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Abstract

Background: Disease complications, the onset of secondary phenotypes given a primary condition, can exacerbate the long-term
severity of outcomes. However, the exact cause of many of these cross-phenotype associations is still unknown. One potential reason
is shared genetic etiology—common genetic drivers may lead to the onset of multiple phenotypes. Disease-disease networks (DDNs),
where nodes represent diseases and edges represent associations between diseases, can provide an intuitive way of understanding
the relationships between phenotypes. Using summary statistics from a phenome-wide association study (PheWAS), we can gen-
erate a corresponding DDN where edges represent shared genetic variants between diseases. Such a network can help us analyze
genetic associations across the diseasome, the landscape of all human diseases, and identify potential genetic influences for disease
complications.

Results: To improve the ease of network-based analysis of shared genetic components across phenotypes, we developed the humaN
disEase phenoType MAp GEnerator (NETMAGE), a web-based tool that produces interactive DDN visualizations from PheWAS summary
statistics. Users can search the map by various attributes and select nodes to view related phenotypes, associated variants, and various
network statistics. As a test case, we used NETMAGE to construct a network from UK BioBank (UKBB) PheWAS summary statistic data.
Our map correctly displayed previously identified disease comorbidities from the UKBB and identified concentrations of hub diseases
in the endocrine/metabolic and circulatory disease categories. By examining the associations between phenotypes in our map, we
can identify potential genetic explanations for the relationships between diseases and better understand the underlying architecture
of the human diseasome. Our tool thus provides researchers with a means to identify prospective genetic targets for drug design,
using network medicine to contribute to the exploration of personalized medicine.
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Background

Given an EHR-linked biobank as input, a phenome-wide associa-

Disease complications refer to the onset of secondary phenotypes
given a primary condition, while disease comorbidities refer to
the co-occurrent presence or onset of multiple diseases [1]. Both
forms of disease association can exacerbate the long-term sever-
ity of disease, and they vary drastically from phenotype to pheno-
type [1]. However, their causes are still not well understood. One
potential reason for these cross-phenotype associations [2] could
be shared genetic etiology—the same genetic drivers may cause
multiple symptoms to appear over time [3].

Electronic health record (EHR)-linked biobanks capture both
clinical and genetic information for large populations of patients
[4]. These repositories contain both genetic and longitudinal phe-
notype data, including DNA samples, disease histories, laboratory
measurements, lifestyle habits, and demographic information [4].

tion study (PheWAS) can be used to calculate a multitude of asso-
ciations between phenotypes and genetic variants, such as single-
nucleotide polymorphisms (SNPs), in an unbiased manner [4].

A holistic network-based view involving disorders across the
diseasome will be required to translate these genetic correlations
into an understanding of disease co-occurrences [5]. Disease-
disease networks (DDNs), where nodes represent diseases and
edges represent connections between diseases, can provide an in-
tuitive way to understand the relationships between phenotypes
[6,7].In particular, a DDN that uses its edges to represent variants
can be generated as a proxy to highlight potential shared genetic
influences for diseases (Figure 1). Analyzing the topology of these
genetics-based DDNs can provide insight into how inherited fac-
tors may drive the onset of disease complications.
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Purpose of the Work

The network-based visualization of associations between variants
and phenotypes can provide researchers and clinicians with a po-
tential way to understand the genetic basis of disease interactions.
In particular, the growth of available EHR-linked biobanks across
institutions presents a trove of data that have yet to be mined
from a “network medicine” perspective [5]. A variety of tools cur-
rently exist to depict PheWAS statistics, including PleioNet [8],
ShinyGPA [9], PheGWAS [10], PheWeb [11], and PheWAS-ME [12]
(Table 1). However, to our knowledge, none of these packages al-
lows for the creation of interactive, searchable DDNs from user-
provided PheWAS summary data.

The humaN disEase phenoType MAp GEnerator (NETMAGE) ad-
dresses this need. NETMAGE (NETMAGE, RRID:SCR_021843) is a
web-based tool that allows users to upload any PheWAS summary
statistics and generate correspondinginteractive networks. In par-
ticular, the resulting DDN is a projection of an undirected bipartite
network of phenotypes and genetic variants, where nodes serve
as diseases and edges serve as sets of common associated vari-
ants [6]. Users can filter their input data by p-value and by minor
allele frequency (MAF) to manipulate the rarity and significance
of variants being used to generate the network. Furthermore, they
can select nodes within the DDN to view information such as con-
nected phenotypes, shared variants, and network statistics (Fig. 2).

NETMAGE will serve as a step toward mass network-based
analysis of PheWAS data. The interactive, graph-based represen-
tation of these summary statistics will help researchers visual-
ize comorbidities as well as identify genetic variants that may
potentially lead to the onset of disease complications. Further-
more, because NETMAGE facilitates the analysis of PheWAS data
from individual EHR-linked biobanks, users can follow up with
phenotypic data in their corresponding EHRs to evaluate the pre-
dictive ability of genetics-based DDNs with respect to disease co-
occurrences. NETMAGE will allow us to gain a deeper understand-
ing of the underlying genetic architecture of disease interaction.

Implementation

We used Gephi (Gephi, RRID:SCR_004293) [13], an open-source
network visualization software package, as well as InteractiveVis
[14], a framework built over sigma.js [15] for the interactive vi-
sualization of geospatial data, as a base for the implementation
of NETMAGE. These packages were extended to create a web in-
terface for the generation of network visualizations. We imple-
mented a web server backend to accept the files uploaded by the
user and then parse and generate the network using the Gephi
toolkit. We deployed the server on Amazon Web Services infras-
tructure, and it is available for use at the website [16]. We also
enhanced the software to automatically parse all attributes pro-
vided in the input data and turn them into options for filtration
and search. The NETMAGE pipeline works as follows:

1. Users upload their PheWAS summary statistic files to our
website. Each row should correspond to a genetic variant,
and the user can provide p-value and MAF information if
they want to filter their data using NETMAGE. The data can
be uploaded either as a single file where the phenotype name
is included in each row or separate files where each file cor-
responds to a distinct phenotype.

2. NETMAGE converts PheWAS summary data into an inter-
mediate disease_snpmap.netmage file. This file represents
a dictionary of phenotype-to-variant mappings, where each

phenotype serves as a key and each variant, p-value, MAF
triplet serves as a value in a set. To create a DDN from the
same data in the future, the user can simply upload the dis-
ease_snpmap.netmage file instead of re-uploading the origi-
nal PheWAS data by using the “Upload netmage file” option.

3. The disease_snpmap.netmage file is converted into a cor-
responding node and edge map. Based upon the p-value
and MAF thresholds provided by the user, phenotype-variant
mappings will be filtered to provide a final file containing a
list of relevant variants for each disease. This file is used to
generate an edge map and a node map. The edge map es-
tablishes all links in the network—each row corresponds to
an edge from a source to a target. Depending on the user’s
choice, the weight of the edge equals either the number of
associated variants shared between the 2 phenotypes or the
marginalized fraction of variants (the number of variants
that constitute the edge divided by the union of the indi-
vidual sets of variants for both phenotypes). In addition, the
node map represents a list of all nodes in the network. Each
row provides a distinct phenotype and a list of its associ-
ated variants. If input data have not already been pruned
for linkage disequilibrium (LD), then users can provide an
LD-mapping file that gives mappings between each variant
to blocks of LD. NETMAGE will then clump SNPs according
to their specified LD blocks, ensuring that associations that
should be linking phenotypes together are present in the
map. Users can also provide an input disease category map-
ping file so that each row of the node map now represents
the disease and its category.

4. The node and edge maps are used to create a 2D mapping of
the network. Through the Gephi and InteractiveVis frame-
works, each disease is mapped to a 2D space to visualize
the DDN. Within the NETMAGE web page, users can specify
parameters including network layout, node size, and edge
thickness to edit the aesthetics of the resulting graph.

Given a resulting network, NETMAGE offers the following
features:

1 Node Selection: clicking on a node will highlight the node and
all its first-degree neighbors. A variety of default attributes
will be presented on the right side of the web page as part of
an “Information Pane.” The user can also define other cus-
tom attributes, and these will be included in the Informa-
tion Pane as well. If the user inputs data that include rsID-
formatted SNPs, then NETMAGE will automatically hyper-
link each SNP’s ID toits corresponding dbSNP profile [17], al-
lowing for further exploration of the variant’s information.
To aid with interpretation and visualization of disease asso-
ciations, a hyperlink to a histogram of disease connections
is also included in the Information Pane. For each pheno-
type, this histogram depicts first-degree disease neighbors
sorted in order of the number of shared variants.

2 Search: users can search the map for relevant phenotypes
based upon any attribute defined, such as phenotype name,
phenotype ID, variant name, node degree, and other param-
eters. In particular, the “search by variant” option allows
users to find shared genetic variants between diseases. The
custom attributes provided by the user are also automat-
ically incorporated into the search dropdown menu. Any
categorical variables, such as disease name, disease cate-
gory, or variant name, will include an autocompletion drop-
down menu that dynamically updates as users type out
their query terms.


https://scicrunch.org/resolver/RRID:SCR_021843
https://scicrunch.org/resolver/RRID:SCR_004293
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Table 1: A comparison of NETMAGE to other toolkits that currently exist for the visualization of PheWAS summary statistics

Allows for interactive

Allows users to upload investigation of

Allows users to search and create
subsets of any produced networks

Generates a network
visualization of

Software desired PheWAS cross-phenotype genetic associations by disease, by genetic variant, or
Name results for analysis associations between phenotypes by other network statistics
PleioNet X X X

ShinyGPA X X X

PheGWAS X X N/A

PheWAS- X X X

Me

PheWeb X x N/A

NETMAGE X X X X

N/A: not applicable.

1. Genotype and Phenotype Data from an EHR-linked Biobank

Disease History,
Demographics,
Lab Values,
Vital Measures

2. PheWAS Summary Data

Phenotypes

----- » Disease 1

Common
.» associated
SNPs for both
diseases

Figure 1: A depiction of the process for creating a SNP-based DDN. A PheWAS can be run on data from an EHR-linked biobank to calculate p-values of
associations between a variety of single-nucleotide polymorphisms (SNPs) and phenotypes. The summary statistics from this PheWAS lend themselves
to a DDN, where nodes represent diseases and edges represent common associated SNPs between diseases. Figure created with BioRender.com.

3 Highlighting: groups of nodes within the same disease cat-
egory can be highlighted to visualize associations within
groups. These categories are established according to the
user-provided input disease category file.

Key strengths of NETMAGE include the automated creation
of DDNs from user input for the visualization of a multitude of
datasets, searchability of DDNs by both phenotype and genetic
variant, and interactivity with the nodes of the DDN. These as-
pects allow users to focus on specific genetic associations by vi-
sualizing subsets of the map. Generated networks can be inter-

acted with online or downloaded in a static format. NETMAGE al-
lows users to download an image of the network as a PDF file or
download the data corresponding to the network, including the
intermediate disease_snpmap.netmage file (providing a map of
phenotypes to variants, including p-value and MAF information
if given by the user), node and edge map files (providing all nodes
in the network along with their attributes, as well as all edges in
the network, respectively), and a final data.json file (providing the
2D mapping of the elements in network). The node and edge map
files, as well as the data.json file, can all be visualized and edited
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Figure 2: A depiction of the NETMAGE visualization tool. (A) The sidebar of the visualization gives a description of the map. It also includes a search
dropdown and a group selector dropdown menu. (B) Variables are automatically read from the input data and included as options for search. (C)
Clicking on a node reduces the displayed map to only the chosen node and its direct connections. Additionally, associated variants, connected
phenotypes, and network statistics are presented to the right of the window when a node is selected. This graph corresponds to the subnetwork for

type 2 diabetes. (D) All nodes within a single disease category can be visualized at once using the Group Selector. Here, we display all neoplasm
phenotypes.



locally within Gephi. The data.json file can also be directly hosted
by users on any web server.

Case Study

As a demonstration of the abilities of NETMAGE, we applied our
software to SAIGE [18] -analyzed UK Biobank [19] (UKBB) PheWAS
data. The current version of the DDN is hosted at the website [20].
These data corresponded to 1,403 binary phenotypes expressed in
terms of PheCodes [21]. All 400,000 British individuals of European
ancestry in the dataset were imputed using the Haplotype Ref-
erence Consortium panel, yielding 28 million imputed SNPs [11].
SAIGE [18], a generalized mixed model association test that uses
the saddlepoint approximation to account for case-control imbal-
ance, was used to generate summary statistics for each SNP, pro-
viding p-values of association between every SNP and every phe-
notype. This analysis was adjusted for genetic relatedness, sex,
birth year, and the first 4 principal components [11]. All genomic
positions are on GRCh37 [11]. Phenotypes that had a case count
<200 were dropped to keep more relevant diseases, yielding a to-
tal of 1,075 traits for consideration. Data were also filtered to se-
lect significantly associated common variants, based upon the fol-
lowing thresholds: maximum p-value threshold [22] of 5 x 1078,
minimum MAF of 0.01, and LD-pruning through PLINK [23] length
using the quality-controlled UKBB genetic data themselves as our
reference panel, with an R? of 0.2 and 250 kb for maximum search.

Removing nodes with degree 0 after the previously described
filtration steps yielded a final network of 232 nodes and 2,375
edges. Degrees of nodes ranged from 1 to 84. The mean degree was
20.47 and the mean weighted degree was 1,657.17. A total of 68%
(158 of 232) nodes had lower degrees than the mean degree, im-
plying a scale-free nature of the network (Fig. 3) [S]. Furthermore,
the diameter of the network was 7 while the mean path length
was 2.70, suggesting the small-world property for the network [5].
A total of 570 edges (24%) connect diseases of the same category
while 1,805 edges (76%) connect diseases of different categories,
indicating that the genetic associations we identified appeared
mostly across disease classes. Modularity analysis yielded 18 dif-
ferent clusters, ranging from size 2 to 72. There was also extensive
variation in terms of the disease categories present for each mod-
ule, again suggesting that genetic associations with phenotypes
are not specific to disease class. Finally, the mean clustering coef-
ficient was 0.782, meaning that the network lacks extensive local
clustering [5].

Degree, weighted degree, closeness centrality, betweenness
centrality, and eigenvector centrality were all used to identify
hub diseases in the DDN [5]. Diseases with the highest degree
included hyperlipidemia (272.1), disorders of lipoid metabolism
(272), type 2 diabetes (250.2), diabetes mellitus (250), and hypothy-
roidism (244.4). Diseases with the highest weighted degree in-
cluded celiac disease (557.1), non-celiac intestinal malabsorption
(557), hypothyroidism (244), type 1 diabetes (250.1), and psoriasis
(696 and 696.4). Highest closeness centrality phenotypes included
disorders of muscle, ligament, and fascia (728), fasciitis (728.7),
and other retinal disorders (362), and highest betweenness cen-
trality phenotypes included disorders of lipoid metabolism (272),
hyperlipidemia (272.1), skin cancer (172), coronary atherosclero-
sis (411.4), hypertension (401), and essential hypertension (401.1).
Finally, highest eigenvector centrality diseases included intestinal
malabsorption and celiac disease (557 and 557.1), hypothyroidism
(244.4 and 244), type 2 diabetes (250.2), type 1 diabetes (250.1), pso-
riasis (696), and rheumatoid arthritis and other inflammatory pol-
yarthropathies (714.1 and 714). On the basis of these results, it ap-
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Table 2: Hub phenotypes in the UKBB DDN

Phenotype PheCode Disease category
Skin cancer 172 Neoplasm

Diabetes mellitus 250 Endocrine/metabolic
Hypothyroidism 244 Endocrine/metabolic
Hypothyroidism NOS 244.4 Endocrine/metabolic
Type 1 diabetes 250.1 Endocrine/metabolic
Type 2 diabetes 250.2 Endocrine/metabolic
Disorders of lipoid metabolism 272 Endocrine/metabolic
Hyperlipidemia 272.1 Endocrine/metabolic
Other retinal disorders 362 Sense organs
Hypertension 401 Circulatory system
Essential hypertension 401.1 Circulatory system
Coronary atherosclerosis 411.4 Circulatory system
Non-celiac intestinal 557 Digestive
malabsorption

Celiac disease 557.1 Digestive

Psoriasis 696 Dermatologic
Psoriasis NOS 696.4 Dermatologic

Other inflammatory 714 Musculoskeletal
polyarthropathies

Rheumatoid arthritis 714.1 Musculoskeletal
Disorders of muscle, ligament, 728 Musculoskeletal

and fascia

Fasciitis 728.7 Musculoskeletal

Centrality measures used to identify these phenotypes included degree,
weighted degree, closeness centrality, betweenness centrality, and eigenvector
centrality. Diseases marked in boldface appear multiple times as the most cen-
tral nodes based upon our different network measures. Supplementary Table
S1 provides the exact centrality measures that identified each phenotype to be
a hub. NOS: not otherwise specified.

pears that endocrine/metabolic and circulatory diseases seem to
have the most influence in our DDN (Table 2).

The DDN that we generated includes many disease connec-
tions identified in previous studies. In keeping with the DDN
generated from the DiscovEHR biobank [7], our network iden-
tified connections among type 1 diabetes, rheumatoid arthri-
tis, psoriasis, and multiple sclerosis. It also identified connec-
tions among hypothyroidism, type 2 diabetes, thyroid cancer, obe-
sity, and rheumatoid arthritis. Furthermore, similar to the Dis-
ease Comorbidity Network [24] derived from hospitals across
China, our DDN included edges between hypertension and hy-
perlipidemia, type 1 and type 2 diabetes, and diabetes melli-
tus. Finally, in keeping with a multimorbidity study performed
on elderly patients in Tokyo [25], our DDN identified connec-
tions between hypertension, dyslipidemia, and coronary heart
disease.

Finally, considering potential genetic associations between dis-
eases, we find that our DDN displays relevant genetic associ-
ations between diseases, including rs544873’s association with
pulmonary heart disease, phlebitis and thrombophlebitis, hemor-
rhoids, circulatory disease, and diverticulosis [26]; rs925488’s as-
sociation with thyroid cancer, nontoxic nodular and multinodular
goiter, and hypothyroidism [24]; and rs780094’s association with
diabetes and lipid metabolism [27].

One potential issue in terms of the conclusions that can be
drawn from our UKBB DDN is the use of “PheCodes” as a method
of defining phenotypes. PheCodes are defined according to Inter-
national Classification of Diseases (ICD) codes, but the accuracy
of these codes for disease diagnosis is known to be questionable.
Given such inaccuracies, users must be wary when treating Phe-
Code or ICD-based diagnoses as a gold standard because doing
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Figure 3: A histogram of degree distributions for the UKBB DDN. This distribution follows the power law, suggesting a scale-free property for the
network. We also see that disease categories fail to follow specific trends based upon the degree of the disease.

Table 3: Runtimes for DDN generation given input datasets with different numbers of phenotypes

Server runtime to generate network after receiving HTTP request (sec)

Phenotype Fruchterman-Reingold layout Force Atlas 2 layout

count 1 2 3 4 5  Mean (SD) 1 2 3 4 5  Mean (SD)
50 3.07 2.34 2.86 2.31 2.76 2.67 (0.33) 2.46 2.48 2.93 2.43 3.00 2.66 (0.28)
100 3.26 3.49 4.29 3.61 3.52 3.63(0.39) 3.43 4.14 4.37 4.62 3.58 4.03 (0.51)
250 6.60 5.20 6.77 6.62 5.56 6.15 (0.72) 6.74 531 6.36 6.92 5.90 6.25 (0.65)
500 11.21 11.85 12.53 10.94 9.91 11.29 (0.99) 11.68 12.04 12.49 11.21 9.33 11.35(1.22)
1,000 28.27 28.77 30.19 27.01 29.52  28.75(1.22) 29.37 28.35 29.84 27.23 30.23  29.00 (1.22)
UKBB DDN 48.60 39.43 N/A

These times measure how long it takes for the server to generate the network after the “submit” button has been clicked—in all instances, files have already been
uploaded to the server. Upload speeds for files will vary depending on user bandwidth. Five different datasets were constructed for each count of phenotypes to
evaluate runtime, and the mean and standard deviation of time for the 5 runs is also provided for each row. Finally, runtime for the full input UKBB case study is

included in the last row of the table. N/A: not applicable.

so may lead to inaccurate conclusions. Another aspect of the use
of PheCodes for phenotype definitions is their hierarchical na-
ture. Digits that appear after decimal points correspond to sub-
sets of phenotypes compared to the parent code that appears be-
fore the decimal. In our case study, the data that we make use
of include mostly upper hierarchy phenotypes. More detailed hi-
erarchical phenotypes are for the most part absent from our net-
work. Users should be careful about including extensive hierarchi-
cal structure in their input data when generating DDNs through
NETMAGE. Including phenotypes that are essentially identical
to one another will introduce unnecessary nodes and edges in
the network, in the process clouding more significant disease
connections.

In terms of future work for this case study, it would be interest-
ing to compare the edges in our DDN with known disease comor-
bidities. We can take disease occurrence data from an external
EHR and evaluate p-correlations between all pairs of phenotypes.
Comparison of these co-occurrences to the genetic associations

in our PheWAS may give us an indication whether the DDN is a
reasonable representation of disease connections.

Runtime Analysis

As a test of runtime for NETMAGE, we constructed DDNs from
random subsets of the PheWAS data used to create the UKBB
DDN and determined the time it took for each network to be gen-
erated. Five networks were each generated from collections of
50, 100, 250, 500, and 1,000 phenotypes. These DDNs were con-
structed in both the Fruchterman-Reingold and Force Atlas 2 lay-
outs from Gephi [13], resulting in a total of 50 graphs for run-
time analysis. The mean time to create a network seems to in-
crease in O(n?) as the number of phenotypes increases (Table 3).
This behavior makes sense because runtime depends on not only
the number of phenotypes included in the input data but also the
number of variants being tested. Indeed, if each additional pheno-
type added to the network will have multiple associated variants,



then the inclusion of nodes will tend to exponentially increase
the number of edges, assuming a low clustering coefficient in the
network.

Discussion and Conclusions

NETMAGE 1is a toolkit for the network-based interactive visual-
ization of PheWAS summary data. The goal of this software is to
improve the ease of visualization of genetic associations across
diseases and to facilitate large-scale genetic analysis of the hu-
man diseasome. While the UKBB data used for our case study
consisted of entirely binary phenotypes, NETMAGE is also appli-
cable to quantitative traits. Indeed, in such a situation, the con-
tinuous value of the quantitative phenotype, such as a laboratory
test measure like A1C level, is used as the outcome variable in
the PheWAS. This process provides a more detailed degree of as-
sociation between the severity of the trait and genetic variants, as
compared to the identification of associations between a presence
or absence of the trait with variants.

A key point to note regarding NETMAGE is that the output
DDNs will provide only as much information as the input data. In-
deed, NETMAGE is an exploratory tool intended to help visualize
connections between diseases. Including summary PheWAS data
that provide insight into the statistical associations between phe-
notypes will yield an associative map but will tell us nothing about
causality. Associations identified through PheWAS are often spu-
rious, so any sort of analyses performed on these data must take
this information into consideration. Nevertheless, these kinds of
associative visualizations are still useful for the study of disease
and may help identify connections between phenotypes and ge-
netic variants, generate new hypotheses, and suggest future ex-
periments that can be conducted. For a visualization that gives
stronger insight into the causal connections between traits, one
could potentially input the results of a Mendelian randomization
experiment.

Several future directions exist for NETMAGE. First is the inclu-
sion of directionality in the network—as of now, DDNs produced
by NETMAGE give no indication regarding the direction of asso-
ciation between phenotypes. Using g-values for the association
between phenotypes and genetic variants would be a useful in-
clusion, aiding in clinical interpretation of the network. We will
also allow for the concurrent selection of multiple nodes within
the DDN. The current NETMAGE user interface allows only 1 node
to be selected at a time. The ability to select multiple nodes will
allow clinicians to quickly identify whether 2 phenotypes are as-
sociated in the network. We also hope to enhance NETMAGE to al-
low for the construction of gene-based DDNs from variant-based
data by including variant-to-gene mapping as a part of the web-
site. Finally, we will allow users to create variant-variant networks
instead of disease-disease networks, which depict the connections
between genetic variants (e.g., SNPs) based upon associations with
phenotypes.

Ultimately, NETMAGE will give researchers and clinicians in-
sight into the underlying genetic architecture of disease compli-
cations. The impact of our work will be a tool that allows for the
potential identification of new gene targets that can be investi-
gated in follow-up studies of pleiotropy and drug discovery. We
hope that this software will contribute to new potential discov-
eries in personalized medicine and that it helps facilitate the ad-
vancement of network medicine studies into the genetics of dis-
ease co-occurrences.
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Availability of Supporting Source Code and
Requirements

® Project name: NETMAGE

® Project home page: https://hdpm.biomedinfolab.com/netma
ge/

® Source code: https://github.com/dokyoonkimlab/netmage

® RRID: SCR_021843

® biotools:netmage

® Operating system: Platform independent

® Programming language: Python, HTML, JavaScript

® Other requirements: None

Data Availability

Supporting data and materials are available in the GigaDB
database [28].

Additional Files

Table S1. A table of phenotypes with the highest centrality mea-
sures in the UKBB DDN. Diseases marked in boldface appear mul-
tiple times as the most central nodes based upon our different
network measures.
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DDN: disease-disease network; EHR: electronic health record; LD:
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