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Abstract

The mechanistic pathways linking genetic polymorphisms and complex disease traits remain 

largely uncharacterized. At the same time, expansive new transcriptome data resources offer 

unprecedented opportunity to unravel the mechanistic underpinnings of complex disease 

associations. Two-stage strategies involving conditioning on a single, penalized regression 

imputation for transcriptome association analysis have been described for cross-sectional traits. 

In this manuscript, we propose an alternative two-stage approach based on stochastic regression 

imputation that additionally incorporates error in the predictive model. Application of a bootstrap 

procedure offers flexibility when a closed form predictive distribution is not available. The 

two-stage strategy is also generalized to longitudinally measured traits, using a linear mixed 

effects modeling framework and a composite test statistic to evaluate whether the genetic 

component of gene-level expression modifies the biomarker trajectory over time. Simulations 

studies are performed to evaluate relative performance with respect to type-1 error rates, coverage, 

estimation error, and power under a range of conditions. A case study is presented to investigate 

the association between whole blood expression for each of five inflammasome genes with 

inflammatory response over time after endotoxin challenge.
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1 Introduction

Transcriptome-wide association studies (TWAS) aim to unravel the mechanisms of 

association between genotypes and complex traits, and specifically to characterize the 

mediating roles of cell and tissue-specific gene expression. While genome-wide association 

studies (GWAS) generally reveal a multitude of single-nucleotide polymorphism (SNP) 

and gene-level associations with complex traits, the mechanistic underpinnings of a large 

majority of these associations remain uncharacterized. An overarching analytic challenge in 

this setting arises from the fact that GWAS include data on genotypes and traits but do not 

typically involve the collection of transcriptome data. At the same time, the emergence of 

several independent and expansive transcriptome data resources that include data on both 

genotype and gene expression offer a new opportunity for interrogating the mediating role of 

gene expression.

Recent studies describe approaches for analyzing cross-sectional traits in this setting using 

single regression imputation.1-4 Briefly, this involves: (i) application of penalized regression 

to arrive a model between genotype and expression; (ii) predicting unobserved expression 

based on this model in a distinct data resource; and (iii) evaluating association between 

predicted expression and the observed trait. Further extensions allow for consideration of 

meta-analysis summary statistics1,4,5 and include methods for multiple tissue eQTLs.6-9 

While single imputation is a reasonable strategy, extensive statistical and epidemiological 

literature favors the application of multiple imputation for missing data, specifically, 

emphasizing the importance of accounting for error in prediction.10-20

In this article, we consider a multiple stochastic regression imputation (mSRI) approach for 

integrated transcriptome analysis of both cross-sectional and longitudinal traits. Similar to 

single regression imputation, this approach accounts for features being measured on distinct 

samples of individuals across data resources, while mSRI also accounts for uncertainty 

in prediction. Statistical inference is performed based on asymptotic normal theory and 

multiple imputations. A case study is presented to examine the associations between whole 

blood (WB) expression for five inflammasome genes and non-linear biomarker response 

over time during endotoxin challenge. We consider data arising from the Genetics of Evoked 

Response to Niacin and Endotoxemia (GENE) study, an NIH-sponsored investigation of the 

genomics of inflammatory and metabolic responses during low-grade endotoxemia,21-26 and 

independently generated transcriptome data from the Genotype-Tissue Expression (GTEx) 

Program.27 Simulation studies are provided to illustrate power, coverage, estimation error 

and type-1 error rates under a range of conditions.

2 Material and methods

2.1 Model

Let YT = (y1
T, …, yN

T ) where yiT = (yi1, …, yiT ) denotes the T × 1 vector of responses for 

subject i, i = 1, … , N. Further suppose for each subject i: Xi is a T × q design matrix for 

expression of q expression values across T time points, where expression is measured on one 

or more genes and/or cell or tissue types; zi is an s × 1 column vector of SNPs; Wi is a T × 

p design matrix for time, encoding p−1 basis functions for a polynomial, spline, or similar 
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smooth fit over time and a column of 1’s corresponding to an intercept term; and Ui is a T × 

p* design matrix for the random effects. Note that we remove the notational dependency of 

T on subject i for simplicity of presentation.

To begin, we let Ui = 1T to include only random intercepts for each individual and 

consider a single gene expression at baseline so that Xi = 1T xi where xi is a scalar 

observation of expression. Finally, we assume that the trait and expression values are 

normally distributed after appropriate transformation. In this case, we have the following 

two models of association

yi = [ Wi Vixi ] β
γ + Uibi + εi (1)

xi = f(zi) + δi (2)

where f(·) is a fixed and known function, bi, ∼i.i.d. MVN(0, Σb), εi ∼i.i.d. MVN(0, Σε), 

δi ∼i.i.d. Normal(0, σδ
2), bi⊥εi and all subjects independent of each other. In the examples 

provided below, we let the components of Wi be natural spline basis functions for time, 

inclusive of an intercept. Two treatments of Vi are considered: one represents the full model 

and includes all time by expression interactions, given by Vi = Wi; the second represents the 

reduced model with just a main effect for expression is represented by setting Vi equal to a 

column of 1’s.

Two distinct data resources are available. For n1 subjects in the first data set, yi and zi are 

observed, as well as the design matrices, Wi, Vi, and Ui, while xi is unobserved. For the 

n2 subjects in the second data set, xi and zi are observed, while yi is unobserved. Here 

N = n1 + n2, i.e. all subjects are in either the first or second data set. The observed data 

are represented by: {(yi, Wi, Vi, Ui, zi)i∈[1,n1], (xi′, zi′)i′∈[n1+1,N]}. Two-stage estimation 

involves first fitting the model of equation (2) using the observed data from data set 2, 

{(xi′, zi′)i′∈[n1+1,N]} to arrive at parameter estimates and a corresponding predictive model 

for expression given genotypes. In turn, an imputed expression can be derived based on 

this estimated model, and used in place of the unobserved expression in data set 1. The 

parameter of primary interest for examining the association between gene expression and the 

trait is γ of equation (1).

2.2 Estimation via stochastic regression imputation

In order to address both missing expression values and the uncertainty in prediction, 

we propose mSRI in which imputations represent conditional draws from the predictive 

distribution of plausible values.28,29 A draw from the predictive distribution includes the 

mean imputation component as well as a stochastic component given by a random normal 

deviate with mean 0 and variance equal to the predictive variance of the fitted values from 

the stage 1 model fit. Formally, we let f( ⋅ ) be an estimate of the mean component f(·) in 

equation (2) and define xi ∣ zi = f(zi) + δ i for i ∈ [1, n1], where δ i ∼ N(0, ζi ∣ zi) and ζi∣zi is 

the variance of f(zi). In the second stage, we replace xi with xi ∣ zi for i ∈ [1, n1] to fit the 
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model of equation (1) and denote the resulting estimate of γ by γSRI. Multiple draws from 

the predictive distribution yields multiple estimates, γSRI
(1) , …, γSRI

(B) , where B is the number 

of draws. In turn, these parameter estimates can be combined and evaluated using multiple 

imputation strategies,28,29 as described in more detail below. First, we consider derivations 

of the predictive distribution used for imputation.

The particular functional form of f(·) in equation (2) will determine the predictive 

distribution from which xi ∣ zi is drawn. To begin, consider the usual linear model, given 

by

f(zi) = ziTα (3)

and the corresponding least squares estimator f(zi) = ziTα, where 

α = (∑i = 1
n2 ziTzi)−1(∑i = 1

n2 ziTxi). In this case, it is straightforward to show the predictive 

variance for a fitted value with z = z* is given by30

ζ i ∣ z∗ = σδ
2 1

n2
+ (z∗ − z)T(z∗ − z)

∑i′ = n1 + 1
N (zi′ − z)T(zi′ − z)

(4)

More generally, in order to accommodate a large number of potentially correlated SNPs, an 

alternative penalized regression approach, such as Least Absolute Shrinkage and Selection 

Operator (LASSO),31 Elastic Net32 or Ridge Regression,33 can be used to fit the linear 

model of equations (2) and (3). In the case of ridge regression, a closed-form estimate of 

α is given by α = (∑i = 1
n2 ziTzi + λIs)−1(∑i = 1

n2 ziTxi), where λ is the penalty parameter, and 

the predictive variance conditional on λ can therefore be derived analytically; however, a 

closed-form solution to minimizing the objective function in LASSO and elastic net is not 

generally available. In this case, a bootstrap approach can be used to generate the predictive 

distribution.

The bootstrap procedure includes repeatedly sampling with replacement n2 pairs from data 

set 2, (xi′, zi′)i′∈[n1+1,N] and fitting the model of equation (2). Repeating this B times, where 

B is a large number, results in a sample of parameter estimates, α(1), …, α(B). In turn, each of 

these estimates can be used to yield a predicted expression for each individual in data set 1, 

given by xi ∣ zi
(1) , … , xi ∣ zi

(B)  for i ∈ [1, n1] and corresponding estimates of the coefficients for 

expression, γSRI
(1) , … , γSRI

(B) . For computational efficiency, the bootstrap can be combined with 

the multiple imputation approach described above. In this case, each iteration involves both 

sampling n2 pairs from (xi′, zi′)i′∈[n1+1,N] and drawing n1 stochastic components based on 

the predictive variance. A step-by-step summary of the approach is provided below.
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2.3 Statistical inference

A special case of the model of equation (1) is the univariate or cross-sectional setting, in 

which yiT = yi and Vi = Ui = 1 are scalars, the design matrix for time, Wi, is a column of 1’s 

for the intercept, and bi + ϵi is replaced with a single measurement error term. In this case, 

the parameter of interest, γ, will also be a scalar, and we can apply well-established multiple 

imputation techniques for computing a combined estimate across multiply imputed data sets 

and making inference based on the t-distribution.28 Briefly, a combined test statistic is given 

by

TmSRI = γ̄B

W B + (B + 1
B )V B

(5)

where γ̄B = 1
B ∑b = 1

B γb, W B = 1
B ∑b = 1

B var(γb) is the average of the within imputation 

variance of the estimate of γ, and V B = 1
B − 1 ∑b = 1

B (γb − γ̄B)2 is the between imputation 

variance of the estimates of γ. It can be shown that TmSRI has a t-distribution with degrees 

of freedom given by

r = (B − 1) 1 + 1
1 + B

W B
V B

2
(6)

For the longitudinal setting, we propose a composite Wald test statistic for null hypothesis of 

no expression effect, H0 : γ = 0, given by

R = γTS−1γ (7)

where S is the variance-covariance matrix of γ. To test the null of no time by expression 

interaction, we replace γ with γ[ − 1], defined as γ without the first element, i.e. the vector 

of all coefficients for interactions between expression and the basis elements for time. 

Asymptotic theory tells us that in large sample settings, the statistic R has a central χ2 

distribution with p degrees of freedom where p is the number of elements of γ. Moreover, 

the Wald statistic is asymptotically equivalent to a likelihood ratio test statistic comparing 

the full model of equation (1) to a reduced model with γ = 0.

For each of the estimates γSRI
(1) , … , γSRI

(B) , a corresponding Wald test statistic can be 

generated. Let these be denoted RSRI
(1) , … , RSRI

(B) , respectively. Methods for combining 

multiply imputed χ2-test statistics generated via bootstrap for hypothesis testing are 

described in Little and Rubin28 and Kim-Hung et al.34 and involve calculating the pooled 

estimate

Rpool = R̄p−1 − B + 1
B − 1s ∕ (1 + s) (8)

where s , the sample variance of RSRI
(b)  times (1 + B−1), is given by
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s = 1 + 1
B

1
B − 1 ∑

b = 1

B
RSRI

(b) − RSRI
2

(9)

and R̄ is the sample mean. The reference distribution for Rpool is χp2 ∕ p as B → ∞, and in 

finite samples, we make inference assuming an F distribution on p and p−3/Bw degrees of 

freedom where w = (B − 1)[1 + s−1]2.34

2.4 Summary approach

A step-by-step summary of the mSRi approach for integrated transcriptome association 

analysis is given below.

1. Determine the functional form of f(·) in equation (2) relating genotype to 

expression.

Repeat steps 2–4 for b = 1, … , B:

2. Derive a predicted expression, xi ∣ zi, for each individual in data set 1 by either:

a. Drawing from a closed form predictive distribution: Let xi ∣ zi = ziα + δ i

for i ∈ [1, n1], where δ i ∼ N(0, ζi ∣ zi) and ζi∣zi is defined as the 

predictive variance, for example equation (4) for the simple linear 

regression setting; OR

b. Bootstrapping to arrive at a sample from the predictive distribution: 

Sample with replacement n2 pairs (xi′, zi′) from data set 2 and let 

xi ∣ zi = f(zi ∣ b) where f( ⋅ ∣ b) is the estimate of f(·) from the bootstrap 

sample.

3. Fit the model of equation (1), replacing the unobserved expression, xi, with the 

stochastic regression imputed xi ∣ zi from step 2.

4. Record:

a. the expression coefficient estimate γ;

b. the corresponding variance-covariance matrix S; and

c. in the case of longitudinal data, the composite test statistic R of 

equation (7).

5. Calculate the pooled test statistic of equation (5) (for the univariate setting) 

or equation (8) (for the longitudinal setting), and compare to the associated 

distribution to arrive at a corresponding p-value.
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3 Examples

3.1 Simulation study

A simulation study is performed to evaluate estimation error, type-1 error rates and power 

under a range of plausible conditions. To begin, we consider the setting in which a single 

SNP with minor allele frequency = 0.20 is assumed to have an additive association with 

expression, represented by the parameter α. We further assume an association between 

expression and a cross-sectional trait, represented by the parameter γ. In both cases, linear 

models are assumed with variance parameters given by σδ
2 and σϵ2, respectively. Sample sizes 

are set equal to n1 = 175 for the GWAS study and n2 = 450 for the TWAS study, 1000 

simulations are performed per condition, and 40 bootstrapped samples are used for the mSRI 

approach. We refer to the complete null as the situation in which there exists no association 

between the SNP and expression nor an association between expression at the trait (α/σδ = 

0 and γ/σε = 0, respectively). Coverage is the proportion of 95% confidence intervals that 

cover the true parameter value used for the simulation. Under the complete null, coverage is 

equal to one minus the type-1 error rate. Finally, estimation error is defined as the difference 

between the estimated parameter, γ , for association between expression and the trait and 

the true value used for the simulation. The expectation of this quantity is the bias in the 

estimator.

Simulation results under the simple (partial) null of no association between SNP and 

expression for a range of expression-trait effect sizes are provided in Figure 1. Here we 

see that under the complete null (both effect sizes = 0), conditional mean imputation 

(CMI) has appropriate type-1 error control (nominal level of 0.05) and coverage while 

mSRI is conservative with an error rate of 0 and coverage of 100% (Figure 1(a)). For 

increasing effect sizes, CMI continues to exhibit approximate control of type-1 error rates 

while coverage based on 95% confidence intervals declines to 91% for larger expression-

trait association effects. mSRI, on the other hand, is consistently conservative for both 

type-1 error and coverage. Estimation error is substantial in both cases, with slightly larger 

variability for CMI compared to mSRI (Figure 1(b)). These results suggest that inference 

will largely be correct under the null for both CMI and mSRI, with higher, though generally 

acceptable, error rates for CMI. In both cases, the estimated effect sizes should be viewed 

with caution. Moreover, confidence interval estimates are conservative for mSRI but do not 

provide appropriate coverage with CMI.

Power for a range of alternative effect sizes for the expression-trait association is provided 

in Figure 2. For moderate SNP-trait association effects (Figure 2(b) and (c); α/σδ = 0.6 

and 0.8), estimated power is greater for mSRI compared to CMI across all ranges of the 

expression-trait association effects (γ/σε = 0.2–1.2). For a smaller SNP-trait association 

effect (Figure 2(a); α/σδ = 0.2), CMI has slightly higher estimated power than mSRI for 

small expression-trait association effects (γ/σε = 0.2–0.4), and overall the differential in 

power is smaller. Coverage is consistently lower for CMI compared to mSRI, and again 

decreases to lower than one minus the nominal level for CMI as the expression-trait 

association increases. The impact of model misspecification with respect to the error 

distribution for expression and the trait is also illustrated in Figure 3 under a moderate SNP-
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expression effect (α/σδ = 0.6). Power of CMI is notably greater than mSRI in the context 

of misspecification of the expression distribution (Figure 3(a)), while a corresponding 

differential in type-1 error (0.063 and 0.024 for CMI and mSRI, respectively) is also 

observed. Coverage based on 95% confidence intervals range from 0.975 to 0.992 for mSRI 

and from 0.895 to 0.940 for CMI. In the context of misspecification of the trait distribution, 

the results are more similar to those observed under correct specification, with a consistent 

and expected decrease in power for both CMI and mSRI.

Two additional simulations are performed based on the inflammasome gene SNPs associated 

with WB IL1RN expression (rs3917296, rs315952, and rs55910638) and WB Caspase 1 

(CASP1) expression (rs3917365, rs3917243, rs3917296, rs3181052, and rs55910638) in the 

case study below. In these simulations, we sample with replacement from the genotype 

data observed in the GENE study and GTEx project, preserving within individual links, 

to achieve corresponding sample sizes of n1 = 175; 400 and n2 = 450; 650. Assumed 

SNP-expression effect estimates are based on fitting a linear model and given by −0.277, 

−0.164 and −0.205, respectively, with residual standard deviation given by σδ = 1.514 for 

IL1RN expression and 0.160, −0.096, −0.228, −0.109, and −0.161 respectively, with residual 

standard deviation given by σδ = 1.262 for CASP1 expression. Type-1 error, power and 

coverage are provided in Figures 4 and 5. The results for sample sizes of n1 = 175 and n2 = 

450 (Figures 4(a) and (c) and 5(a) and (c)) are fairly consistent with the previous findings for 

small SNP-expression associations. The power differential between mSRI and CMI becomes 

more pronounced for the larger SNP-expression sample size of n2 = 650 (Figures 4(b) and 

(d) and 5(b) and (d)). Power increases for both approaches as the expression-trait sample 

size increases to n1 = 300; however, coverage for CMI declines more significantly to less 

than 90%. We also note that the results for the two genes investigated are fairly consistent.

3.2 Case study: Inflammasome gene expression and evoked inflammatory response

As activation of innate immunity is a fundamental pathophysiological process in 

cardiometabolic disease and complex inflammatory disorders, our understanding of the 

genetic underpinnings of these evoked inflammatory biomarkers provides clinically relevant 

impact toward development of novel prognostic markers and therapeutic targets in complex 

diseases. In this report, we consider data arising from the Genetics of Evoked Response to 

Niacin and Endotoxemia (GENE) study, an NIH-sponsored investigation of the genomics of 

inflammatory and metabolic responses during low-grade endotoxemia.21-23 A total of 294 

individuals were genotyped at baseline and monitored during a 48 h hospital visit after an 

endotoxin challenge. A subset of n1 = 193 Caucasians are used for analysis. Multiple clinical 

variables including temperature and five plasma biomarkers were recorded repeatedly over 

time in increments of 1 to 12 h. Our application is focused on interleukin-1 receptor agonist 

(IL-1RA) response, which was measured at 0, 1, 2, 4, 6, 12 and 24 h after the endotoxin 

challenge. The NIH-sponsored GTEx data are used for the transciptome reference panel. 

These data include whole-genome sequencing data and RNAseq on WB for 449 donors,27 

and a subset of n2 = 334 Caucasians are used for analysis.

Our interrogation focuses on six inflammasome loci – namely, interleukin 1 receptor type 

1 (IL1R1), interleukin 1 alpha (IL1A), interleukin 1 beta (IL1B), interleukin 1 receptor 
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antagonist (IL1RN), CASP1 and NLR family Pyrin domain containing 1 (NLRP1) – 

to characterize the potential mediating role of WB expression on time-varying IL-1RA 

response to stimulus. We consider 133 typed SNPs within ±5 Kb of the start and stop 

locations of these six genes that are available in both GENE and GTEx. Single mean 

imputation is used to address the small degree of missing SNP data, with implications 

described in the Discussion section below. Each SNP is transformed to have mean 0 and 

standard deviation 1 prior to model fitting, and a log base 2 transformation is applied to 

normalized WB expression. Separate models are fitted for each gene expression via LASSO, 

using the complete set of 133 SNPs, for variable selection. The results subset of SNPs is 

then used for analysis. The implications of using a first stage variable selection are described 

in the Discussion section below. Expression of WB IL1A expression is not considered as it 

is zero inflated and violates the linear model assumptions of equations (1) and (2). Finally, 

the trait IL-1RA is naturally log transformed prior to analysis to meet model assumptions.

The results of applying mSRI to evaluate the association between expression of each 

inflammasome gene and IL-1RA response are given in Tables 1 and 2. A total of 133 

SNPs within six inflammasome genes are used as input into a LASSO analysis and leave-

one-out cross-validation is performed to select the penalty parameter. SNPs with non-zero 

LASSO coefficient estimates for WB expression are reported. Corresponding least squares 

coefficient estimates and associated p-values are provided in Table 1. SNPs that are selected 

as associated with the five WB inflammasome expressions are within four gene regions 

(IL1R1, IL1B, IL1RN, and NRLP1). All SNPs fall within the indicated protein coding gene 

with the exception of rs3917365 which is located within than 1 Kb from the start location of 

IL1B.

For the univariate analysis, the trait is defined as change from baseline to peak IL-1RA value 

and hypothesis testing focuses on the test of whether predicted expression is associated with 

this univariate trait. For the longitudinal analysis, a linear mixed effects modeling framework 

with natural splines is used to model IL-1RA flexibly over time. Knots at times 1, 2, 4, 

5 and 8 with boundaries at 0.5 and 18 are assumed (resulting in six parameters for time), 

and random person-specific intercepts are included in the model. Fixed effects for the six 

interactions between time components and predicted expression are also included. A visual 

display of the observed and model-based predicted IL-1RA trajectories is given in Figure 

6. Predicted lines are based on the model for WB IL1R1 expression with values set equal 

to the 25th and 75th percentiles of observed WB IL1R1 expression in the GTEx data. 

In the context of the longitudinal data, hypothesis testing focuses on whether there is an 

overall interaction between expression and time on the biomarker response. Test statistics 

and corresponding p-values for expression-trait association are given in Table 2. Results 

are based on 40 stochastic regression imputations. This analysis is unable to identify an 

association between genetically predicted expression and change from baseline to peak in 

IL-1RA; however, there is the suggestion of an association between both IL1R1 and NLRP1 

expression (expression × time interaction) and IL-1RA when leveraging the full range of the 

observed biomarker data over time.
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3.3 Some remarks on compute times

One drawback of multiple imputation as compared to a single imputation procedure is the 

associated computational burden. Performance with respect to speed will depend largely on 

the number of imputations, sample size, and model complexity. In Table 3, we report the 

mean central processing unit (CPU) times for computing test statistics and corresponding 

p-values based on CMI and mSRI across 1000 evaluations according to the simulation 

scenario described in Figure 2. The number of bootstrap imputations ranges from 20 to 100, 

and the sample sizes are varied as indicated. Times are reported in second and are based 

on application with a 2.9 GHz Intel Core i7 processor using the microbenchmark() function 

in R. Application of a more complex model fitting approach, such as penalized regression, 

involving a cross-validation procedure, results in a marked increase in computational burden. 

For example, in the data example above, the average CPU time across 1000 evaluations 

for a single fit of LASSO using glmnet() in R with 10-fold cross-validation is 3.9556 

s. The user CPU increases to 139.0149 seconds for a single application of leave-one-out 

cross-validation. Notably, it is straightforward to parallelize these operations, resulting in an 

increase in the overall required CPU, as additional resources are needed to parse the parallel 

jobs, while offering overall savings in clock time.

4 Discussion

In this study, we present an mSRI approach for transcriptome association analysis that 

serves as an alternative to conditional mean imputation. The primary contribution of 

mSRI is that, similar to CMI, it provides a platform for integrating features measured on 

distinct samples of individuals across data resources, while mSRI additionally accounts for 

uncertainty in prediction. We also extend this strategy to evaluate the modifying role of 

predicted expression on non-linear biomarker trajectories. Our simulation studies suggest 

comparable performance of the two approaches with respect to power and type-1 error rates 

under the null of no SNP-expression association (Figure 1(a)), and under relatively small 

SNP-expression association effect sizes (Figure 2(a), Figures 4(b), (d) and Figures 5(b), 

(d)). However, estimated power is greater for mSRI compared to CMI with more moderate 

SNP-expression effects (Figure 2(b) to (d)) and with larger SNP-expression sample sizes 

(Figures 4(b), (d) and Figures 5(b), (d)). Both strategies exhibit increasing deviations in 

effect estimates from the true values as the expression-trait effect size increases (Figure 

1(b)), although this is more pronounced in CMI. Appropriate coverage is achieved under 

a range of alternative models for mSRI, while coverage is lower than one minus the 

confidence level with CMI (Figures 2 to 5). In summary, these results suggest that under 

the correct model specification: (i) both strategies are appropriate for hypothesis testing; (ii) 

mSRI tends to have greater power; (iii) point estimates are not reliable for either strategy; 

(iv) and interval estimates are valid for mSRI but are not valid for CMI.

In the example provided, we used LASSO with leave-one-out cross-validation for variable 

selection prior to applying CMI and mSRI. A first-stage variable selection is one approach 

to addressing the large number of SNPs (133 in our example) and high-degree of 

linkage disequilibrium (LD) typical in TWAS applications. In our data example, this 

resulted in the identification of six SNPs associated with five WB inflammasome gene 
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expressions. The observed cross-talk is expected given the shared influences of these 

genes on inflammation; however, the significance of this result is difficult to evaluate 

given the high degrees of correlation among SNPs and expression profiles. Moreover, 

much of the literature on SNP-expression associations is based on univariate analysis.35 

An alternative penalized regression approach, such as the elastic net,32 or an ensemble 

learner approach, such as random forests,36,37 could also be used at this stage and 

could result in higher predictive performance. Importantly, first-stage variable selection 

introduces an additional layer of prediction error that can be accounted for using the same 

approach described herein. However, the computational burden for multiple imputation 

would be considerable, particularly if using leave-one-out cross-validation as described 

above. Moreover, application of penalized regression with 10-fold cross-validation or other 

perturbations in the data, yields vastly different SNP sets and numbers of SNPs selected 

(results not shown), rendering the results of both CMI and mSRI difficult to interpret. An 

alternative strategy is to first reduce dimensionality using LD pruning38 in order to ensure 

model identifiability as we have described previously.26 Notably, all results based on first 

stage variable selection are valid but need to reported as conditional on the selected SNP set.

In the application presented, we used only typed SNPs, i.e. those that were present on the 

associated array platform, although we do apply a single mean imputation for the small 

amount of missing SNP data in our example. More generally, mSRI can be applied to 1000 

Genomes imputed data, i.e. to SNPs that are imputed based on sequencing information 

on an independent sample of individuals with common ancestry.39 An application of 

CMI to imputed SNP data has been described, for example in Gamazon et al.1 without 

accounting for the associated predictive uncertainty. The proposed mSRI approach could 

be extended to further account for this SNP-level uncertainty, although the computational 

burden associated with repeated application of SNP level imputation would be fairly large. 

Imputing SNPs based on 1000 Genomes data, however, yields as many as 10 times the 

number of imputed SNPs as typed SNPs, and thus accounting for associated error is worthy 

of further consideration.

In this study, we also demonstrate the opportunity for unraveling interactions between 

expression and time on non-linear biomarker trajectories. We derive a composite Wald 

statistic for this setting and use the result of Li et al.40 to combine statistics across 

multiply imputed data sets. Improvements to the approach of Li et al.40 are currently 

being developed (personal communication with Xiao-Li Meng, paper under review) and 

application is straightforward. Finally, we emphasize that the transcriptome association 

approach we describe captures association of the genetic component of expression with the 

trait. Unmeasured confounding and reverse causality are generally concerns relating to the 

non-genetic component of expression and the trait. However, in order to conclude causal 

mediation the SNPs must be “valid” instruments, i.e.: (i) the SNPs must be associated with 

expression; (ii) the SNPs must have no “direct” effect on the trait, i.e. an effect via another 

pathway; and (iii) there must not be confounding between the SNPs and the trait, e.g. by 

population substructure.41,42 Integration with recent methods in causal inference that allow 

for incorporation of some valid and some invalid instruments43-45 is a direction of future 

research. Methods for considering the potential modifying roles of clinical and demographic 

factors on SNP-expression associations, as well as evaluating the transportability between 
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GWAS and TWAS data resources, would also advance the broader applicability of these 

methods.
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Figure 1. 
Simulation results for mSRI and CMI under the null of no SNP-expression association 

for a range of expression-trait effect sizes. Type-1 error is estimated as the proportion of 

simulations for which the test statistic H0: γ = 0 is significant at the 0.05 level. Coverage 

is the proportion of 95% confidence intervals that cover the true parameter value used for 

the simulation – under the complete null, coverage is the same as one minus the type-1 

error rate. Estimation error is defined as the difference between the estimated parameter for 

association between expression and the trait and the true value used for the simulation (=0 

in this example). (a) Power (type-1 error rate) and coverage. (b) Absolute deviation (median 

and IQR).
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Figure 2. 
Estimated power and coverage for mSRI and CMI under a range of alternative effect sizes 

for the SNP-expression and expression-trait associations. Power is the estimated proportion 

of significant tests at the 0.05 level when the effect size is non-zero. Coverage is the 

proportion of 95% confidence intervals that cover the true parameter value used for the 

simulation.

(a) SNP-expression effect size: α/σδ = 0.4. (b) SNP-expression effect size: α/σδ = 0.6. (c) 

SNP-expression effect size: α/σδ = 0.8. (d) SNP-expression effect size: α/σδ = 1.0.
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Figure 3. 
Misspecified models have a moderate SNP-expression effect (α/σδ = 0.6) and the error 

terms are assumed to follow a log normal distribution while normality is assumed in the 

model fitting procedure. (a) Misspecified error distribution for expression, (b) misspecified 

error distribution for the trait.
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Figure 4. 
Simulation results based on three inflammasome gene SNPs (rs3917296, rs315952, 

rs55910638) associated with WB IL1RN expression. Assumed SNP-expression effect 

estimates are −0.277, −0.164 and −0.205, respectively, with residual standard deviation 

given by σδ = 1.514. (a) n1 = 175; n2 = 450, (b) n1 = 175; n2 = 650, (c) n1 = 300; n2 = 450, 

(d) n1 = 175; n2 = 650; SNP-expression effect sizes based on two-times observed estimates.‡

‡In panel (d), effect sizes of all three SNPs are doubled. Genotype data are sampled with 

replacement from the observed data in the GENE study and GTEx project, preserving within 

individual links, to achieve corresponding sample sizes.
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Figure 5. 
Simulation results based on five inflammasome gene SNPs (rs3917365, rs3917243, 

rs3917296, rs3181052, rs55910638) associated with WB CASP1 expression. Assumed SNP-

expression effect estimates are 0.160, −0.096, −0.228, −0.109, and −0.161 respectively, with 

residual standard deviation given by σδ = 1.262. (a) n1 = 175; n2 = 450, (b) n1 = 175; n2 = 

650, (c) n1 = 300; n2 = 450, (d) n1 = 175; n2 = 650; SNP-expression effect sizes based on 

two-times observed estimates.‡

‡In panel (d), effect sizes of all five SNPs are doubled. Genotype data are sampled with 

replacement from the observed data in the GENE study and GTEx project, preserving within 

individual links, to achieve corresponding sample sizes.
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Figure 6. 
Observed and predicted IL-1RA over time by WB IL1R1 expression. A linear mixed effects 

modeling framework with natural splines is used to model IL-1RA flexibly over time. 

Predicted lines are based on the model for WB IL1R1 expression with values set equal to the 

25th and 75th percentiles of observed WB IL1R1 expression in the GTEx data.
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Table 1.

Inflammasome gene SNPs association with WB gene expression.

Coefficient estimates (p) for WB expression

Gene SNP
a chr Coordinate IL1R1 IL1B IL1RN CASP1 NLRP1

intercept 11.284 10.286 12.289 12.343 13.250

IL1R1 rs3917243 2 102774988 · · · −0.096 ·

· · · (0.205) ·

rs3917296 2 102784833 −0.303 · −0.277 −0.228 −0.158

(0.002) · (<0.001) (0.002) (0.020)

IL1B rs3917365 2 113586469 · · · 0.160 ·

· · · (0.023) ·

IL1RN rs3181052 2 113886049 · −0.226 · −0.110 ·

· (0.016) · (0.116) ·

rs315952 2 113890304 · · −0.164 · ·

· · (0.049) · ·

NLRP1 rs55910638 17 5404270 · · −0.205 −0.161 ·

· · (0.014) (0.022) ·

WB: whole blood; IL1R: 1interleukin 1 receptor type 1; IL1B: interleukin 1 beta; IL1RN: interleukin 1 receptor antagonist; CASP1: Caspase 1; 
NLRP1: NLR Family Pyrin Domain Containing 1.

a
A total of 133 SNPs within six inflammasome genes are used as input into the LASSO analysis and leave-one-out cross-validation is performed to 

select the penalty parameter. SNPs with non-zero LASSO coefficient estimates for WB expression are reported.
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Table 2.

WB inflammasome gene expression association with induced biomarker response.

ΔIL-1RA
a

IL-1RA trajectory
b

Coef test stat (tdf) df p- Test stat (χ6
2) p

IL1R1 0.791 1.293 41.40 0.102 14.533 0.024

IL1B −0.284 −0.210 53.06 0.583 2.603 0.857

IL1RN 0.385 1.201 49.82 0.118 5.995 0.424

CASP1 0.367 1.143 51.21 0.129 5.254 0.512

NLRP1 −0.118 −0.010 39.48 0.504 14.533 0.024

IL1R1: 1interleukin 1 receptor type 1; IL1B: interleukin 1 beta; IL1RN: interleukin 1 receptor antagonist; CASP1: Caspase 1; NLRP1: NLR 
Family Pyrin Domain Containing 1; IL-1RA: interleukin 1 receptor antagonist.

a
Univariate analysis based on change from baseline to peak value of IL-1RA.

b
Longitudinal analysis based on repeated measure of IL-1RA. Wald statistic corresponding to test for expression by time interaction. Results 

are based on 40 stochastic regression imputations. Reported statistics correspond to p ∗ Rpool, which are asymptotically χ2 with 6 degrees of 

freedom.
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Table 3.

Computation times
a
 for CMI and mSRI.

mSRI

Sample sizes CMI B = 20 B = 40 B = 60 B = 80 B = 100

n1 = 175; n2 = 450 0.0018 0.0418 0.0860 0.1258 0.1637 0.2153

n1 = 350; n2 = 900 0.0023 0.0467 0.0908 0.1390 0.1833 0.2249

mSRI: multiple stochastic regression imputation; CMI: conditional mean imputation.

a
Times are reported in seconds as the mean across 1000 evaluations using the microbenchmark() function in R. Results are based on application 

with a 2.9 GHz Intel Core i7 processor and the conditions described in the simulation scenarios of Figure 2.
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