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a b s t r a c t 

This work investigates a new multi-period vaccination planning problem that simultaneously optimizes 

the total travel distance of vaccination recipients (service level) and the operational cost. An optimal 

plan determines, for each period, which vaccination sites to open, how many vaccination stations to 

launch at each site, how to assign recipients from different locations to opened sites, and the replen- 

ishment quantity of each site. We formulate this new problem as a bi-objective mixed-integer linear pro- 

gram (MILP). We first propose a weighted-sum and an ε-constraint methods, which rely on solving many 

single-objective MILPs and thus lose efficiency for practical-sized instances. To this end, we further de- 

velop a tailored genetic algorithm where an improved assignment strategy and a new dynamic program- 

ming method are designed to obtain good feasible solutions. Results from a case study indicate that our 

methods reduce the operational cost and the total travel distance by up to 9.3% and 36.6%, respectively. 

Managerial implications suggest enlarging the service capacity of vaccination sites can help improve the 

performance of the vaccination program. The enhanced performance of our heuristic is due to the newly 

proposed assignment strategy and dynamic programming method. Our findings demonstrate that vacci- 

nation programs during pandemics can significantly benefit from formal methods, drastically improving 

service levels and decreasing operational costs. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

The Coronavirus Disease 2019 (COVID-19) was first reported 

n late 2019. Since then, it has been declared a pandemic and 

pread worldwide, heavily threatening human lives in multiple 

aves. COVID-19 is highly contagious compared to previous pan- 

emics [1] , and it has dramatically hindered production in en- 

ire industries and exposed the fragility of global supply chains 

SCs) [2] . It has a substantial impact on the global economy and 

as caused economic recession and widespread job losses [1] . The 

OVID-19 pandemic has led to disruptions and substantial losses 

n global SCs [3] , where such disruptive impacts frequently yield 

ipple effects [4] . While most businesses were aware of the nega- 

ive and catastrophic consequences of the ongoing pandemic, they 

acked direction on how to simulate SC disruptions and their ef- 

ects on performance in pandemic scenarios. Due to a lack of such 
� This manuscript was processed by Associate Editor Prof. Ben Lev. 
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uidance, delayed reactions and absence of awareness of the pan- 

emic’s repercussions resulted in delays, high coordination efforts, 

nd protracted shortage periods resulting from the late deploy- 

ent of recovery activities [5] . Under such a disrupted scenario, 

ifferent strategies and actions are required to address this chal- 

enge, including robust SC resilience strategies [6–8] and rendering 

lobal SCs more integrated and digitally ready to help improve the 

uality of response to epidemic-related interference [9] . In addi- 

ion, optimization tools can help alleviate such problems [10] . In 

his context, we propose a massive vaccination decision support 

ool based on formal methods to optimize conflict objectives. 

To break the transmission chain and mitigate these impacts, the 

orld Health Organization (WHO) has issued specific health and 

ocial distancing guidelines [11] , which have been implemented in 

ost countries. To minimize physical contacts, governments closed 

any social places and even stopped public transit services at the 

arly stage of the pandemic [12] . As infection rates peaked, au- 

horities in numerous countries enforced a lockdown, such as in 

taly, the US, and Australia [13–15] . Although reasonable control 

ver the pandemic has been achieved through ongoing restrictions, 

https://doi.org/10.1016/j.omega.2022.102617
http://www.ScienceDirect.com
http://www.elsevier.com/locate/omega
http://crossmark.crossref.org/dialog/?doi=10.1016/j.omega.2022.102617&domain=pdf
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nfections still surge rapidly in new waves [16] . Moreover, COVID- 

9 is still circulating with mutations of the novel coronavirus (e.g., 

elta, Kappa, and Omicron variants), generating a constant pan- 

emic threat for upcoming seasons in various countries [17,18] . 

Immunization with a safe and effective vaccine can reduce 

OVID-19-related illnesses, hospitalizations, and deaths, besides 

estoring societal functioning [19,20] . To achieve mass vaccina- 

ion, many governments attempt to fast-track the development of 

OVID-19 vaccines [21] . Various agencies are simultaneously work- 

ng to develop and manufacture a vaccine to effectively cease or at 

east drastically decelerate the spread of the pandemic [22] , result- 

ng in various vaccine candidates being authorized [23] . More than 

.69 billion doses of vaccines will have been distributed worldwide 

y Nov 20, 2021 [24] . It is widely accepted that the risk of in-

ermittent outbreaks of COVID-19 will continue until safe and ef- 

ective vaccines become globally available and a vaccination pro- 

ram is successfully implemented [25] . Vaccinating a large popula- 

ion helps achieve herd immunity, which is an effective method to 

ght the virus [23,26] . It is estimated that 70–85% of the popula- 

ion needs to be vaccinated to reach herd immunity [27] . 

However, the endgame of the COVID-19 pandemic is not vac- 

ines, but vaccination [28] . As a result, the largest vaccination pro- 

ram in human history is currently in action, pushing the COVID- 

9 vaccine supply chain to its limits [23] . When launching these 

assive vaccination programs, many countries have opened online 

ppointment channels, where residents must specify their personal 

nformation, including their addresses and expected vaccination 

ates, when making a reservation for vaccination. Given this reser- 

ation information of a large population, decision-makers must es- 

ablish a vaccination plan subject to various constraints, e.g., lim- 

ted budget and vaccine availability. In practice, many mass vacci- 

ation plans are made manually, leading to high operational costs 

nd low service levels. An optimal vaccination plan involves the 

peration of multiple vaccination sites, the distribution of vaccines, 

nd the allocation of recipients to vaccination sites. These deci- 

ions are tightly correlated, which indicates that a centralized and 

ntegrated optimization can save costs and improve service levels. 

herefore, it is of great value to investigate how to establish effi- 

ient massive vaccination programs to fight COVID-19. 

Although the importance of massive vaccination programs is 

ell recognized, various challenges greatly restrict the efficiency 

nd effectiveness of vaccination plans against COVID-19. Gener- 

lly, the resources available to tackle a vaccination plan are lim- 

ted, while opening a vaccination site uses expertise and resources, 

.g., a facility, doctors, nurses, and other staff. From an operational 

ost perspective, a decision-maker would want to open only a few 

accination sites each day to save costs. Decision-makers thus face 

he challenge of allocating and scheduling limited resources with a 

igh expected service level. Consequently, the impact on the regu- 

ar operation of the healthcare system can also be mitigated. How- 

ver, fewer opened vaccination sites may force the population to 

ravel a long distance to get vaccinated, which leads to a low ser- 

ice level. As indicated by Li et al. [29] , the convenience of re-

eiving vaccination services would affect recipients decisions, es- 

ecially travel distance and time. Moreover, an equitable optimiza- 

ion of cost and service level must also be taken into account 

30] . Therefore, decision-makers face a multi-objective optimiza- 

ion problem when making a vaccination plan, in which the fol- 

owing decisions that are relevant and even conflicting must be si- 

ultaneously made to balance the operational cost and the service 

evel. First, as vaccines are stored at a central warehouse, decision- 

akers must determine when to replenish each vaccination site. 

econd, they must determine the work schedule of each vaccina- 

ion site, i.e., when to open each site. Third, for each opened site, to 

void work overload or low capacity utilization, the number of vac- 

ination stations to be launched must be determined according to 
2 
he number of recipients allocated, i.e., the vaccination capacity of 

he site. Finally, residents must be allocated to the opened sites to 

et vaccinated. Thus, the problem corresponds to a capacitated bi- 

bjective multi-period vaccination planning problem (MVPP) with 

eplenishment. This new problem generalizes the multi-period fa- 

ility location problem (MFLP) since one has to determine the ca- 

acity and replenishment of each facility at each period. To the 

est of our knowledge, the capacitated bi-objective MFLP with re- 

lenishment has not been studied, which motivates us to develop 

ew models and algorithms for this critical problem. 

In this paper, we study the MVPP that simultaneously optimizes 

wo objectives: (i) minimizing the total operational cost, includ- 

ng the fixed vaccination site opening cost, capacity selection cost, 

eplenishment cost, and inventory cost; (ii) minimizing the total 

ravel distance of the population (to improve recipients’ conve- 

ience, i.e., service level). The decisions to be made, for each pe- 

iod, are: 1) which vaccination sites to open; 2) how many vacci- 

ation stations to launch at each opened site; 3) the replenishment 

uantity at each site; and 4) how to assign the population to the 

pened sites. 

We develop a mathematical programming model and design 

wo algorithms to solve it. The first one is a weighted-sum method, 

nd the second is based on an ε-constraint algorithm. Both meth- 

ds provide a representative set of optimal Pareto solutions. To 

andle the practical case, we further develop a tailored genetic al- 

orithm with new features designed specifically for the problem at 

and. 

The remainder of this paper is organized as follows. Section 2 

verviews related literature. Section 3 describes the studied prob- 

em in detail and presents a MILP model. Section 4 is devoted 

o the proposed algorithms. Section 5 presents the computational 

tudy, the analysis of the results, and the sensitivity analysis. Fi- 

ally, Section 6 concludes the study and indicates some research 

erspectives. 

. Literature review 

COVID-19, which is an infectious disease resulting from a pre- 

ious variant of the coronavirus [31] , has created a new type of SC 

isk because it can render numerous components of an SC ineffi- 

ient or unusable for an uncertain time duration [32] . Therefore, 

ince the COVID-19 virus outbreak and the beginning of the as- 

ociated pandemic, scholars have published their studies on vari- 

us SC-related issues raised by COVID-19, such as the negative im- 

act on supply chain efficiency and performance [4] , viable supply 

hain model [7,8] , ripple effect in SCs [33,34] , and re-configurable 

Cs [35,36] . However, few studies focus on the vaccination plan- 

ing problem. Vaccines are essential for planning and deploying 

ecovery operations in an epidemic. Next, we first review the vac- 

ination planning problem. We then survey the related MFLP. Fi- 

ally, we identify the research gaps based on our review. 

.1. Vaccination planning problem 

Research on vaccination planning problems generally focuses on 

he location of vaccination sites and the vaccine distribution and 

nventory decisions. The location of the vaccine distribution center 

as been widely studied. Li et al. [29] propose a multi-objective 

ixed-integer non-linear programming model to help the CDC de- 

ermine the locations of vaccination stations. The model jointly 

onsiders travel distance and operational cost within a single plan- 

ing period. Rastegar et al. [37] present a MILP model for the 

ocation-inventory problem to provide equitable influenza vaccine 

istribution among different groups of people with varying prior- 

ties over multiple periods. Bertsimas et al. [38] present a bilin- 

ar and non-convex model to optimize the location of vaccination 
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ites and subsequent vaccine allocation. Results suggest that the 

ocations of vaccination sites can have a massive impact on the ef- 

ectiveness of the vaccination campaign. 

In terms of the vaccine distribution problem, Proano et al. 

39] formulate a mixed-integer non-linear programming model and 

ropose a constructive heuristic to determine the best combination 

f vaccines and their prices. Duijzer et al. [40] analyze the optimal 

llocation of a vaccine to avoid infection of the maximum number 

f people. They define a unique dose-optimal vaccination fraction 

hat maximizes the health benefits per dose of vaccine in a popu- 

ation. Enayati et al. [41] study the optimal influenza vaccine dis- 

ribution in a heterogeneous population to minimize the number 

f vaccine doses distributed to extinguish an emerging outbreak 

n its early stages. Moreover, an equity constraint was proposed to 

elp public health authorities consider fairness when making vac- 

ine distribution decisions. Boeck et al. [42] review the vaccine dis- 

ribution chains in low- and middle-income countries. Yang et al. 

43] focus on the vaccine distribution networks in these countries. 

hey formulate the network design problem as a mixed-integer 

rogram (MIP) and present a new algorithm for typical problems 

hat can hardly be solved using commercial MIP software. 

Regarding the vaccine inventory, Jacobson et al. [44] propose a 

tochastic inventory model to capture production interruption and 

valuate the impact of pediatric vaccine inventory level on vacci- 

ation coverage. Samii et al. [45] focus on an inventory rationing 

roblem with a single vaccination period and two demand classes. 

hey utilize service level and fill rate expressions to address the 

wo interdependent problems of selecting an appropriate alloca- 

ion mechanism and determining the optimal reserved quantity. 

ambudi et al. [46] discussed how vaccine cold chain manage- 

ent and cold storage technology can help address the challenges 

f vaccination programs. Specifically, it examines several ways for 

onserving vaccines in liquid or frozen form to ensure that they do 

ot get destroyed during distribution from manufacturing plants. 

armand et al. [47] propose a two-phase vaccination policy to con- 

ain an epidemic where the first phase considers the early stages 

f the epidemic, and the second phase the middle of the outbreak 

fter observing the initial outcome. The two-phase vaccination pol- 

cy provides a lower infection rate and considerable cost savings. 

uo and Cao [48] build a two-stage analytical framework to ana- 

yze vaccination hesitancy, showing that vaccination decisions are 

ffected by reference point formation and updating. Wong et al. 

49] explored Hong Kong adolescents attitudes towards the COVID- 

9 vaccination, pointing out that vaccine hesitancy is a key bar- 

ier to herd immunity, and that the vaccine’s safety and efficacy, 

s well as the risk of infection, were the main concerns. Macin- 

yre et al. [50] analyze the impact of various COVID-19 vaccine 

trategies on COVID-19 case numbers and mortality under a lim- 

ted supply scenario, as well as varied vaccine efficacy and speed 

f vaccination for mass vaccination. Martonosi et al. [51] address 

he COVID-19 pricing issue and use optimization and game theo- 

etic approaches to model the vaccine market as a duopoly with 

wo manufacturers, Pfizer-BioNTech and Moderna. 

Research on the vaccine supply chain generally focuses on the 

acility location, distribution, and inventory of vaccines to mini- 

ize cost. To our knowledge, the capacitated multi-period vacci- 

ation site location with replenishment has not been addressed in 

his stream of literature. 

.2. Multi-period facility location problem 

As mentioned, our problem is a generalization of the MFLP, 

hich is an extension of the facility location problem (FLP). Gen- 

rally, an FLP involves a location decision for optimally locating fa- 

ilities and an allocation decision to allocate customers to facili- 

ies. Opening new facilities involve time and capital investment, 
3 
nd it is one of the most critical strategic decisions for any in- 

titution. Hence, the World Bank and various government projects 

ave extensively used facility location models, such as for schools 

52] , or healthcare [53,54] . Depending on the number of periods in 

he planning horizon in which location and allocation decisions are 

o be made, FLPs can be categorized as single-period and multi- 

eriod [55] . Most of the early work was done for the static or 

ingle-period case. Once the facilities have been optimally located, 

hey are assumed fixed regardless of how demand and costs may 

hange in future periods. In practice, however, the demand is time- 

arying, and other parameters such as operation and transporta- 

ion costs may change over time. Therefore, it might be better to 

elocate the facilities, which promotes the development of multi- 

eriod location models, in which the optimal location of facilities 

s determined by minimizing the total relocation cost. 

MFLPs have been widely studied after the initial works of [56–

8] . Traditionally, the objective of an MFLP is to determine the spa- 

ial distribution of facilities at each period of a finite planning hori- 

on to minimize the total fixed and variable costs for satisfying 

emands over time [59,60] . Recently, [55,61] discuss fundamental 

odeling aspects and address several variants of the MFLP. In the 

ontext of our vaccination planning problem, demand is highly dy- 

amic over times, which makes the MFLP relevant. In most current 

tudies, the service capacity of a facility is assumed to be fixed 

nd given once opened. However, this may not be reasonable for 

ighly dynamic demand environments, where decision-makers can 

exibly determine the facility size to save cost and meet the dy- 

amic demand. Some applications have dealt with facilities that 

ary their capacities over time [62–64] . In the forestry industry, 

his has been called modular capacities, where capacity can be 

dded or removed from a facility in fixed-size blocks, called mod- 

les [65] . This problem has received some attention with math- 

matical programming [66] , and heuristics based on Lagrangean 

elaxation [67] and evolutionary search [68] . In addition, current 

tudies on the MFLP do not involve replenishment decisions, which 

s the case of the investigated problem. 

There is a potential trade-off between the total operational cost 

nd the service level that is often reflected by the travel distance to 

eceive a vaccine. Therefore, decision-makers may expect to open 

ewer vaccination sites to save costs. However, they also hope to 

rovide a high service level by locating more vaccination sites to 

acilitate access. This, in turn, incurs a higher operational cost. 

hus, decision-makers face a multi-objective optimization problem. 

owever, the cost and service level trade-off has rarely been stud- 

ed in the above-reviewed literature. 

.3. Contributions 

In summary, the investigated problem is new, and the current 

odels and solution algorithms cannot be directly applied to solve 

t. To this end, we study the capacitated bi-objective MVPP with 

eplenishment. Our paper makes the following contributions: 

1. We present a new formulation for the bi-objective MVPP to 

simultaneously minimize the operational costs and travel dis- 

tance (maximize service level) and discuss its practical applica- 

tion in the context of allocation of limited budget and vaccine 

availability to a vaccination planning platform. 

2. We solve the location selection and population allocation to 

vaccination sites and make plans for a series of practical op- 

erations such as work scheduling, service capacity setting, vac- 

cine supply, and storage. The solution of this novel bi-objective 

vaccination planning problem can provide a practical decision 

support tool to massive vaccination during the outbreak of epi- 

demics like COVID-19 with detailed operational directives for 

successful applications. 
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3. We present a genetic algorithm with several refinements that 

exploit the problem’s underlying structure to very efficiently 

solve instances of practical sizes. 

. Problem description and formulation 

This section first elaborates on the studied MVPP with replen- 

shment and then proposes a MILP model. Consider a set K = 

 1 , ..., | K|} of vaccination sites, each site k ∈ K located at ( X k , Y k ).

 set J = { 1 , ..., | J|} of recipients are to be vaccinated within the

lanning horizon T = { 1 , ..., | T |} . Each recipient j ∈ J has a specific

ocation ( X j , Y j ) and an appointment date α jt ∈ { 0 , 1 } indicating the 

ay the recipient expects to get vaccinated. The travel distance be- 

ween recipient j and vaccination site k is c jk . Each vaccination site 

 opened on day t has a fixed setup cost f k and a variable cost g k 
epending on the number of vaccination stations deployed. A fixed 

eplenishment cost e k is incurred whenever vaccination site k is re- 

lenished. The unit inventory cost at vaccination site k is h k . Each 

accination site has a maximum replenishment quantity O k , inven- 

ory capacity V k , and a maximum number m k of stations that can 

e deployed. The maximum number of recipients that a vaccina- 

ion station can serve each day (service capacity) is denoted by Q . 

e assume that replenishments occur at the beginning of the day 

efore the vaccination service starts. The objective is to simultane- 

usly minimize the total operational cost and the total travel dis- 

ance of all recipients by optimizing: 1) the selection of the opened 

ites for each day; 2) the replenishment date and quantity for each 

ite; 3) the number of stations launched at each opened site; 4) 

he inventory quantity at each site at each day, and; 5) the alloca- 

ion of recipients to the opened sites at each day. 

We model the problem with the following binary variables: x jk 
s equal to 1 if recipient j is served at vaccination site k ; v kt is

qual to 1 if site k is opened on day t; w kt is equal to 1 if site k

s replenished on day t . We also use variables z kt to represent the 

eplenishment quantity of vaccine at k on day t; u kt the number 

f vaccination stations at site k on day t; I kt the inventory quantity 

t site k at the end of day t . Based on the above description, we

efine the following notation. 

Sets: 

J set of vaccination recipients, indexed by j; 

K set of vaccination sites, indexed by k ; 

T planning horizon, indexed by t . 

Parameters: 

c jk distance between recipient j and vaccination site k ; 

α jt equal to 1 if recipient j needs to be vaccinated on day t; 

e k fixed cost for replenishing vaccination site k ; 

f k opening cost for vaccination site k ; 

g k unit cost for launching a vaccination station at vaccination site k per day; 

h k unit inventory holding cost at vaccination site k per day; 

m k maximum number of vaccination stations at vaccination site k each day; 

O k maximum replenishment quantity at vaccination site k ; 

Q maximum number of recipients that can be served by a station per day; 

 k maximum inventory capacity at vaccination site k . 

Decision variables: 

x jk equal to 1 if recipient j is served at vaccination site k , and 0 otherwise; 

v kt equal to 1 if vaccination site k is opened on day t; 

w kt equal to 1 if vaccination site k is replenished on day t; 

z kt replenishment quantity of vaccine at site k on day t; 

u kt number of launched vaccination stations at vaccination site k on day t; 

I kt inventory quantity at vaccination site k at the end of day t . 

We next present a bi-objective MILP model ( P) for the studied 

VPP as follows. 

min f 1 = 

∑ 

k ∈ K 

∑ 

t∈ T 
( f k v kt + g k u kt + e k w kt + h k I kt ) (1) 

min f 2 = 

∑ 

j∈ J 

∑ 

k ∈ K 
c jk x jk (2) 
p

4 
ubject to ∑ 

k ∈ K 
x jk = 1 ∀ j ∈ J (3) 

∑ 

j∈ J 
x jk α jt ≤ u kt Q ∀ k ∈ K, t ∈ T (4) 

u kt ≤ m k v kt ∀ k ∈ K, t ∈ T (5) 

I k,t+1 = I kt + z kt −
∑ 

j∈ J 
x jk α jt ∀ k ∈ K, t ∈ T (6) 

I kt ≤ V k ∀ k ∈ K, t ∈ T (7) 

z kt ≤ O k w kt ∀ k ∈ K, t ∈ T (8) 

x jk ∈ { 0 , 1 } ∀ j ∈ J, k ∈ K (9) 

v kt , w kt ∈ { 0 , 1 } ∀ k ∈ K, t ∈ T (10) 

u kt ∈ Z + ∀ k ∈ K, t ∈ T (11) 

z kt , I kt ≥ 0 ∀ k ∈ K, t ∈ T . (12) 

The objective function (1) minimizes the total operational cost, 

hich contains the fixed setup cost for opening vaccination sites, 

ariable cost for launching vaccination stations, fixed replenish- 

ent cost, and the inventory cost. The objective function (2) mini- 

izes the travel distance of all recipients to get vaccinated. Con- 

traints (3) guarantee that a recipient is served by exactly one 

accination site. Constraints (4) limit the maximum number of 

ecipients that a vaccination site can serve per day. Constraints 

5) restrict the maximum number of vaccination stations that can 

e launched at an opened site. Constraints (6) correspond to the 

nventory flow balance at each vaccination site, and constraints 

7) limit their maximum inventory. Constraints (8) indicate that 

he maximum replenishment quantity at a vaccination site on each 

ay cannot exceed a given threshold. Constraints (9) –(12) define 

he domains of variables. 

The considered MVPP contains a capacitated MFLP, which gen- 

ralizes the uncapacitated MFLP. The MVPP is an NP-hard problem 

ince the latter is known to be NP-hard [60] . 

. Solution methods 

To solve the considered MVPP, we first apply the widely-used 

eighted-sum (WS) approach and ε-constraint (EC) method. The 

S method transforms the original bi-objective problem into a 

ingle objective one by associating each objective function with 

 weighting coefficient. It then solves a series of single-objective 

VPPs by varying the objectives’ weights. The WS method is ex- 

ensively used because it is simple to understand and easy to im- 

lement [69,70] . However, one of the disadvantages of the WS is 

ts inability to find specific Pareto optimal solutions in the case 

f a non-convex objective space [71,72] . The EC method is often 

referred over the WS method in solving bi-objective optimiza- 

ion problems because the EC can find solutions also in the non- 

onvex regions [73] . In general, the EC optimizes one objective and 

ransforms the other one into a constraint bounded by ε. It then 

olves a series of single-objective problems by varying the value of 

. Given proper increments of ε, the EC is guaranteed to find the 

ntire set of Pareto optimal solutions for a general multi-objective 

roblem [74] . Moreover, [75] shows that an optimal solution iden- 

ified via the EC is guaranteed to be Pareto optimal if the con- 

traints representing the objectives are binding and the solution is 

easible. Hence, the EC is more often utilized against the WS in re- 

ent research on multi-objective location-allocation problems [76] . 

In this paper, the WS and EC methods are developed based 

n the proposed MILP model. Our preliminary results show that 

hey work well for small-sized instances, but they have difficulty in 

olving large-sized instances due to the NP-hardness of the studied 

roblem. To this end, we further develop a non-dominated sort- 
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ng genetic algorithm (NSGA-II) to provide a set of approximate 

areto solutions for large-sized instances. NSGA-II is one of the 

ost popular multi-objective optimization algorithms with three 

pecial characteristics: fast non-dominated sorting approach, fast 

rowded distance estimation procedure, and simple crowded com- 

arison operator [77] . Besides, NSGA-II is the most widely applied 

ulti-objective evolutionary algorithm as observed in the existing 

iterature [78–82] . We next present the WS, EC, and NSGA-II algo- 

ithms in sequence. 

.1. The weighted-sum approach 

The WS method combines the two objectives to form a single- 

bjective optimization problem. The idea is to associate a weight- 

ng coefficient with each objective function and minimize the 

eighted sum of the two objectives. In detail, we define two pa- 

ameters w 1 and w 2 which represent the preference of decision- 

akers on each objective, where w 1 + w 2 = 1 , and w 1 ≥ 0 , w 2 ≥
 . Since the two objectives f 1 and f 2 have different scales, we 

ormalize them to eliminate the effects of dimensions [83] . The 

ormalized objectives f i (i = 1 , 2) are calculated by the following 

quation: f i = ( f i − f I 
i 
) / ( f N 

i 
− f I 

i 
) [84,85] . We follow this literature

nd normalize the objectives into the interval [0,1]. Then, we de- 

ote the single-objective MVPP with the WS method as S-MVPP 

WS), which is shown as follows: 

min F = w 1 f 1 + w 2 f 2 
s . t . ( 3 ) –( 12 ) 

(13) 

he values of f I 
1 
, f I 

2 
, f N 

1 
, and f N 

2 
are obtained by exactly solving the

ollowing mono-objective problems: 

f I 1 = { min f 1 | x ∈ χ} (14) 

f I 2 = { min f 2 | x ∈ χ} , (15) 

f N 1 = { min f 1 | f 2 = f I 2 , x ∈ χ} (16) 

f N 2 = { min f 2 | f 1 = f I 1 , x ∈ χ} . (17) 

here x is the vector of variables and χ is the solution space of x .

We can obtain a set of Pareto solutions by solving a series of S- 

VPP (WS) with different combinations of w 1 and w 2 values. Ini- 

ially, the value of w 1 is set to ω. Then the value of w 1 is increased

y ω at each iteration. Algorithm 1 reports the main steps of the 

lgorithm 1 Weighted-sum method. 

1: Solve (14)–(15) and (16)–(17) to obtain the values of f I 1 , f I 2 , f N 1 ,

and f N 
2 

. 

2: Initialize P ={( f I 
1 
, f N 

2 
), ( f N 

1 
, f I 

2 
)}, s = 1 , w 1 = ω. 

3: while w 1 < 1 , do 

4: Solve S-MVPP(WS), and obtain f ′ 
1 

and f ′ 
2 
. 

5: Update set P = P ∪ { ( f ′ 
1 
, f ′ 

2 
) } . 

6: Set w 1 = w 1 + ω. 

7: end while 

8: Remove the dominated points from P and return P . 

S method. 

.2. The ε-constraint approach 

We next apply the EC method to solve the bi-objective MVPP. 

he EC method is widely used in solving multi-objective optimiza- 

ion problems [86] . Its basic idea is to transform the original multi- 

bjective problem into a single-objective one, in which only one 
5 
bjective is directly optimized. Other objectives are transformed 

nto constraints. Compared to the WS method, the EC has three 

ypical characteristics [87] . First, it does not need to normalize dif- 

erent objectives with different units or scales. Second, it can flex- 

bly obtain the expected number of Pareto solutions and manage 

o find non-extreme solutions. Third, it can provide a good trade- 

ff between solution quality and computation time. For the studied 

VPP, we transform it into a single-objective MVPP by optimizing 

he second objective, with the first one as a constraint. We de- 

ote the single-objective MVPP with an EC as S-MVPP ( ε), which 

s shown as follows: 

min f 2 = 

∑ 

j∈ J 

∑ 

k ∈ K 
c jk x jk (18) 

s . t . ( 3 ) –( 12 ) , and to 

f 1 ≤ ε. 
(19) 

Constraint (19) represents the EC that restricts the value of the 

rst objective. The S-MVPP ( ε) is then solved to minimize the total 

ravel distance (second objective) with the total operational cost 

first objective) being bounded by ε. A set of Pareto solutions can 

e obtained by solving a series of S-MVPP ( ε) with different values 

f ε, whose value is bounded by an upper limit f N 1 and a lower

imit f I 
1 
. Then, the S-MVPP (ε) is solved iteratively by defining a 

tep size � = 

⌊ 

f N 
1 

− f I 
1 

h 

⌋ 

, where h is the expected number of Pareto 

olutions. Initially, ε takes the value of f N 
1 

− �. Then, it is reduced 

y the step size � at each iteration. In the s th iteration, where 

 = { 1 , 2 , . . . , h } , let the value of the first objective be represented

y f s 
1 
. Then ε is set to be f s 

1 
− � for the (s + 1) th iteration. We

olve a series of S-MVPP ( ε) as long as the value of ε > f I 1 . Finally,

 set of Pareto solutions are obtained. The detailed steps of the 

C method are shown in Algorithm 2 . Note that the selection of 

lgorithm 2 ε-constraint method. 

1: Transform the first objective to a constraint and build the sin- 

gle objective S-MVPP( ε). 

2: Solve (14)–(15) and (16)–(17) to obtain the values of f I 1 , f I 2 , f N 1 ,

and f N 2 . 

3: Initialize P ← { ( f I 
1 
, f N 

2 
) , ( f I 

2 
, f N 

1 
) } , h , and �. 

4: Set s =1, and ε = f N 
1 

− �. 

5: while ε > f I 1 , do 

6: Solve S-MVPP (ε) to obtain f s 
2 
, and compute the value of f s 

1 
. 

7: Update set P = P ∪ { ( f s 
1 
, f s 

2 
) } . 

8: Set s = s + 1 , ε = f s −1 
1 

− �. 

9: end while 

0: Remove the dominated points from P and return P . 

he principal objective may affect the method’s performance. We 

lso tested setting the first objective as the principal one, but the 

esults were inferior to those of the presented setting. The compu- 

ational results of Section 5.3.1 support this choice. 

.3. Non-Dominated Sorting Genetic Algorithm II (NSGA-II) approach 

The WS and EC methods must solve a series of MILP models 

uring the solution process. Our results show that both methods 

ose efficiency in solving practical-sized instances. To this end, we 

ailor the NSGA-II to tackle large-sized instances. The NSGA-II has 

een successfully applied in the literature to solve multi-objective 

ptimization problems [82] . The detailed process of NSGA-II can 

e found in [78] . It can quickly obtain a set of approximate Pareto 

olutions through crossover and mutation operators based on an 

nitial population. In this process, the generation of the initial 

opulation plays a key role, and the performance of NSGA-II is 
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Fig. 1. Flow chart of NSGA-II. 

Fig. 2. Chromosome illustration. 
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trongly dependent on its quality. For our problem, it is non-trivial 

o construct a good feasible solution. In particular, it is challeng- 

ng to appropriately assign many recipients to vaccination sites, 

iven the various limitations, e.g., vaccination capacity, inventory 

apacity, and replenishment capacity. To tackle this difficulty, we 

rst design a new assignment strategy. Each recipient gets a score 

ased on the distance difference between their nearest and sec- 

nd nearest vaccination sites. We then apply a dynamic program- 

ing method to determine the replenishment time and quantity, 

nd the inventory quantity. With the above two novel features, our 

ailored NSGA-II obtains good quality Pareto front for the studied 

i-objective MVPP. The flow chart of NSGA-II is shown in Fig. 1 , 

nd dummyTXdummy- we describe each step in detail next. 

Step 1: Chromosome Encoding. Each individual (solution) is 

epresented by a chromosome that comprises genes whose num- 

er is equal to the number of variables in the solution. For our 

roblem, each chromosome consists of three parts. The first part 

epresents the value of variables v kt which takes a value of 1 if the

orresponding vaccination site is opened. The second part corre- 

ponds to the recipient allocation decisions, denoted as Y j , indicat- 

ng the assignment of recipients to a site. The third part indicates 

he replenish quantity z kt . The number of genes is 2 | K|| T | + | J| .
ig. 2 shows a chromosome with | J| = 6 recipients, | K| = 3 vaccina-

ion sites, and | T | = 2 days. Vaccination sites 1 and 3 open on the

rst day, and sites 2 and 3 open on the second day. The six recip-

ents are allocated to vaccination sites 3, 2, 1, 3, 3, and 1. Site 1

eceives two doses of the vaccine on the first day, site 2 receives 

ne dose on the second day, and site 3 receives three doses on the 

rst day. 

w

6 
Step 2: Population initialization. A set C of P s individuals con- 

titutes the initial population. We develop a new heuristic to gen- 

rate the initial population, as shown in Algorithm 3 . The new 

lgorithm 3 Chromosome initialization. 

1: Set i = 1 , and C = ∅ . 

2: while i ≤ P s , do 

3: Determine the opened vaccination sites ( v kt ). � Algorithm 4 

4: Assign recipients ( Y j ( x jk )) to opened vaccinationsites. 

� Algorithm 5 

5: Determine the replenishment date ( w kt ), quantity( z kt ), and 

inventory ( I kt ). � Algorithm 6 

6: Add the individual to C. Set i = i + 1 . 

7: end while 

8: Return C. 

euristics consists of three phases. In the first one, the opened vac- 

ination sites are determined. Then, the set of recipients that each 

pened vaccination site serves on each day is determined using an 

mproved assignment strategy. The third step calculates the replen- 

shment quantity using a dynamic programming method. Next, we 

laborate on each phase to show how each individual is generated. 

his process is repeatedly performed to generate P s solutions cor- 

esponding to the initial population, where the random elements 

f Phase 1 ensure diversification. 

1) Determine the opened vaccination sites on each day ( v kt ). 

et N(t) be the number of recipients to be vaccinated at day t , 

 k = min (Qm k , O k ) be the service capacity for vaccination site k ,

hich is the minimum between the vaccination capacity and re- 
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Algorithm 5 Assign recipients with an improved strategy. 

1: Input: α jt , c jk , R k , and initialize Y j = 0 (∀ j) , L kt = 0 (∀ k, t) . 

2: while 
∑ 

k 

∑ 

t 
L kt < | J| , do 

3: Initialize U 

1 
kt 

={0} and U 

2 
kt 

={0}. 

4: for j = 1 , 2 ..., | J| , do 

5: if Y j = 0 then 

6: Denote ̂ K the set of available vaccination sites that 

opened on the day t| α jt=1 . 

7: Sort the sites (k ∈ ̂

 K ) in non-increasing order of c jk , and 

denote k 1 and k 2 the two nearest sites. 

8: Calculate D j = c j,k 2 − c j,k 1 ; if there is only one vaccina- 

tion site k 1 in set ̂ K , denote D j = c j,k 1 . 

9: end if 

10: end for 

11: for t = 1 , 2 ..., | T | , do 

12: for k = 1 , 2 ..., | K| , do 

13: if v kt = 1 and R k > L kt , then 

14: Obtain recipients set U 

1 
kt 

whose k 1 = k , α jt = 1 and 

Y j = 0 . 

15: Obtain recipients set U 

2 
kt 

whose k 1 < k , k 2 = k , α jt = 

1 and Y j = 0 . 

16: Denote U kt = U 

1 
kt 

∪ U 

2 
kt 

, and set a number a k = 

min (| U kt | , R k − L kt ) . 

17: Assign the first a k recipients with largest D j to site 

k , and denote it as B kt . 

18: Denote Y j = k ( j ∈ B kt ) , and obtain L kt = L kt + a k . 

19: end if 

20: end for 

21: end for 

22: end while 

23: Return Y j and L kt . 

m

s
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a
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lenishment capacity. In Algorithm 4 , we generate two extreme so- 

lgorithm 4 Determine the opened vaccination sites. 

1: Input: N(t) = 

∑ 

j∈ J 
( j| α jt = 1) , R k = min (Qm k , O k ) , and initialize

v kt = 0 (∀ k, t) . 

2: if i = 1 , then 

3: Generate an extreme solution, i.e., v kt =1 for all k and all t . 

4: else 

5: if i = 2 , then 

6: Generate another extreme solution, i.e., 

7: for t = 1 , 2 ..., | T | , do 

8: for k = 1 , 2 ..., | K| , do 

9: Randomly generate v kt = 0 or 1. 

0: if 
∑ 

k 

v kt R k ≥ N(t) , then 

11: break 

2: end if 

3: end for 

14: end for 

5: else 

6: for t = 1 , 2 ..., | T | , do 

17: while 
∑ 

k 

v kt R k < N(t) , do 

18: for k = 1 , 2 ..., | K| , do 

9: Randomly generate v kt = 0 or 1. 

0: end for 

1: end while 

2: end for 

3: end if 

4: end if 

5: Return v kt . 

utions, one where all vaccination sites open each day (lines 1–2), 

nd another where the fewest vaccination sites are opened (lines 

–12). 

2) Allocate recipients to opened vaccination sites ( Y j ). Let L kt be 

he number of recipients assigned to site k at day t . In Algorithm 5 ,

or each recipient that is not allocated, we calculate the distance 

ifference D j between its nearest and second nearest opened vac- 

ination sites with remaining capacity. Next, for each day t and 

ach opened vaccination site k , we define a set U 

1 
kt 

with all the un-

llocated recipients whose nearest site is k and the expected vac- 

ination date is t . We also define another set U 

2 
kt 

that contains all 

he unallocated recipients whose nearest and second nearest sites 

re l and k , where l < k , and whose expected vaccination date is

. Let U kt = U 

1 
kt 

∪ U 

2 
kt 

, where all recipients in U kt are sorted in non-

ncreasing order of D j . Then we compute a k = min (| U kt | , R k − L kt ) ,

nd assign the first a k recipients to k . The values Y j of the first a k 
ecipients in the set U kt is set to k , and L kt = L kt + a k . The rationale

f such an assignment rule is to prioritize recipients assigned to a 

ite that is generally far from their location if not assigned to their 

earest site. This assignment strategy provides better performance 

han sorting all recipients in non-decreasing order of their nearest 

ites. The computational results presented in Section 5.3.2 support 

he advantage of our strategy. 

3) Determine the replenishment variables z kt , w kt , and inven- 

ory quantity variables I kt . Once th site opening variables v kt and 

ecipient assignment variables x jk are determined, the remaining 

roblem is to compute the optimal replenishment and inventory 

t each opened site k . We recall that L kt is the number of recipi-

nts to be served at the vaccination site k on the day t , e k is the

xed replenishment cost at site k , and h k is the unit inventory cost 

t site k . Then, for each site k we compute the optimal value of

he replenishment date variables w kt , replenishment quantity vari- 

bles z , and inventory variables I by solving the following MILP 
kt kt 

7 
odel: 

min 

∑ 

t∈ T 
e k w kt + 

∑ 

t∈ T 
h t I kt (20) 

 . t . (7) , (8) , and to 

 k,t+1 = I kt + z kt − L kt ∀ 1 ≤ t ≤ | T | − 1 . (21) 

It is obvious that the above discrete economic ordering problem 

t each opened site k satisfies the Wagner-Whitin condition [88] . 

hat is to say, the condition I k,t−1 w kt = 0 is satisfied, indicating the 

eplenishment takes place only when the inventory is completely 

onsumed. To this end, we define parameter c(t 1 , t 2 ) as the replen-

shment and inventory costs incurred between periods t 1 and t 2 if 

ll vaccines needed during this interval are received at time t 1 . 

c(t 1 , t 2 ) = e k w k,t 1 + 

t 2 −1 ∑ 

s = t 1 

(
h k 

t 2 ∑ 

τ= s +1 

L kτ

)
∀ 1 ≤ t 1 ≤ t 2 ≤ | T | . (22) 

The first term e k w k,t 1 
denotes the replenishment cost at period 

 1 . The second term indicates the inventory costs from periods s ∈ 

 t 1 , · · · , t 2 − 1 } . The inventory quantity at period τ is equal to the

um of vaccines needed during periods s + 1 to t 2 . 

Let f t be the minimum cost from the first day to day t when 

he inventory is zero at the end of day t . We can use the following

tate transition function: 

f t = min 

1 ≤τ≤t 
{ f τ−1 + c(τ, t) } ∀ t ∈ T , (23) 

here f 0 = 0. The objective value can be obtained by calculating 

f | T | . 
The detailed implementation process of the proposed dynamic 

rogramming (DP) is shown in Algorithm 6 . This procedure pro- 
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Algorithm 6 Determine w kt , z kt , and I kt with a DP method. 

1: Input: L kt , O k , V k , e k , h k , and initialize w kt =0, z kt =0, and I kt =0 

(∀ k, t) . 

2: for k = 1 , 2 ..., | K| , do 

3: (1) Calculate the replenishment and inventory costs 

c(t 1 , t 2 ) from periods t 1 to t 2 . 

4: for t 1 = 1 , 2 ..., | T | , do 

5: for t 2 = t 1 , ..., | T | , do 

6: α(t 1 , t 2 ) = 

t 2 ∑ 

τ= t 1 
L kτ , β(t 1 , t 1 ) = 

t 2 ∑ 

τ= t 1 +1 

L kτ , and c(t 1 , t 2 ) = 

0 

7: if α(t 1 , t 2 ) > O k or β(t 1 , t 2 ) > V k , then 

8: c(t 1 , t 2 ) = In f ; {/ ∗ the replenishment/inventory 

quantity exceeds the capacity ∗/} 

9: else 

10: if α(t 1 , t 2 ) > 0 then 

11: c(t 1 , t 2 ) = 

t 2 −1 ∑ 

s = t 1 
(h k 

t 2 ∑ 

τ= s +1 

L kτ ) + e k 

12: end if 

13: end if 

14: end for 

15: end for 

16: (2) Calculate the optimal replenishment dates. 

17: for t 2 = 1 , 2 ..., | T | , do 

18: for t 1 = 1 , ..., t 2 , do 

19: if t 1 = 1 then 

20: δ(1 , t 2 ) = c(1 , t 2 ) 

21: else 

22: δ(t 1 , t 2 ) = η(k, t 1 − 1) + c(t 1 , t 2 ) 

23: end if 

24: end for 

25: Denote η(k, t 2 ) = min { δ(: , t 2 ) } , and the index as ζ (t 2 ) . 

26: end for 

27: {/ ∗ δ(t 1 , t 2 ) denotes the costs until t 2 when the last replen- 

ishment date is t 1 ; ζ (t 2 ) represents the latest optimal re- 

plenishment date before time t 2 ; η(k, t 2 ) is the minimum 

cost for site k until time t 2 . ∗/} 

28: (3) Determine the replenishment dates, and replenish- 

ment and inventory quantities. 

29: for t = 2 , 3 ..., | T | , do 

30: �(t, 2) = �(t − 1 , 1) − 1 , and �(t, 1) = ζ (�(t, 2)) ; 

where �(1 , 1) = ζ (| T | ) 
31: z k, �(t, 1) = α(�(t, 1) , �(t, 2) ), w k, �(t, 1) =1; compute I kt us- 

ing constraints (21) 

32: if �(t, 1) = 1 , then 

33: break {/ ∗ All the replenishment dates have been found 

∗/} 

34: end if 

35: end for 

36: {/ ∗ �(t, 1) represents the replenishment date, when the re- 

plenishment quantity can meet the vaccines needed from 

period �(t, 1) to �(t, 2) . ∗/} 

37: end for 

38: Return w kt , z kt , and I kt . 
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ides the values for variables w kt , z kt , and I kt . Finally, variables u kt 

an be computed as 
 L kt /Q� . 
Step 3: Perform the non-dominated sorting to rank the initial 

opulation and create Pareto fronts. Specifically, each individual 

ets a fitness value equal to its non-domination level. The first 

ront is a completely non-dominant set, and other fronts are only 

ominated by the individuals in precedent fronts. In addition, the 

rowding distance for each individual is calculated, which is then 
8 
sed to measure its closeness to neighbors. Generally, a larger av- 

rage crowding distance denotes a better population diversity. 

Step 4: Parents are selected using a tournament selection oper- 

tor based on their fitness value and crowding distance. Individuals 

ith better fitness or larger crowding distance are more likely to 

e selected. 

Step 5: Generate offsprings by crossover and mutation opera- 

ions. Specifically, we select the first part (i.e., v kt ) as the basic 

hromosome because once v kt changes, Y j and z kt change deter- 

inistically. The crossover and mutation operations are carried out 

n the basic chromosome. After each crossover and mutation oper- 

tion, Algorithms 5 and 6 are used to generate new solutions (off- 

pring population) based on the new values of variables v kt . The 

ffspring is then added to the population, and a selection opera- 

ion is performed based on non-domination to select the individ- 

als of the next generation. Finally, elitism is ensured by selecting 

he best P s individuals. 

Step 6: Stopping criterion. If the maximum number of iterations 

s reached, stop and output a set of non-dominated Pareto solu- 

ions; otherwise, return to Step 4. 

. Computational study 

In this section, we evaluate the performance of the proposed 

lgorithms by conducting computational experiments. We first 

resent a real-world case study based on the vaccination program 

n Tongzhou District, Beijing City, China. We then perform numer- 

cal experiments on 64 random instances with up to 20 0,0 0 0 re- 

ipients, 50 vaccination sites, and 10 days. The random instances 

nd results are available online at https://www.dmu-yantongli. 

om/instances . 

The proposed weighted-sum and ε-constraint algorithms are 

oded in C++ linked with CPLEX 12.10, and the NSGA-II method 

s implemented in MATLAB R2020b. All runs are performed on 

 PC with Core i5 at 1.6 GHz and 8 GB RAM. The parameters 

sed in the algorithms are stated as follows. For the weighted-sum 

ethod, the value of ω is set to 0.05. For the ε-constraint method, 

= 

⌊ 

f N 
1 

− f I 
1 

h 

⌋ 

and h is set to 20. For both methods, the total time 

imit and that for a single iteration are set to 3600 and 600 sec- 

nds, respectively, for the small- and medium-sized instances. The 

wo parameters are set to 7200 and 1200 seconds, respectively, for 

arge-sized instances. In terms of the NSGA-II, the population size 

 s , the number of generations M, and the time limit are set to 600,

0 0, and 360 0 seconds, respectively, for the small- and medium- 

ized instances. These three parameters are set to 30 0, 10 0, and 

200, for large-sized instances. 

.1. Case study of Beijing Tongzhou District 

This section presents a case study from the Tongzhou district 

f Beijing City, China, to validate the proposed model and solu- 

ion method. The case corresponds to a vaccination program cover- 

ng 12 days and 202,595 recipients. The Center for Disease Control 

f Tongzhou District is responsible for the mass vaccination of all 

he residents in the district. The vaccination program consists of 17 

accination sites, and the vaccination capacity for each site per day 

s listed in Table 1 , along with their locations, visualized in Fig. 3 . 

We obtained the vaccination data for 12 days from Mar 19, 

021, to Mar 30, 2021. The total number of vaccinated recipients is 

02,595. We estimate the location of each recipient based on the 

otal number of residents in each community and the vaccination 

ate. In particular, let the total number of residents in Tongzhou 

istrict be T P , and the number of permanent residents in each 

ommunity be P i , where 
∑ N 

i =1 P i = T P and N is the number of com- 

unities. We then calculate the vaccination rate of the Tongzhou 

https://www.dmu-yantongli.com/instances
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Table 1 

Information of vaccination sites in Tongzhou district. 

No. Name Latitude Longitude Capacity/d # of recipients 

1 Yangzhuang Street 39.91143 116.63804 840 5930 

2 Beiyuan Street 39.91414 116.65996 780 8111 

3 People Mall 39.91425 116.67745 2960 31546 

4 Tongyun Street 39.91899 116.70526 700 4225 

5 Jiukeshu Street 39.90094 116.65871 1120 9487 

6 Yuqiao Street 39.89856 116.69962 1120 12340 

7 Yongshun Town 39.95379 116.68951 1400 14200 

8 Songzhuang Town 39.95223 116.73489 1680 18195 

9 Liyuan Town 39.87097 116.65589 1950 18249 

10 Zhangjiawan Town 39.86281 116.74197 960 10215 

11 Lucheng Town 39.86046 116.82250 840 9080 

12 Taihu Town 39.82754 116.64454 1560 13190 

13 Xiji Town 39.80478 116.83826 840 8830 

14 Huoxian Town 39.78210 116.80376 720 7290 

15 Majuqiao Town 39.74870 116.57271 1680 13583 

16 Yujiawuxiang Town 39.72415 116.71123 1120 7432 

17 Yongledian Town 39.72156 116.80356 1120 10692 

Total 21390 202595 

Fig. 3. The location of vaccination sites in Tongzhou District. 

d  

c

n

u

r

a

n

s

7

u

c

o  

r

t

2  

d

p

d

i

o

g

T

5

t

a

T

s

f

p

w

e

w

d

istrict, which is denoted by r = | J| /T P . Next, we estimate the vac-

inated population in each community by V i = rP i . The obtained 

umber of recipients at each community is shown in the last col- 

mn of Table 1 . We generate a random coordinate within the cor- 

esponding administrative subdistrict for each vaccinated recipient. 

The average working time is 8 h/d, and each vaccination takes 

bout five minutes, indicating that the service capacity of a vacci- 

ation station is Q = 100/d. The maximum number of vaccination 

tations that can be launched at each vaccination site varies from 

–30. We assume that the expected service day for recipients is 

niformly distributed along the planning horizon. The fixed setup 

ost f k for vaccination site k is related to its location, human and 

ther resources, and falls in the interval [20 0 0, 30 0 0]. The fixed

eplenishment cost at vaccination site k is mainly dependent on 

he transportation cost of vaccines and lies in the interval [10 0 0, 

0 0 0]. The cost of a vaccination station g k at vaccination site k per

ay is set to 600, which corresponds to the salary for a medical 

rofessional. The unit inventory cost at the vaccination site k per 

ay is randomly generated from the interval [0.2, 0.5]. The max- 

t

9 
mum replenishment and inventory capacity at vaccination site k 

n each day are randomly generated as ρ | J| 
| T | , where ρ is randomly 

enerated from 1, 2, 3. A summary of these values is presented in 

able 2 . 

.1.1. Results and analysis 

We solve the case study using the proposed NSGA-II method. A 

ime limit of 2 hours is imposed. The size of the initial population 

nd the number of iterations are set to 300 and 100, respectively. 

he obtained Pareto solutions (blue triangles) are shown in Fig. 4 . 

Decision-makers can select a solution from the obtained Pareto 

olutions based on their preference. In this case, we apply the 

uzzy logic decision method to help decision-makers choose their 

referred solution [89] . We consider three combinations of weights 

 1 and w 2 for the two objectives, each representing a specific pref- 

rence on the two objectives. In scenario 1, the weight coefficients 

 1 and w 2 are set to 0.2 and 0.8, respectively, indicating that the 

ecision-maker assigns a higher weight to the travel distance and 

ends to focus on the service quality. Scenario 2 allocates equal 
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Table 2 

Values for the model parameters. 

PAR. Description Value 

| J| # of recipients 202595 

| K| # of sites 17 

| T | # of days 12 

f k Setup cost [2380 2795 2418 2688 2272 2872 2823 2966 2402 2692 2553 2183 

2007 2553 2398 2724 2668] 

e k Replenishment cost [1989 1358 1910 1622 1080 1334 1518 1067 1767 1539 1622 1942 

1771 1070 1827 1694 1047] 

h k Inventory holding cost [0.30 0.23 0.49 0.33 0.38 0.29 0.47 0.45 0.42 0.43 0.25 0.22 0.33 0.26 

0.44 0.33 0.31] 

m k Maximum number of 

vaccination stations 

[9 8 30 7 12 12 14 17 20 10 9 16 9 8 17 12 12] 

O k Maximum replenishment 

quantity 

[16883 16883 33766 33766 33766 50649 50649 16883 50649 50649 

50649 33766 50649 33766 50649 33766 16883 ] 

V k Maximum inventory quantity [16883 33766 50649 50649 50649 33766 50649 16883 33766 33766 

33766 16883 50649 50649 16883 33766 50649] 

Fig. 4. Pareto front P � and solutions obtained by experience-based methods. 
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eights to both objectives ( w 1 = 0 . 5 , w 2 = 0 . 5 ), indicating that the

ecision-maker believes operational cost and service quality are 

qually important. In Scenario 3, w 1 and w 2 are set to 0.8 and 

.2, which indicates that the decision-maker views the operational 

ost as a more critical criterion and tends to make a cost-effective 

lan. We apply the fuzzy logic decision method to select the pre- 

erred solutions for the three scenarios. The selected solutions for 

he three scenarios are shown in red “+" from top-down in Fig. 4 ,

rom which we can see that the method selects three distinct so- 

utions for the three scenarios. 

We then compare the obtained Pareto front P � to the solu- 

ions obtained by two sequential heuristics adopted in practice. 

he heuristics used in practice consist of scenarios where decision- 

akers make decisions sequentially based on their experiences. 

hey follow two greedy rules: 1) each recipient is assigned to 

he vaccination site in his administrative subdistrict (denoted by 

euristic solution 1); 2) each recipient is assigned to its nearest 

accination site (denoted by heuristic solution 2). The obtained so- 

utions of the two heuristics are presented in Fig. 4 . We see from

ig. 4 that for both heuristic solutions, we can find better solutions 

n the Pareto front P � that dominate them. In detail, we find the 

ollowing. 

First, heuristic solution 1 is dominated by all preferred so- 

utions, particularly by the preferred solution with w 1 = 0.5. 
10 
he reduced operational cost and travel distance can be as high 

s 1.67E+05 and 2.66E+08, respectively. Therefore, the proposed 

odel can significantly reduce the operational costs (with an aver- 

ge of 9.3%) and the total travel distance (with an average of 36.6%) 

hen compared with real-world practice. 

Second, regarding heuristic solution 2, it is dominated by the 

referred solution with w 1 = 0.2, with savings on operational cost 

nd travel distance of 3190 and 2.63E+07, respectively. 

These results indicate that our integrated decision model and 

olution methods are effective and outperform the sequential 

euristics that are adopted in practice. More specifically, our model 

hows superior ability to improve resource utilization, which is es- 

ecially valuable for carrying out a mass vaccination campaign. 

esides, the service level is improved, and the time to reach 

ass vaccination sites is reduced, which helps mitigate the risks 

f virus spread. Thus, our tools can help decision-makers re- 

uce operational costs and improve service levels during mass 

accination. 

The preferred solutions corresponding to the three scenarios 

learly show the trade-offs between the two optimized objectives, 

.e., the operational cost and travel distance. To better understand 

he cost components of the three solutions, we visualize in Fig. 5 

heir objective function values, the number of opened vaccination 

ites, the number of launched vaccination stations, and the capac- 
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Fig. 5. Results obtained from the trade-off analysis. 
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T  
ty utilization rate. The capacity utilization rate is calculated as ∑ 

k ∈ K 
∑ 

t∈ T L kt / (Qv kt m k ) | K|| T | . 

The analysis of these detailed solutions allows us to derive the 

ollowing insights. 

1) As the weight w 1 increases from 0.2 to 0.8, the operational 

ost decreases, and the travel distance increases. This is expected 

ince a larger weight w 1 for the operational cost objective might 

orce the model to find a cost-effective vaccination plan. This leads 

o a situation where recipients must travel a longer distance to 

et vaccinated. Besides, there is an apparent conflict between these 

wo objectives: promoting one objective is achieved at the expense 

f deteriorating the other. 

2) Figs. 5(b) and 5(c) show that when the value of w 1 in- 

reases, the total number of opened vaccination sites and stations 

ecreases, and the proportion of closed vaccination sites increases. 

pecifically, when a larger weight is allocated to the travel dis- 

ance objective (i.e., w 1 = 0 . 2 and w 2 = 0 . 8 ), almost all the vacci-

ation sites are opened for vaccination each day. When a larger 

eight is allocated to the operational cost objective (i.e., w 1 = 0 . 8

nd w 2 = 0 . 2 ), the total number of opened vaccination sites de-

reases from 200 to 151, increasing the proportion of closed vacci- 

ation stations from 2% to 27%. Similarly, when w 1 increases from 

.2 to 0.8, the number of vaccination stations used decreases from 

086 to 2041, as shown in Fig. 5(c) . 

i

11 
3) In Fig. 5(d) , we see that as the weight w 1 of the operational

ost objective increases from 0.2 to 0.8, the service capacity uti- 

ization rate increases from 78.50% to 96.64%. This is aligned with 

he previous finding, when most people are assigned to fewer sites, 

ncreasing utilization. 

In summary, this trade-off analysis provides managerial insights 

n the bi-objective MVPP. The proposed decision framework can 

etter balance the workload at each vaccination site owing to the 

cientific location, assignment, and service setting. Resource wast- 

ng can be eliminated, which dramatically helps improve the vacci- 

ation operation performance. Our method provides a set of Pareto 

olutions from which decision-makers can choose flexibly based 

n their preference and constraints. This information is benefi- 

ial for decision-makers when they face such a complex problem 

n which the operational cost and the service level must be si- 

ultaneously optimized. Accordingly, the situation shows that to 

ght the COVID-19 outbreak, one can rely on advanced solution 

ethodologies. Our paper contributes with an efficient procedure 

o help policymakers. 

.1.2. Sensitivity analysis 

To analyze the impact of service capacity at each vaccination 

ite, we expand it by increasing the number of potential stations. 

he average value of m k for the above Pareto front P � is 13, which

s set as a basis. We then consider three scenarios where the max- 
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Fig. 6. Effect of changing service capacity. 
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mum number of vaccination stations is set to 20, 25, and 30. 

hese scenarios are then solved by the same NSGA-II method, and 

he obtained Pareto fronts for the three scenarios are presented in 

ig. 6 . 

From the results shown in Fig. 6 , we see that as the service ca-

acity increases from 13 to 30, the obtained Pareto front becomes 

etter and that the larger difference happens concerning the cost, 

ot distance. This indicates that decision-makers can significantly 

educe operational costs and improve service levels by enlarging 

he service capacity limits. 

.2. Results analysis on randomly generated instances 

We generate 64 instances in three groups. The first one con- 

ains 20 small-sized instances with up to 10 0 0 recipients, 10 vac- 

ination sites, and 10 days, i.e., | J| = { 20 0 , 40 0 , · · · , 10 0 0 } , | K| =
 5 , 10 } , | T | = { 5 , 10 } . The second group contains 20 medium-sized

nstances with up to 10,0 0 0 recipients, 10 vaccination sites, and 

0 days, i.e., | J| = { 20 0 0 , 40 0 0 , · · · , 10 , 0 0 0 } , | K| = { 5 , 10 } , | T | =
 5 , 10 } . The third group contains 24 large-sized instances with up

o 20 0,0 0 0 recipients, 50 vaccination sites, and 10 days, i.e., | J| =
 20 , 0 0 0 , 30 , 0 0 0 , · · · , 20 0 , 0 0 0 } , | K| = { 30 , 50 } , | T | = { 5 , 10 } . The

oordinates (X k , Y k ) of the vaccination sites k ∈ K and (X j , Y j ) of

he recipients j ∈ J are randomly generated from [1, 200]. The dis- 

ance between vaccination site k and recipient j is calculated as 

 jk = � √ 

(X j − X k ) 
2 + (Y j − Y k ) 

2  . The expected service day for re- 

ipient j ∈ J is randomly generated from the interval [1, | T | ]. Fi-

ally, we generate an instance for each combination of | J| , | K| and

 T | , totaling 64 instances with up to 20 0,0 0 0 recipients, 50 vacci-

ation sites, and 10 scheduling days. 

These instances are solved with each of the three methods. 

.2.1. Performance indicators 

We define several indicators for evaluating the performance of 

ifferent solution methods for multi-objective optimization prob- 

ems. To this end, we first define a reference Pareto solution set 

 

∗ which contains all solutions provided by the three developed 

ethods, and dominated solutions are excluded. Then we present 

our performance metrics, i.e., the number of non-dominated solu- 

ions, hypervolume ratio, average e -dominance, and computation 

ime, widely adopted in evaluating multi-objective optimization 

olutions [89,90] . The first and last indicators are trivial, while the 

econd and third indicators are introduced by [91] . 

The number of non-dominated solutions indicates the number 

f Pareto solutions in the approximate Pareto solution set P exclud- 

ng those dominated by the solutions in the referenced set P ∗. This 
12 
ndicator can be viewed as the contribution of the current algo- 

ithm to the reference set. A large number of non-dominated solu- 

ions indicates a better performance. 

The hypervolume ratio represents the ability of coverage of a 

areto solution set. Let H(P ∗) be the hypervolume of the reference 

et, which is calculated based on the nadir point ( f N 
1 

, f N 
2 
) . It repre-

ents the objective space covered by the set P ∗. The hypervolume 

atio of set P can be calculated as H v (P ) = 

H(P) 
H(P ∗) 

. A large hyper-

olume ratio indicates the solution set has better coverage, which 

uggests that the corresponding algorithm is better. 

The e -dominance indicator measures the average distance be- 

ween the reference solution set P ∗ and the approximate solution 

et P . The e -dominance value e (x ) of a solution x in the approxi-

ate solution set is calculated as follows: 

e (x ) = min 

( f 1 (x ′ ) , f 2 (x ′ )) ∈ P 
ma x 

{
f 1 ( x 

′ ) 
f 1 ( x ) 

, 
f 2 ( x 

′ ) 
f 2 ( x ) 

}
. (24) 

The average e -dominance indicator for each approximate solu- 

ion set is calculated as: 

e = 

1 

| P ∗| 
∑ 

( f 1 (x ′ ) , f 2 (x ′ )) ∈ P ∗
e (x ) . (25) 

The average e -dominance value is always greater than or equal 

o 1, and a smaller value indicates the approximate solution set is 

loser to the reference solution set, i.e., a better performance of the 

orresponding algorithm. 

The comparison results on the 64 randomly generated instances 

re presented in Tables 3 , 4 , and 5 , where “Weighted-sum”, “ε- 

onstraint”, and “NSGA-II” represent the three proposed solution 

ethods, respectively. Column “#” denotes the sequence number 

f the instances; “#Nd” indicates the number of non-dominated 

olutions in the obtained approximate Pareto solution set; “Hv” in- 

icates the value of hypervolume ratio; “e ” represents the value of 

verage e -dominance, and “Time (s)” is the computational time in 

econds. Recall that WS refers to the weighted-sum method and 

C to the ε-constraint algorithm. 

.2.2. Results for small-sized instances 

Table 3 reports the results for small-sized instances with up to 

0 0 0 recipients. We see that the tailored WS and EC methods ob- 

ain on average 14 and 16 non-dominated Pareto solutions, signif- 

cantly fewer than the 100 non-dominated solutions provided by 

SGA-II. This implies that NSGA-II contributes the most to the ref- 

rence Pareto solution set. The values of the hypervolume ratio ob- 

ained by WS and EC methods are 0.949 and 0.971, respectively. 

n contrast, this value reaches 0.989 for NSGA-II, indicating a bet- 

er coverage in the objective space of NSGA-II, and again a better 

erformance when compared to the exact methods. Similarly, WS 

nd EC methods yield a large value of e -dominance, while the e - 

ominance value of NSGA-II is exceptionally close to one, meaning 

he Pareto solution provided by NSGA-II is close to the reference 

et. In terms of the computation time, NSGA-II and EC take almost 

he same time. NSGA-II obtains the best solution quality within 

ne hour for all the instances. The above comparisons demonstrate 

hat NSGA-II has the best performance regarding the three quality 

ndicators. 

Further observing the computational results obtained by WS 

nd EC methods, we can see that EC obtains a larger value of 

ypervolume ratio than WS, and a smaller value of e -dominance. 

dditionally, with less computation time, the number of non- 

ominated Pareto solutions obtained by the EC method is greater 

han that of the WS method. This indicates that the Pareto so- 

utions provided by the EC method cover a larger space and are 

loser to the reference Pareto solution front, implying a better 

erformance of the EC method against WS. To sum up, for these 

mall-sized instances, although CPLEX can optimally solve each 
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Table 3 

Comparison results for small-sized instances. 

# | J| | K| | T | 
Weighted-sum ε-constraint NSGA-II 

#Nd Hv e Time (s) #Nd Hv e Time (s) #Nd Hv e Time (s) 

1 5 13 0.958 1.023 58 14 0.977 1.011 24 8 0.999 1.001 818 

2 5 10 16 0.967 1.012 360 9 0.968 1.009 336 68 0.997 1.001 908 

3 5 16 0.977 1.016 70 18 0.977 1.014 51 77 0.998 1.001 673 

4 

200 

10 10 18 0.991 1.008 1411 20 0.978 1.008 628 117 0.980 1.005 1514 

5 5 13 0.947 1.029 215 17 0.968 1.012 267 16 0.996 1.003 973 

6 5 10 13 0.930 1.025 1388 19 0.981 1.009 2767 91 0.994 1.002 1646 

7 5 16 0.981 1.022 1286 13 0.977 1.017 1070 145 0.998 1.001 1477 

8 

400 

10 10 19 0.990 1.014 3591 18 0.978 1.010 813 195 0.987 1.003 2258 

9 5 12 0.944 1.019 174 12 0.969 1.009 248 19 0.997 1.001 1662 

10 5 10 8 0.769 1.052 3642 12 0.996 1.005 2833 40 0.981 1.004 2085 

11 5 15 0.977 1.024 3252 17 0.978 1.015 1472 144 0.996 1.002 2313 

12 

600 

10 10 16 0.967 1.016 3275 21 0.982 1.009 3178 167 0.990 1.003 2966 

13 5 10 0.963 1.014 244 13 0.974 1.006 756 14 0.992 1.002 1740 

14 5 10 15 0.978 1.026 2796 15 0.989 1.008 2737 91 0.994 1.001 1640 

15 5 17 0.957 1.031 3969 16 0.972 1.018 2861 171 0.999 1.001 1961 

16 

800 

10 10 12 0.874 1.068 4131 21 0.989 1.010 3644 165 0.995 1.003 3268 

17 5 15 0.989 1.014 1956 18 0.988 1.006 3367 6 0.913 1.019 2393 

18 5 10 14 0.927 1.023 3615 17 0.942 1.017 4123 119 0.995 1.002 2829 

19 5 15 0.975 1.020 4108 15 0.966 1.015 2959 79 0.988 1.008 1668 

20 

1000 

10 10 12 0.926 1.038 4027 16 0.871 1.092 4126 266 0.997 1.002 3612 

Average 14 0.949 1.025 2178 16 0.971 1.015 1913 100 0.989 1.003 1920 

Table 4 

Comparison results for medium-sized instances. 

# | J| | K| | T | 
Weighted-sum ε-constraint NSGA-II 

#Nd Hv e Time (s) #Nd Hv e Time (s) #Nd Hv e Time (s) 

21 5 15 0.977 1.016 3586 10 0.839 1.066 3901 15 0.983 1.007 3608 

22 5 10 10 0.844 1.035 4147 6 0.388 1.232 3973 242 0.999 1.001 3621 

23 5 8 0.718 1.177 3604 13 0.901 1.046 4196 100 0.999 1.001 3620 

24 

2000 

10 10 11 0.825 1.117 4180 12 0.663 1.406 3831 191 0.997 1.002 3615 

25 5 7 0.417 1.118 3610 12 0.708 1.046 3760 27 0.994 1.002 3613 

26 5 10 9 0.770 1.105 3932 10 0.565 1.169 4055 69 0.996 1.002 3626 

27 5 8 0.789 1.093 4193 13 0.844 1.084 3732 122 0.999 1.001 3614 

28 

3000 

10 10 11 0.849 1.082 4148 10 0.558 1.443 3913 235 0.999 1.001 3619 

29 5 6 0.516 1.094 3888 9 0.588 1.100 4012 27 0.981 1.005 3602 

30 5 10 7 0.839 1.035 3685 13 0.754 1.065 4138 54 0.998 1.003 3624 

31 5 8 0.782 1.075 3733 13 0.788 1.074 4060 154 0.999 1.002 3606 

32 

4000 

10 10 7 0.761 1.098 3791 11 0.583 1.224 3733 175 0.998 1.001 3618 

33 5 7 0.844 1.023 3755 15 0.973 1.009 4117 16 0.963 1.006 3609 

34 5 10 7 0.533 1.117 3931 7 0.417 1.182 4115 96 0.997 1.002 3643 

35 5 9 0.668 1.103 4074 9 0.603 1.196 3644 66 0.995 1.003 3628 

36 

5000 

10 10 7 0.678 1.216 3662 8 0.431 1.583 3707 170 0.996 1.002 3615 

37 5 6 0.984 1.004 3687 10 0.609 1.010 4149 0 0.839 1.009 3643 

38 5 10 9 0.533 1.054 4036 8 0.623 1.062 3892 124 0.860 1.008 3708 

39 5 8 0.788 1.028 3691 10 0.514 1.101 4135 26 0.996 1.002 3691 

40 

10,000 

10 10 7 0.792 1.068 3615 6 0.308 1.338 4100 47 0.991 1.006 3690 

Average 8 0.745 1.083 3847 10 0.633 1.172 3958 98 0.979 1.003 3631 
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ingle-objective MVPP ( ε), the NSGA-II method still performs the 

est for solving the set of small-sized instances under the bi- 

riteria analysis. 

.2.3. Results for medium-sized instances 

Table 4 compares results for medium-sized instances with up 

o 10,0 0 0 recipients. We see that the tailored WS, EC, and NSGA-II 

btain on average 8, 10, and 98 non-dominated Pareto solutions, 

espectively. This implies that NSGA-II still contributes the most 

o the reference Pareto front. Regarding the hypervolume ratio in- 

icator, the WS method provides a value of 0.745 compared to 

nly 0.633 of the EC method. The NSGA-II method still performs 

he best on this indicator, with a value of 0.979. Regarding the e - 

ominance indicator, the values obtained by WS, EC, and NSGA- 

I are 1.083, 1.172, and 1.003, respectively, which indicate that the 

S and NSGA-II methods perform better than EC. In addition, the 
13 
 -dominance value of WS and NSGA-II methods are close to one, 

eaning the Pareto solution set provided by these two methods is 

lose to the reference set. Still, our heuristic performs one order of 

agnitude better than the WS method. In terms of the computa- 

ion time, NSGA-II is the fastest, and EC takes the longest time. 

The above comparisons demonstrate that the NSGA-II method 

as the best performance regarding the four performance indica- 

ors for medium-sized instances. 

.2.4. Results for large-sized instances 

Table 5 presents the computational results for the large-sized 

nstances with up to 20 0,0 0 0 recipients and 50 vaccination sites. 

s the number of recipients and vaccination sites increases, we can 

ee that the performance of EC degrades drastically. For example, 

t provides on average 13 non-dominated Pareto solutions for in- 

tances 1–40 of Tables 3 and 4 that have fewer recipients and vac- 
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Table 5 

Comparison results for large-sized instances. 

# | J| | K| | T | 
Weighted-sum ε-constraint NSGA-II 

#Nd Hv e Time (s) #Nd Hv e Time (s) #Nd Hv e Time (s) 

41 5 4 0.402 1.404 7326 1 0.000 1.856 7200 129 0.999 1.000 5548 

42 30 10 4 0.519 1.374 7289 1 0.000 2.740 7200 138 0.998 1.000 5578 

43 5 5 0.380 1.521 7449 1 0.000 2.562 7200 148 0.998 1.001 4926 

44 

20,000 

50 10 5 0.481 1.568 7407 1 0.000 3.882 7200 148 0.997 1.001 5663 

45 5 5 0.423 1.270 7467 1 0.000 1.623 7200 113 0.998 1.001 6494 

46 30 10 5 0.465 1.357 7324 1 0.000 2.127 7200 143 0.998 1.001 6395 

47 5 3 0.313 1.455 7428 1 0.000 2.079 7200 142 0.997 1.000 6900 

48 

30,000 

50 10 5 0.448 1.365 7424 1 0.000 2.812 7200 120 0.995 1.001 7218 

49 5 4 0.388 1.197 7716 1 0.000 1.426 7200 132 0.999 1.000 7240 

50 30 10 4 0.647 1.259 7528 1 0.000 1.980 7200 125 0.997 1.001 7286 

51 5 3 0.232 1.407 7945 1 0.000 1.835 7200 123 0.999 1.000 7218 

52 

40,000 

50 10 4 0.299 1.462 7669 1 0.000 2.407 7200 141 0.998 1.001 7255 

53 5 5 0.384 1.141 7688 0 0.000 3.021 7200 67 0.995 1.001 7291 

54 30 10 3 0.284 1.347 7483 1 0.000 1.788 7200 129 0.999 1.000 7319 

55 5 5 0.695 1.188 8101 0 0.000 3.906 7200 97 0.996 1.001 7275 

56 

50,000 

50 10 3 0.261 1.524 7882 – – – 7200 139 0.998 1.000 7279 

57 5 1 0.190 1.136 7262 – – – 7200 53 1.000 1.000 7587 

58 30 10 3 0.402 1.126 7404 – – – 7200 62 0.998 1.000 7353 

59 5 3 0.246 1.193 7663 – – – 7200 45 1.000 1.000 7782 

60 

100,000 

50 10 2 0.295 1.256 7670 – – – 7200 95 0.996 1.000 7308 

61 30 0 0.212 1.187 8245 – – – 7200 23 1.000 1.000 7755 

62 150,000 50 10 – – – 7200 – – – 7200 35 1.000 1.000 7587 

63 30 – – – 7200 – – – 7200 11 1.000 1.000 8963 

64 200,000 50 10 – – – 7200 – – – 7200 19 1.000 1.000 13858 

Average 3 0.332 1.156 7540 1 0.000 1.502 7200 99 0.998 1.000 7295 
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ination sites, while it only finds at most one and often none for 

nstances 41–64 of Table 5 . 

The same conclusion can be drawn by observing other perfor- 

ance indicators. Though performing slightly better than the EC, 

he WS method has difficulties in finding non-dominated Pareto 

olutions for instances with more than 10 0,0 0 0 recipients. NSGA- 

I shows its high stability in consistently finding a large number 

f non-dominated Pareto solutions, a large value of hypervolume 

atio, and a small value of average e -dominance. NSGA-II can find 

 set of non-dominated Pareto solutions for each instance. It sig- 

ificantly outperforms the other two methods since the values of 

ypervolume ratio and e -dominance for these instances are very 

lose or equal to one. This is because the Pareto solutions in the 

eference set are mostly or all contributed by the NSGA-II. The re- 

ults in Table 5 clearly show the superiority of NSGA-II. 

Further observing the computational results of Table 5 , WS and 

C find on average three and one non-dominated Pareto solu- 

ions, respectively, which are significantly fewer than the 99 non- 

ominated solutions provided by NSGA-II. It can be observed that 

C cannot find any non-dominated Pareto solution for 11 out of the 

4 instances, and the WS method loses its effectiveness when the 

umber of recipients reaches 150,0 0 0 with 50 vaccination sites. 

he values of the hypervolume ratio obtained by WS and EC are 

.332 and 0.0 0 0, respectively. This value reaches 0.998 for NSGA-II, 

ndicating a better coverage in the objective space of NSGA-II. The 

C yields a much larger value of e -dominance than the two other 

ethods, which indicates that the Pareto solutions of EC are far 

rom the reference set. The e -dominance value of NSGA-II is much 

loser to 1.0 0 0 than that of WS, meaning the Pareto solution set 

rovided by NSGA-II is closer to the reference set. The computa- 

ion time of the EC method is sometimes equal to the time limit 

f 7200 seconds because it fails to find a feasible solution when 

olving S-MVPP ( ε). For the WS and EC methods, the total compu- 

ation time of a run may exceed the time limit of 7200 seconds 

ince we check the stopping criterion after each solution of the 

ingle-objective problem. 

Table 5 shows that WS and EC methods lose their efficiency 

nd efficacy in solving such large-sized instances, and NSGA-II 

w

14 
gain performs the best by providing more non-dominated solu- 

ions with very good quality. 

.3. Performance analysis 

In this section, we study the performance of some critical ele- 

ents of our algorithm that support their choices and pertinence. 

n Section 5.3.1, we evaluate the choice of the primary objective 

unction of the EC method. In Section 5.3.2, we assess the value 

f our improved assignment strategy in the design of the initial 

opulation. Finally, in Section 5.3.3, we study the efficiency of the 

ynamic programming which is key to obtaining a solution at each 

teration of our heuristic. 

.3.1. Performance analysis of the ε-constraint method 

The selection of the objective to be optimized plays a critical 

ole in the EC method. We denote the version where the first ob- 

ective (second objective) is selected as the principal objective as 

-constraint- f 1 ( ε-constraint- f 2 ). We then solve the same 40 in- 

tances with the two methods. The results are shown in Table 6 . 

hese indicators are calculated based on the reference set P ∗ as in- 

roduced in Section 5.2.1. 

It can be seen that ε-constraint- f 2 yields a much larger number 

f non-dominated solutions, larger hypervolume ratio, and smaller 

verage e -dominance, which indicates its better performance. 

oreover, the ε-constraint- f 2 is also faster than ε-constraint- f 1 . 

hese results strongly support our choice in the design of this al- 

orithm. 

.3.2. Performance analysis of the improved assignment strategy 

We further analyze the excellent performance of the proposed 

SGA-II method. As stated, our NSGA-II method differs from ex- 

sting ones by employing an improved recipient assignment strat- 

gy to vaccination sites and an effective dynamic programming 

ethod to obtain the optimal inventory and replenishment quan- 

ity at each vaccination site. We first highlight the improved re- 

ipient assignment strategy by comparing it with a basic strategy 

here each recipient is assigned to its nearest vaccination site. 
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Table 6 

Comparison results of different objective functions used as ε-constraint. 

# | J| 
ε-constraint- f 1 ε-constraint- f 2 

#Nd Hv e Time (s) #Nd Hv e Time (s) 

1–4 200 19.00 0.990 1.006 735 20.00 0.986 1.010 260 

5–8 400 19.00 0.971 1.025 2410 19.25 0.987 1.015 1229 

9–12 600 13.00 0.660 1.109 3094 18.75 0.990 1.008 1933 

13–16 800 10.75 0.714 1.183 3287 19.25 0.987 1.013 2500 

17–20 1000 7.75 0.454 1.245 3773 17.00 0.949 1.057 3644 

21–24 2000 5.25 0.332 1.315 3886 12.50 0.720 1.190 3975 

25–28 4000 6.50 0.347 1.213 3741 11.25 0.716 1.140 3865 

29–32 6000 4.50 0.307 1.258 3669 11.50 0.797 1.121 3986 

33–36 8000 4.75 0.155 1.219 3669 10.00 0.662 1.180 3896 

36–40 10000 3.25 0.286 1.123 3704 10.50 0.759 1.060 4047 

Average 9.38 0.522 1.170 3197 15.00 0.855 1.079 2933 

Fig. 7. The Effect of different strategies for assigning the recipients. 
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our instances are selected and the detailed comparison results are 

hown in Fig. 7 . We can clearly see that the obtained Pareto front

ith the improved assignment strategy dominates that of the basic 

ne. 

.3.3. Effect of the dynamic programming method 

Next, we show the effect of the new dynamic programming 

DP) method used to establish optimal replenishment and inven- 

ory plans given a recipient assignment. The same four instances 

re selected. We compare the NSGA-II with our DP strategy against 

 random strategy (shown in Algorithm 7 ) where the replenish- 

ent quantity is randomly generated in the feasible interval. The 

omputational results are shown in Fig. 8 . The results show that 

ur DP scheme significantly improves the solution quality. 
15 
In summary, the excellent performance of the tailored NSGA-II 

ethod is due to the developed new recipient assignment strategy 

nd the DP. 

. Conclusion 

We have investigated the integrated bi-objective multi-period 

apacitated vaccination planning problem with replenishment. The 

im is to obtain a cost-effective vaccination plan and provide a 

igh-quality service level. In particular, the studied problem simul- 

aneously optimizes the total operational cost and travel distance. 

he first objective represents an economic criterion, and the sec- 

nd one can be viewed as a service quality measure. The stud- 

ed problem is a generalization of the multi-period facility location 

roblem. It further considers replenishment and capacity decisions 
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Fig. 8. Effect of a random replenishment strategy instead of our DP. 
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t each vaccination site. We have proposed a bi-objective MILP 

odel for the studied new problem and three solution methods 

i.e., weighted-sum, ε-constraint, and NSGA-II) to obtain approx- 

mate Pareto solutions. The weighted-sum and ε-constraint meth- 

ds are developed based on the proposed MILP. The tailored NSGA- 

I method uses a problem structure-based initial solution genera- 

ion scheme to provide approximate Pareto solutions. 

To evaluate the performance of the proposed model and algo- 

ithms, we have presented a real-world case study and numeri- 

al experiments on 64 random instances. Results on the real-world 

ase study indicate that: 1) the proposed model and algorithms 

an provide a set of Pareto solutions to the studied bi-objective 

VPP; 2) the Pareto solutions obtained by the developed meth- 

ds dominate those obtained by experience-based greedy methods 

nd a real-world solution; and 3) the proposed decision framework 

rovides decision-makers with the flexibility to select preferred so- 

utions from a set of Pareto solutions based on their preferences. 

n particular, our solutions decrease the operational costs by 9.3% 

n average and decrease the total distance by 36.6%. Results on 

andomly generated instances with up to 20 0,0 0 0 recipients, 50 

accination sites, and 10 days show that the proposed model and 

lgorithms effectively solve the studied bi-objective MVPP. The re- 

ults consistently indicate that the proposed NSGA-II method sig- 

ificantly outperforms the weighted-sum and ε-constraint. In par- 

icular, the NSGA-II method can provide a large number of Pareto 

olutions for all large-sized instances. 

The mass vaccination planning problem is a challenge for both 

esearchers and practitioners. In the current problem setting, vac- 

ine replenishment is assumed to be shipped directly. The replen- 

t

16 
shment quantity of a vaccination site may be small, which moti- 

ates us to include vehicle routing in the studied problem to fur- 

her reduce operational costs. In this case, the problem structure 

hanges. We must propose new models for the problem and de- 

elop efficient algorithms to solve practical-sized instances. Fur- 

hermore, despite the appointment information, the demand may 

ary due to no-shows or walk-in recipients. Therefore, future stud- 

es may focus on a stochastic version considering demand uncer- 

ainty. Besides, the equity issue that considers the vaccination dis- 

ribution or the balance between efficiency and equity deserves 

urther study. 
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ppendix. Basic strategy of NSGA-II 

The random strategy to establish replenishment and inventory 

lans is shown in Algorithm 7 . 

lgorithm 7 Determine the replenishment quantity without the 

ynamic programming method. 

1: for k = 1 , 2 ..., | K| , do 

2: for t 1 = 1 , 2 ..., | T | , do 

3: Randomly generate z kt from [ A, B ] , where A = max { 0 , L kt −
I k,t−1 + max { 0 , L k,t+1 − O k } , which represents the replen- 

ishment quantity of vaccines should not less than the de- 

mands. B = min { ∑ | T | 
τ= t L kτ − I k,t−1 , (V kt + L kt − I k,t−1 ) , O k } ,

which represent the limits of maximum replenishment 

quantity and inventory quantity. 

4: Calculate the inventory quantity I kt by constraints (6). 

5: Verity whether z kt and I kt exceed the limits of replenish- 

ment and inventory quantity. If yes, go back to step 3; 

otherwise, get the values of z kt and I kt . 

6: end for 

7: end for 
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