual patient level to develop customized medicines in a timely and 

cost-effective manner.
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Fig. (1). 
Schematic illustration of targeting strategies in drug delivery. Passive targeting is based 

simply on extravasation of the drug or drug carrier through the leaky vasculature of the 

tumor. Active targeting is based on the binding of drug or carrier-conjugated ligand to its 

corresponding receptor on either the tumor endothelial cells (vasculature targeting) or tumor 

cell surface (tumor targeting).
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Fig. (2). 
Examples of tumor vasculature targeting peptides. (a) A Peptide-C based therapeutic that 

targets melanoma and inhibits angiogenesis through the conjugated anti-angiogenic peptide. 

(b) A shortened peptide mimic of a larger SPARC peptide that has tumor-homing properties. 

(c) LyP-1, a peptide that can be utilized to target a tumor’s lymphatic vasculature. (d) iRGD, 

a tumor penetrating peptide.
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Fig. (3). 
Examples of tumor-homing peptides and peptide-drug conjugates. (a) AEZS-108, in which 

the chemotherapeutic doxorubicin is conjugated to a modified LHRH peptide for the 

treatment of castration-resistant prostate cancer. (b) Conjugation of the anti-apoptotic α-

TOS to the HER2-targeting peptide, LTVSPWY. (c) Octreotide and (d) lanreotide, two 

somatostatin analogues developed as both anti-tumor agents and targeting moieties).
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Fig. (4). 
Examples of peptide-drug conjugates that are used to target brain tumors. (a) Beliveau’s 

PTX-conjugated Angiopep-2 therapeutic, ANG1005. (b) c[RGDfK]-modified paclitaxel that 

is loaded into transferrin-bearing micelles for targeting of gliomas.
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Fig. (5). 
Examples of nanoimaging agents that utilize peptides in their design. (a) A dual-modality 

imaging agent developed by Chen et al., possessing an iron oxide nanoparticle core for 

MRI imaging and conjugated 64Cu chelating DOTA groups for PET imaging. RGD peptide 

ligands target tumors displaying αvβ3 integrins. (b) Decay-corrected whole body coronal 

PET images of nude mouse bearing human U87MG tumor at 1, 4, and 21 h after injection of 

3.7 MBq of the 64Cu-containing imaging agent. These images show that it can accumulate in 

the tumor xenograft (white arrows), with uptake by the liver also indicated. (c) A quantum 

dot (QD) based fluorescence imaging agent, QD705-RGD, developed by Chen et al. This 

agent consists of a CdTe/ZnS with a PEG-polymer coating. The surface was decorated with 

cyclic-RGD ligands to enable targeting of αvβ3 integrins. (d) In vivo NIR fluorescence 

image of U87MG tumor-bearing mice 6 h after treatment with 200 pmol of QD705-RGD 

(left) and QD705 (right), showing how the RGD ligand allows accumulation in the tumor 
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relative to a control QD imaging agent. Prominent uptake was also seen in the liver, bone 

marrow and lymph nodes. (e) An example of Pomper’s urea-based PSMA-targeting ligand 

with an 18F radiolabel. Preferential uptake is seen in a PSMA+ (PIP) tumor, but not 

a PSMA− (flu) tumor via PET imaging. (f) Schematic illustration of Cui’s nanobeacon 

(NB) concept. In the assembled state, the cleavable linker (GFLG) is inaccessible to the 

Cathepsin B protease and remains intact. Upon breakdown of the nanostructure, triggered 

by either dilution or a change in pH, the linker becomes accessible and cleavage occurs. 

The separation of the 5-FAM fluorophore from the BHQ-1 quencher results in a measurable 

signal that can be used to probe the activity of the protease. (g) Fluorescence images of 

MCF-7 human breast cancer cells incubated with NBs after 0 h (top) and 1.5 h (bottom). 

The cell nuclei were stained with the blue dye Hoechst 33342. (Images in (a) and (b) were 

adapted from ref. [220], (c)-(d) were adapted from ref. [225], (e) from ref. [226], and (f)-(g) 

were adapted from ref. [242]).
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