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Abstract

Aberrant activation of the RAS family of guanosine triphosphatases (GTPases) is prevalent 

in lung adenocarcinoma, with somatic mutation of KRAS occurring in ~30% of tumors. We 

previously identified somatic mutations and amplifications of the gene encoding RAS family 

GTPase RIT1 in lung adenocarcinomas. To explore the biological pathways regulated by RIT1 

and how they relate to the oncogenic KRAS network, we performed quantitative proteomic, 

phosphoproteomic, and transcriptomic profiling of isogenic lung epithelial cells in which we 

ectopically expressed wild-type or cancer-associated variants of RIT1 and KRAS. We found that 

both mutant KRAS and mutant RIT1 promoted canonical RAS signaling, and that overexpression 

of wild-type RIT1 partially phenocopied oncogenic RIT1 and KRAS, including induction of 

epithelial-to-mesenchymal transition. Our findings suggest that RIT1 protein abundance is a factor 

in its pathogenic function. Therefore, chromosomal amplification of wild-type RIT1 in lung and 

other cancers may be tumorigenic.
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Introduction

The RAS-family GTPase-encoding gene RIT1 was found to harbor somatic mutations in 

lung cancer (1) and myeloid leukemias (2). Disrupted regulation of RAS family genes and 

RAS effector pathways is a predominant feature of many human cancers. In particular, 

somatic mutation of the KRAS proto-oncogene is prevalent in lung adenocarcinoma, where 

KRAS is mutated in up to 30% of tumors. Cancer-associated KRAS variants include G12V 

and Q61H, which alter the normal regulation of KRAS GTPase activity by disrupting 

GTP hydrolysis or reducing the RAS protein’s ability to physically associate with GTPase-

activating proteins (GAPs) (3, 4). This uncontrolled increase in GTP-bound KRAS results 

in heightened downstream cellular signaling through the canonical RAS effector pathways 

RAF–MEK and PI3K–AKT, as well as others. Following the discovery of cancer-associated 

RAS mutations in the 1980s (5, 6), thousands of studies have delineated the critical 

pathways involved in RAS-mediated cellular transformation, metastasis, and metabolism.

Notably, in addition to somatic mutations in cancer, germline RIT1 mutations are found 

in families with Noonan syndrome, a developmental “RAS”-opathy involving altered 

craniofacial morphology and cardiac abnormalities (7), that is caused by germline mutations 

in KRAS itself or other RAS-pathway genes such as SOS1, SOS2, LZTR1, and SHOC2 
(https://omim.org/). In cancer and Noonan syndrome, RIT1 mutations are found in tumors or 

individuals that lack canonical KRAS mutations, suggesting that activated RIT1 may impart 

the same phenotypes conferred by activation of RAS.

Although prior studies have characterized the role of RIT1 in neural development (8) and 

we and others have described the role of mutant RIT1 in cellular transformation (1, 9, 10), 

knowledge of the function of cancer- and Noonan-associated RIT1 variants is relatively 

limited. Unlike in KRAS, mutations in RIT1 are rarely observed near the critical glycine 

residues involved in GTP hydrolysis, which are Gly12/13 in KRAS and Gly30/31 in RIT1. 

Instead, RIT1 mutations occur most frequently near the switch II domain, the region also 

altered by Gln61 mutations in KRAS (Fig. 1A). Gln61 and Gly12/13 mutations in RAS reduce 

association with regulatory GAPs or alter intrinsic hydrolysis rate (11). It is possible these 

differences in mutational spectrum reflect functional differences in regulation of RIT1 and 

KRAS GTPase activity, and no GAPs that regulate RIT1 have been identified to date.

Whereas the regulation of enzymatic activity is thought to be the predominant determinant 

of RAS oncogenic function, both protein abundance and GTP binding may be key to 

RIT1 function. Biochemical assays have established that oncogenic RIT1 variants do 

enhance GTP-bound levels of RIT1 to varying degrees (12, 13). However, the molecular 

consequences of RIT1 switch II domain mutations may additionally be linked to the loss 

of RIT1’s physical interaction with LZTR1, a ubiquitin-conjugating enzyme responsible for 

stimulating degradation of RIT1 (12). Cancer- and Noonan-associated RIT1 variants lose 

the ability to interact with LZTR1 and consequently are highly overexpressed, resulting in 

increased signaling activity through the RAF–MEK pathway (12). Because germline loss-of-

function mutations in LZTR1 result in increased abundance of wild-type RIT1 protein and 

also confer Noonan syndrome, overexpression of RIT1 in the absence of mutation may be 

sufficient to drive altered RIT1 signaling.
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The pathogenic role of increased RIT1 expression in LZTR1-mutant Noonan syndrome 

raises the possibility that wild-type RIT1 overexpression in cancer may also play a 

pathogenic role. Indeed, 7–14% of lung adenocarcinomas (14, 15) harbor amplification 

of the RIT1 gene on 1p21.3 which is typically associated with overexpression of RIT1 
mRNA. Amplification of RIT1 was found in an independent lung adenocarcinoma genomic 

study of samples from the Fudan University Shanghai Cancer Center (16). Focal RIT1 
amplications have also been noted in uterine carcinosarcoma (17), and RIT1 amplification 

and/or overexpression may play a role in hepatocellular carcinoma and endometrial cancer 

(18, 19).

Based on RIT1’s homology to RAS proteins, candidate effectors of RIT1 function have been 

identified (12, 20–22) but no unbiased mapping of downstream RIT1-regulated pathways in 

human cells has been performed to date. Here, we sought to broadly describe the changes 

in the cellular proteome, phosphoproteome, and transcriptome induced by overexpressed 

wild-type RIT1 and by expression of RIT1M90I, a cancer- and Noonan-associated variant, 

and to compare these changes to those induced by expression of wild-type and oncogenic 

KRAS. Because RIT1 mutations occur frequently in lung cancer, we focused this study on 

analysis of RIT1 and KRAS signaling in a human lung epithelial cell line.

Results

Multi-omic profiling of RIT1- and RAS-transformed human lung epithelial cells

Although the cellular signaling regulated by KRAS has been extensively characterized, little 

is known about how RIT1 or its oncogenic variants perturb cellular signaling. To address this 

question in the context of lung cancer, we ectopically expressed either wild-type or variant 

forms of KRAS and RIT1 in AALE cells, which are immortalized, non-transformed human 

lung epithelial cells (23). To confirm the functional activity of each expressed variant, we 

quantified the anchorage-independent growth in soft agar of each isogenic cell line (Fig. 

1B). Expression of wild-type or oncogenic variants of KRAS and RIT1 promoted growth in 

soft agar, confirming the biological activity of each expressed variant (Fig. 1, B and C).

To comprehensively identify the cellular signaling events associated with this phenotypic 

transformation, we profiled each isogenic cell line using both RNA-seq and deep proteome 

and phosphoproteome profiling by liquid chromatography tandem mass spectrometry 

(LC-MS/MS) Fig. 1, D and E). For LC-MS/MS, creation of two overlapping 10-plex 

tandem mass tag (TMT) pools enabled the relative quantification of the proteome and 

the phosphoproteome across replicates of the five isogenic cell lines compared to a vector 

control line (RIT1WT, RIT1M90I, KRASWT, KRASG12V, KRASQ61H; Fig. 1D and fig. S1, A 

to C). In total, 10,131 proteins were identified, 9002 of which were detected and quantified 

in every sample; additionally, 29,140 phosphopeptides were detected, 12,325 of which were 

identified in every sample, enabling comparative analysis across cell lines (tables S1 and S2 

and Data Files S1 and S2).

For transcriptome analysis, RNA sequencing was performed in triplicate for each isogenic 

cell line to a median read-depth per replicate of 70.1 million reads (Fig. 1E, tables 

S3 and S4 and fig. S1D). 12,887 gene transcripts were quantified, including 7,749 
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whose corresponding protein was detected in the LC-MS/MS profiling. We note that no 

compensatory feedback regulation of RIT1 to KRAS expression or vice versa was observed 

(Fig. 1F). Despite relatively low protein expression of KRAS variants in the AALE lines 

(Fig. 1C), the majority of KRAS transcripts in each isogenic cell line corresponded to 

G12V or Q61H variants, respectively, with 84.1% of reads harboring the G12V mutation in 

KRASG12V cells, and 73.3% of reads harboring the Q61H mutation in KRASQ61H cells (Fig. 

1G).

Next, we interrogated the phosphoproteome regulated by KRAS and RIT1. Protein 

phosphorylation is a reversible and dynamic mechanism of intracellular signaling that 

enables rapid intracellular transduction of signals controlling cell proliferation, survival, 

and metabolism. Although RIT1 and KRAS act as GTPase switches, they both additionally 

stimulate activation of cellular protein kinases, such as BRAF, resulting in substantial 

reorganization of the phosphoproteome. Because the stoichiometric ratio of phosphorylated 

to non-phosphorylated proteins is often believed to play an important role in cell 

signaling, we normalized phosphosite abundance to the total protein abundance for each 

phosphoprotein (table S2). Recognizing that in some cases absolute abundance of a 

phospho-peptide may be relevant, non-normalized phosphosite data is also provided (table 

S5).

Global similarity between oncogenic RIT1 and KRAS signaling networks

With our LC-MS/MS proteome profiles, we identified differentially abundant proteins in 

each condition compared to the vector control cells using a two-tailed moderated t-test (Fig. 

2A). One of the top proteins with increased abundance in RIT1WT, RIT1M90I, KRASG12V, 

and KRASQ61H cells was the transcription factor FOSL1 (Fig. 2B), also known as FRA1, a 

basic leucine zipper transcription factor in the FOS family (24). Activation of RAS is known 

to promote transcriptional upregulation and protein stabilization of FOSL1 (25, 26). Western 

blot of independently-derived AALE isogenic lines confirmed greater abundance of FOSL1 

in RIT1WT, RIT1M90I, and KRASG12V cells compared to vector expressing cells (Fig. 2B). 

Consistent with FOSL1 upregulation downstream of the MAPK pathway, analysis of our 

previous L1000 mRNA profiling dataset revealed common regulation of FOSL1 by RIT1, 

KRAS, and other RAS pathway oncogenes ARAF, BRAF, EGFR, and NRAS, but not other 

oncogenes such as MYC, MDM2, or NFE2L2 (fig. S2A).

Among the top proteins with decreased abundance in RIT1M90I, KRASG12V, and 

KRASQ61H cells was TXNIP, an inhibitor of thioredoxin involved in both redox regulation 

and glucose metabolism (27, 28). Prior studies indicate that HRASG12V suppresses TXNIP 

transcription and protein translation (29, 30). TXNIP abundance was also decreased in 

Western blot analysis of RIT1M90I, KRASG12V, and KRASQ61H cells compared to vector 

control (Fig. 2C). These validation data demonstrate the utility of LC-MS/MS to describe 

protein expression changes and additionally suggest the mechanism of RAS-mediated 

modulation of FOSL1 and TXNIP is shared with RIT1M90I.

Previous studies of steady-state cell lines show that approximately 40% of relative protein 

abundance is explained by mRNA expression levels (31, 32). Similarly, in the stable 

AALE cell lines overexpressing KRAS variants or RIT1M90I, we see a moderate correlation 
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between protein abundance and gene transcript levels (Pearson r = 0.2 to 0.4, Fig. 2D and 

fig. S2B). Correspondingly, many genes which are differentially regulated at the mRNA 

level are also dysregulated at the protein level (Fig. 2E).

As expected, both KRAS variants and, to a lesser degree, wild-type and variant RIT1 

induced KRAS transcriptional signatures (Fig. 2F). To determine whether oncogenic 

RIT1 and KRAS also induced similar phosphoproteomic changes, we performed Kinase-

Substrate Enrichment Analysis (KSEA) (33), which uses kinase-substrate pairings from 

PhosphoSitePlus (34) and NetworKIN (35) to identify differential phosphorylation 

of kinase-substrate families (table S6). This analysis identified ribosomal S6 kinase 

(RPS6KA1), MAPKAPK2, AKT1, and protein kinase C (PRKCA) as top kinases driving 

phosphorylation changes in RIT1M90I and KRASG12V/KRASQ61H cells (fig. S3, A to G, 

and table S5). Substrates of Aurora kinase B (fig. S3A to C, and H) and CDK1 and PAK1 

were suppressed in RIT1- and KRAS-variant cells (fig. S3, B and C). Although the total 

phosphorylation of each substrate reflects the balance between kinases and phosphatases 

in the cell, these data suggest that RIT1M90I, like oncogenic KRAS, can activate canonical 

RAS effector pathways.

Wild-type RIT1 overexpression phenocopies RIT1 mutational activation

Calculation of a correlation matrix from the proteome and phosphoproteome data showed 

high correlations of all profiles with the exception of the wild-type KRAS cells. KRASG12V 

and KRASQ61H proteomes and phosphoproteomes were highly correlated with each 

other (proteome r = 0.85 and phosphoproteome r = 0.79; Fig. 3A), and with RIT1WT 

and RIT1M90I cells (r = 0.70–0.80 and 0.72–0.75 for proteome and phosphoproteome, 

respectively; Fig. 3A). In contrast, wild-type KRAS replicates were the most divergent of all 

profiles, showing limited correlation to either the KRAS variant or RIT1 profiles.

A relatively recent study found that RIT1 mutations, including M90I, may function by 

relieving negative regulation of RIT1 by a LZTR1-dependent proteasomal degradation 

mechanism (12). Accordingly, overexpression of wild-type RIT1 should largely phenocopy 

expression of RIT1M90I. Consistent with this idea, RIT1WT cells more closely resembled 

both RIT1M90I (proteome r = 0.49) and KRAS variant cells (proteome r = 0.36–0.48) than 

KRASWT cells (proteome r = 0.19; Fig. 3A). These data highlight a critical divergence 

between KRAS and RIT1: expression of wild-type KRAS is not capable of activating 

downstream oncogenic RAS pathways, whereas expression of wild-type RIT1 in part 

resembles activation of RIT1 or KRAS by mutation. We confirmed this observation in a 

principal component analysis of the transcriptome data, which further revealed a high degree 

of similarity between RIT1WT and RIT1M90I-regulated gene expression (Fig. 3B and table 

S4). Further, of the differentially abundant proteins in RIT1WT cells, 25% were differentialy 

abundant in RIT1M90I cells. In contrast, 7–10% of proteins with altered abundance levels in 

KRASWT cells had differentially altered abundance levels in KRASmut cells (Fig. 3C). In the 

phosphoproteome, unsupervised hierarchical clustering of the phospho-signatures identified 

the RIT1M90I phosphoproteome as most similar to KRASG12V and KRASQ61H phospho-

signatures (fig. S3I), suggesting that RIT1M90I induces similar cellular phosphorylation 

changes as KRAS variants. Additionally, the phosphoproteome signatures of RIT1WT cells 
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clustered more closely than wild-type KRAS to the RIT1M90I, KRASG12V, and KRASQ61H 

phosphoproteome signatures (fig. S3I).

RIT1 promotes an epithelial-to-mesenchymal transition

To further investigate the phenotypic changes conferred by these proteome and 

transcriptome changes, we performed gene set overlap analysis using MSigDB Hallmark 

Pathway gene sets (36) (Fig. 4A). The epithelial-to-mesenchymal transition (EMT) pathway 

was the most significant gene set enriched among up-regulated proteins across all KRAS- 

and RIT1-expressing cells compared to vector control (Fig. 4A). EMT is a cellular 

transdifferentiation process promoted by cell-extrinsic signaling proteins and orchestrated 

by activation of transcription factors such as Twist, Snail, and Zeb family transcription 

factors (37). It has long been observed that oncogenic RAS proteins—including KRAS 

variants—promote EMT, but little is known about the involvement of RIT1 in this process.

Notably, RIT1M90I and, to a lesser degree, wild-type RIT1 were capable of promoting 

expression changes of key EMT markers, including up-regulation of vimentin, N-cadherin, 

and fibronectin, and downregulation of keratin-19 (Fig. 4, B and C, and fig. S4A). Although 

the canonical EMT transcription factors Snail (SNAI1) and Slug (SNAI2) were not detected 

by proteomic analysis, transcriptomic analysis of RIT1M90I cells showed increased activity 

of these EMT transcription factors by transcription factor target enrichment analysis (Fig. 

4D and fig. S4, B and C). Real-time qPCR confirmed induction of vimentin, Snail, and Slug 

by RIT1M90I (Fig. 4E). Quantitative immunofluorescence analysis revealed both RIT1WT 

and RIT1M90I induced vimentin protein expression in AALE cells (Fig. 4, F and G).

To functionally determine if EMT characteristics are present in RIT1-transformed AALE 

cells, we performed a scratch assay to quantify cellular migration. Consistent with a 

functional EMT, wild-type RIT1 and RIT1M90I cells showed enhanced migration, closing 

the scratch wound up to 1.5x and 1.9x faster than vector control cells respectively (Fig. 4, H 

and I). Therefore, we find that both wild-type RIT1 overexpression and RIT1M90I promote 

an EMT phenotype in lung epithelial cells involving increased expression of vimentin and 

increased cellular migration.

Together these data strengthen the notion that oncogenic RIT1 hijacks canonical RAS 

effector pathways to promote tumorigenesis. In addition, these data demonstrate that 

wild-type RIT1 overexpression can induce many of these same processes to a weaker 

degree, supporting a role for protein abundance in regulation of RIT1 activity and RIT1 
amplification/overexpression in contributing to malignant phenotypes.

Discussion

Herein, we described quantitative proteomic, phosphoproteomic, and transcriptomic datasets 

that provide a systems-level view of the RIT1-regulated signaling network in lung epithelial 

cells. These datasets were generated from isogenic human lung epithelial cells to provide a 

physiological view of the consequences of RIT1 activation in the same cellular compartment 

that is involved in lung adenocarcinoma, a tumor type with prevalent mutations in KRAS 
and RIT1. Broadly, we find that proteome and transcriptome signatures from RIT1M90I-

Lo et al. Page 6

Sci Signal. Author manuscript; available in PMC 2022 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



expressing cells partially phenocopy those from cells with overexpression of wild-type 

RIT1. This finding lends further support to the notion that oncogenic RIT1 variants function 

at least in part through increasing RIT1 abundance (12). This is in contrast to KRAS, where 

overexpression of wild-type KRAS induces signatures less related to that of oncogenic 

variants KRASG12V and KRASQ61H. The opposing functions of wild-type and variant 

KRAS is consistent with recent evidence suggesting that KRAS functions as a dimer and 

that wild-type KRAS directly inhibits the function of oncogenic KRAS variants via physical 

dimerization (38).

This divergence in the function of wild-type RIT1 and KRAS hints at fundamental 

differences in molecular regulation of each wild-type GTPase. The ability of RIT1 to 

promote downstream RAF/MEK/ERK signaling when aberrantly expressed suggests that 

RIT1 may not be subject to the same tight regulation by GTPase-activating proteins 

(GAPs) that normally keep RAS in an inactive state. Furthermore, these data point to the 

importance of studying wild-type RIT1 amplification and overexpression in cancers. RIT1, 

on chromosome 1q, is frequently amplified in uterine carcinosarcoma, liver hepatocellular 

cancer, cholangiocarcinoma, breast cancer, lung adenocarcinoma, and ovarian cancer (fig. 

S5A) (39). RIT1 mRNA expression is increased in amplified cases, regardless of tissue 

type (fig. S5B), raising the possibility that RIT1 overexpression could play a role in 

tumorigenesis in these cancers.

Although this resource should enable identification of differences between RIT1 and 

KRAS networks, we observe marked similarity between the transcriptional, proteomic and 

phopshoproteomic changes induced by RIT1M90I, KRASG12V, and KRASQ61H. Oncogenic 

RIT1 and KRAS share the ability to activate canonical RAS effector pathways such as those 

involved in regulation of FOSL1 and TXNIP abundance. These cellular signaling changes 

are accompanied by phenotypic changes to the lung epithelial cells including acquisition of 

anchorage-independent growth capability as well as induction of an EMT phenotype with 

enhanced cellular migration and increased mRNA or protein abundance of EMT markers 

vimentin, Snail, and Slug.

Together, these results demonstrate the power of quantitative proteomics and transcriptomics 

to provide global views of oncogene signaling and provide a resource for understanding the 

altered cell signaling potentially underlying Noonan syndrome and cancer.

Materials and Methods

Isogenic cell line generation

Plasmid constructs were cloned using Gateway Technology (Invitrogen/ThermoFisher) 

using pLX301 destination vector (Broad Institute) and pDONR223-RIT1 donor vectors 

previously described(1). Lentivirus was generated by transfection of HEK293T cells 

with packaging and envelope vectors using standard protocols. AALE cells were a kind 

gift from Jesse Boehm (Broad Institute). Isogenic cells were generated by transduction 

of lentivirus generated from pLX317-Renilla luciferase or pLX301-RIT1WT, pLX301-

RIT1M90I, pLX301-KRASWT, pLX301-KRASG12V, or pLX301-KRASQ61H and selection 
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with puromycin. Stable pools of cells were maintained in small airway growth medium 

(Lonza).

Soft agar assay

1×105 cells were suspended in 1 ml of 0.33% select agar in small airway growth medium 

(Lonza) and plated on a bottom layer of 0.5% select agar in the same media in six-well 

dishes. Each cell line was analyzed in triplicate. Colonies were photographed after 3–5 

weeks and quantified using Fiji software.

Transcriptome profiling

Three replicates per cell line were harvested at ~90% confluence (n = 18 total culture 

dishes). Cells were lysed and total RNA was extracted using Direct-zol RNA Miniprep plus 

(Zymo Research). Libraries were constructed using the non-strand-specific poly-A selection 

Illumina TruSeq kit for 50bp paired-end reads. Libraries were pooled and sequenced on 

the Illumina NovaSeq platform (Fred Hutch Genomics Core). Reads were aligned to the 

human reference genome build hg19/GRCh37 using STAR v.2.5.3a (40). Alignments were 

annotated for duplicates and read groups then reordered and indexed using Picard Tools 

v.1.114 (41). Read statistics for each RNA-seq sample were calculated using RSeQC (42). 

Quantification of gene transcripts was performed by the featureCounts program within the 

Subread package (43), using hg19 gene annotations from UCSC. Gene level counts per 

million reads (CPM) and reads per kilobase of transcript mapped reads (RPKM) values were 

calculated with edgeR v.3.22.3 (44), and converted into transcripts per million reads (TPM) 

values with an in-house script. In total, 12,887 genes were identified with average logCPM 

at least 0.1 across all samples. Differential expression analyses comparing KRAS or RIT1 

perturbed cell lines against vector control lines were performed using the R package edgeR 

(44).

High performance liquid chromatography tandem mass spectrometry (LC-MS/MS)

Cells were washed in ice-cold PBS, scraped into PBS, pelleted, and snap frozen in 

liquid nitrogen. The experimental workflow for sample processing, TMT-labeling, peptide 

enrichment, and LC-MS/MS were largely as previously described (45). Briefly, pellets were 

lysed in 200 μl of chilled urea lysis buffer (8 M urea, 75 mM NaCl, 50 mM Tris (pH 

8.0), 1 mM EDTA, 2 μg/ml aprotinin, 10 μg/ml leupeptin, 1 mM PMSF, 1:100 (vol/vol) 

Phosphatase Inhibitor Cocktail 2, 1:100 Phosphatase Inhibitor Cocktail 3, 10 mM NaF, and 

20 μM PUGNAc) for each ~50 mg portion of wet-weight tissue. Lysates were reduced with 

5mM DTT, alkylated with 10 mM IAM, and digestion performed in solution with 1 mAU 

LysC per 50 μg of total protein and trypsin at an enzyme/substrate ratio of 1:49. Reactions 

were quenched with FA and brought to pH = 3 with FA. Peptides were desalted on 200 

mg tC18 SepPak cartridges and dried by vacuum centrifugation. 340 μg of peptides were 

labeled with 10-plex Tandem Mass Tag reagents (TMT10, Fisher Scientific), according to 

manufacturer’s instructions. To enable quantification of peptides across all 12 samples, the 

samples were labeled in sets of 10 across two different TMT10 pools in a crossover design 

with 8 of 12 samples analyzed in both TMT10 pools. A 50/50 mix of both AALE vector 

control lysates was used as an internal reference in both TMT10 runs (fig. S1B).
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Each TMT10-plex was desalted in a 200 mg tC18 SepPak cartridge and fractionated using 

offline HPLC. 5% of each fraction was collected into an HPLC vial for proteome analysis 

by LC-MS/MS. The remaining 95% was processed for phospho-peptide enrichment via 

immobilized metal affinity chromatography (IMAC). IMAC enrichment was performed 

using Ni-NTA Superflow Agarose beads incubated with peptides solubilized in a final 

concentration of 80% MeCN/0.1% TFA. Phospho-enriched peptides were desalted and 

collected into an HPLC vial for analysis by LC-MS/MS.

Online fractionation was performed using a nanoflow Proxeon EASY-nLC 1200 UHPLC 

system (Thermo Fisher Scientific) and separated peptides were analyzed on a benchtop 

Orbitrap Q Exactive Plus mass spectrometer (Thermo Fisher Scientific) equipped with 

a nanoflow ionization source (James A. Hill Instrument Services). In-house packed 

columns (20 cm × 75 μm diameter C18 silica picofrit capillary column; 1.9 μm ReprosIl-

Pur C18-AQ beads, Dr. Maisch GmbH, r119.aq; Picofrit 10 μm tip opening, New 

Objective, PF360-75-10-N-5). Mobile phase flow rate was 200 nL/min, comprised of 3 % 

acetonitrile/0.1 % formic acid (solvent A) and 90 % acetonitrile /0.1 % formic acid (solvent 

B). The 110 min LC-MS/MS method consisted of a 10 min column-equilibration procedure; 

a 20 min sample-loading procedure; and the following gradient profile: (min: % B) 0:2; 

2:6; 85:30; 94:60; 95:90; 100:90; 101:50; 110:50 (the last two steps at 500 nL/min flow 

rate). Data-dependent acquisition was performed using Xcalibur QExactive v2.4 software 

in positive ion mode at a spray voltage of 2.00 kV. MS1 Spectra were measured with a 

resolution of 70,000, an AGC target of 3e6 and a mass range from 300 to 1800 m/z. Up 

to 12 MS/MS spectra per duty cycle were triggered at a resolution of 35,000, an AGC 

target of 5e4, an isolation window of 0.7 m/z, a maximum ion time of 120 msec, and 

normalized collision energy of 30. Peptides that triggered MS/MS scans were dynamically 

excluded from further MS/MS scans for 20 sec. Charge state screening was enabled to reject 

precursor charge states that were unassigned, 1, or >6. Peptide match was set to preferred for 

monoisotopic precursor mass assignment.

Protein-peptide identification, phosphosite localization, and quantification

MS data was interpreted using the Spectrum Mill software package v6.0 pre-release (Agilent 

Technologies). MS/MS spectra were merged if they were acquired within +/− 45 sec of 

each other with the same precursor m/z. Also, MS/MS spectra that did not have a sequence 

tag length > 0 (meaning, minimum of two masses separated by the in chain mass of an 

amino acid) or did not have a precursor MH+ in the range of 750–6000 were excluded 

from searching. MS/MS spectra searches were performed against a concatenated UniProt 

human reference proteome sequence database containing 58,929 human proteins including 

isoforms (obtained 10/17/2014) and 150 additional common laboratory contaminants. 

ESI-QEXACTIVE-HCD-3 scoring parameters were used for both whole proteome and 

phosphoproteome datasets. Spectra were allowed +/− 20 ppm mass tolerance for precursor 

as well as product ions, 30% minimum matched peak intensity, and “trypsin allow P” was 

set as enzyme specificity with up to 4 missed cleavages allowed. Carbamidomethylation at 

cysteine was set as fixed modification together with TMT10 isobaric labels at lysine residues 

(N-termini would be considered regardless if it was TMT labelled). Acetylation of protein 

N-termini andoxidized methionine were set as variable modifications with a precursor 

Lo et al. Page 9

Sci Signal. Author manuscript; available in PMC 2022 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MH+ shift range of −18 to 64 Da for the proteome searches. For the phosphoproteome 

searches the precursor MH+ shift range was set to 0 to 272 Da and variable modifications 

of phosphorylation of serine, threonine, and tyrosine. Identities interpreted for individual 

spectra were automatically designated as confidently assigned using the Spectrum Mill 

autovalidation module to use target-decoy based false discovery rate (FDR) estimates to 

apply score threshold criteria. For the whole proteome datasets, thresholding was done 

at the spectral (< 1.2%) and protein levels (< 0.1%). For the phosphoproteome datasets, 

thresholding was done at the spectral (< 1.2%) and phosphosite levels (< 1.0%).

Replicates across TMT-plexes were highly correlated (fig. S1C) with median Pearson r 
= 0.87 and 0.69 for proteome and phosphoproteome, respectively. Technical replicates 

and biological replicates were merged to generate final total proteome and phospho-

proteome profiles for each isogenic cell line (tables S1 and S2). Replicate-level profiles 

are also supplied as JavaScript Object Notation (.json) files that can be visualized 

and analyzed using the Morpheus Matrix Visualization and Analysis Software at https://

software.broadinstitute.org/morpheus (Data Files S1 and S2). Differential protein and 

phospho-site signatures were generated by computing the mean log2(fold change) of the 

abundance of each site in each sample compared to the vector control cells. Statistical 

significance of differentially abundant proteins and phosphosites was determined by 

performing a one sample moderated t-test with multiple hypothesis correction (tables S1 

and S2).

Integrative Proteome and Transcriptome Analysis

Correlation of changes in protein expression and changes in RNA expression was modeled 

with a linear model. 95% prediction intervals were calculated to highlight genes with 

weak concordance between protein and RNA expression. Differentially expressed transcripts 

were determined by filtering edgeR results (described above) to transcripts with |log2Fold-

Change| > 1 and FDR < 0.05. Differentially abundant proteins were determined by filtering 

to proteins with |log2Fold-Change | > 1 and adjusted P-value < 0.05.

Gene Set Enrichment Analysis

Analysis of enrichment of KRAS signaling in differential RNA expression profiles was 

performed in R with GOseq (46). KRAS signaling gene sets were taken from MSigDB 

hallmark gene sets (36, 47).

Transcription factor target enrichment analysis

Analysis of over-representation of transcription factor targets was performed with ChIP-X 

Enrichment Analysis 3 (ChEA3) by submitting lists of differentially expressed genes (|

log2Fold-Change| > 1 and FDR < 0.05). ChEA3 performs Fisher’s Exact Tests to compare 

the input gene set to transcription factor target gene sets in six different libraries (48). 

Analysis of the Enrichr Queries library was selected as the focus of the present study. 

Transcription factors resulting from this analysis were manually annotated as one of three 

groups of EMT association. These groups were: (i) confirmed EMT genes defined by 

dbEMT(49), (ii) genes shown to be associated with EMT in at least one study in literature, 

and (iii) genes unrelated to EMT.
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Antibodies and immunoblotting

Antibodies against FOSL1 (D80B4), TXNIP (D5F3E), and Vimentin (D21H3) were 

purchased from Cell Signaling Technology. Vinculin (V9264) was purchased from Sigma 

Aldrich. Secondary antibodies StarBright Blue 700 goat anti-rabbit IgG, StarBright Blue 

520 goat anti-rabbit IgG and StarBright Blue 520 Goat anti-Mouse IgG (12005867) were 

purchased from Bio-Rad. Antibody against RIT1 (#53720) was purchased from Abcam. 

Cell lysates were prepared in RTK lysis buffer with protease (11836153001, Roche) and 

phosphatase (04906837001, Roche) inhibitors added and quantified by the BCA assay 

(Thermo Scientific). Samples were then boiled in Laemmli buffer (1610747, Bio-Rad) and 

50 μg of protein was loaded onto 4–15% Mini-Protean TGX (4561084, Bio-Rad) gels. 

Protein gels were run and transferred to PVDF membranes (1704274, Bio-Rad) according 

to manufacturer’s instructions. Proteins were detected by specific primary antibody and 

secondary antibody then visualized using the ChemiDoc MP Imaging System (Bio-Rad) or 

Odyssey Imager (Li-Cor).

KSEA analysis

Kinase-substrate enrichment analysis (KSEA) (50) was performed using the KSEA 

App (33) (https://casecpb.shinyapps.io/ksea/) using kinase-substrate mappings from 

PhosphoSitePlus(34) and a P value threshold of < 0.05. A minimum of five detected 

phospho-site substrates were needed for kinases to be included in the analysis. The full list 

of kinase scores and number of substrates are shown in table S6. 36 kinases had sufficient 

substrate sites detected to be included in the analysis. Kinase-substrate mappings are shown 

in table S6.

Scratch assay

Cells were seeded in 96-well ImageLock plates (Sartorius) at a concentration of 46,000 

cells/well. The cells were then incubated overnight in SAGM media without EGF (Lonza). 

After incubation, with the cells forming a monolayer, a scratch wound is made using 

the 96-well WoundMaker tool (Sartorius). Plate was imaged every hour for 13 hours and 

analyzed using the IncuCyte ZOOM v2016A (Sartorius). Further analysis was performed in 

GraphPad Prism v9 using multiple comparison two-tailed t-tests and reporting q values.

qRT-PCR

Extracted RNA for each biological replicate of the 6 cell lines were used to generate cDNA 

by reverse transcription with the SuperScript IV First-Strand Synthesis kit (Invitrogen). 

Quantitative RT-PCR reactions were set up in technical triplicates using the Taqman 

Gene Expression Master Mix (Thermo Fisher) and a TaqMan Gene Expression Assay 

for a reference gene, 18S (Hs99999901_s1), as well as for each gene of interest: 

VIM (Hs00958111_m1), SNAI1 (Hs00195591_m1), and SNAI2 (Hs00161904_m1). PCR 

reactions were performed and gene expression quantified using the CFX384 Real-Time 

System (Bio-Rad). Relative gene expression was calculated by the Livak method using an 

in-house script.
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Immunofluorescence

For immunofluorescence detection of Vimentin, 2.5 × 105 AALE stable cells (passage 

5) were plated in triplicate on 4-well Nunc Lab-Tek II CC2 chamber slides and allowed 

to adhere overnight at 37°C and 5% CO2. The next day, media was aspirated and cells 

were washed once with PBS, then fixed with 4% paraformaldehyde in PBS for 10 min 

at room temperature. Cells were then washed twice with ice cold PBS and permeabilized 

with 0.25% Triton-X-100 for 10 minutes followed by three washes with PBS. Cells were 

blocked with 10% normal goat serum (Thermo Fisher Scientific) in PBS with 0.1% Tween 

20 (PBST) followed by overnight incubation at 4 °C with vimentin rabbit antibody (D21H3 

XP® monoclonal antibody, Cell Signaling #5741, 1:1000 dilution) in PBST. The next day, 

cells were washed with PBST three times for 5 min then incubated with Alexa Fluor® 488 

preadsorbed Goat anti-rabbit IgG antibody (Abcam #ab150117 at 1:1000 dilution) for 1 

hour at room temperature in the dark. Cells were then washed three times with PBST and 

slides mounted using Vectashield antifade mounting medium with 1.5μg/mL DAPI (Vector 

Laboratories). The slides were sealed with clear nail polish and imaged on a Nikon Eclipse 

E800 microscope with 20X/0.75 NA PlanApo objective using a DAPI filter set (excitation 

wavelength: 330–380 nm; emission wavelength: 435–485) and fixed 300 ms exposure using 

the FITC filter set (excitation wavelength: 460–500 nm; emission wavelength: 510–560 

nm) using a AxioCam HRm camera and AxioVision 40 software v4.8.20. To determine 

the percent of positive cells, images were analyzed using TissueQuest software v7.0.1.139 

(TissueGnostics, Vienna, Austria). Images were segmented using nuclear DAPI fluorescence 

and then a ring mask around nuclei was applied to the vimentin image. The mean 

fluorescence intensity within each masked area was quantified and the percentage of cells 

above a threshold intensity were summarized by the software. Data were analyzed using a 

two-tailed t-test in GraphPad Prism v9, with P < 0.05 considered significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Multi-omic profiling of KRAS- and RIT1-mutant human lung epithelial cells.
(A) Protein alignment of KRAS-4B (Uniprot #P01116-2) and RIT1 Isoform 1 (Uniprot 

#Q92963-1) generated by ClustalW2 (51). Stars indicate the position of the RIT1M90I, 

KRASG12V, and KRASQ61 variants used in this study. Asterisks indicate fully conserved 

residues; colons indicate strongly conserved residues; periods indicate weakly conserved 

residues. (B) Soft agar colony formation assay of isogenic AALE human lung epithelial 

cells. Data shown is of N = 3 wells, representative of 3 independent experiments. ** P < 

0.01, *** P < 0.001, and **** P < 0.0001 by two-tailed t-test against the parental cell data. 
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(C) Western blot confirmation of ectopic expression of FLAG-tagged RIT1 and KRAS in 

isogenic AALE cells using an anti-FLAG antibody. Vinculin was used as a loading control. 

The data shown is representative of N > 3 independent experiments. (D) Workflow for 

the LC-MS/MS–based generation of proteome and phosphoproteome profiles. bRP, basic 

reverse phase chromatography. IMAC, immobilized metal affinity chromatography. (E) 
Workflow for the RNA-seq analysis. (F) mRNA quantification in transcripts per million 

(TPM) showing mean ± SD of RIT1 (left) or KRAS (right) in isogenic AALE cells, N = 

3 RNA-seq libraries per cell line. * P < 0.05 and **** P < 0.0001 by two-tailed Student’s 

t-test compared to vector controls. (G) RNA-seq quantification of variant allele expression. 

Data shown is the percentage of reads at the M90I, G12V, or Q61H mutation site for the 

variant allele or wild-type allele. N = 3 RNA-seq libraries for each isogenic AALE cell line.
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Figure 2. Quantitative proteomic and transcriptomic profiling identifies similarity of oncogenic 
RIT1 and KRAS signaling.
(A) Volcano plots of global proteome data from isogenic AALE cells showing the Log2Fold-

Change in protein abundance in each cell line compared to vector control cells. The 

y-axis displays the negative Log10(P-value) calculated from a one sample moderated t-test 

with multiple hypothesis correction by the Benjamini-Hochberg method. Data shown are 

generated from 2 to 4 technical LC-MS/MS replicates per cell line generated from N=2 

biological replicates per cell line. (B and C) Western blotting of FOSL1 (B) and TXNIP 
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(C) protein abundance in RIT1-variant and KRAS-variant AALE cells. Quantification 

of N = 4 (B) and 5 (C) independent experiments alongside a representative blot for 

each. * P < 0.05, compared to vector condition, by two-tailed t-test. (D) Global proteome-

transcriptome correlation analysis for RIT1-variant and KRAS-variant AALE cell lines. 

Gray dashed line indicates linear regression between Log2Fold-Change of mRNA to 

respective Log2Fold-Change of protein. Red denotes genes outside the 95% prediction 

interval. r = Pearson correlation coefficient. Data shown are generated from 2 to 4 technical 

LC-MS/MS replicates per cell line generated from N=2 biological replicates per cell line. 

N = 3 RNA-seq replicates for each isogenic cell line. (E) In RIT1- or KRAS-expressing 

AALE cell lines compared to vector control AALE cells, the proportion of genes that are 

differentially expressed at the mRNA level (log2Fold-Change > 1, FDR < 0.05) which are 

also differentially abundant at the protein level (log2Fold-Change > 1, adjusted P-value 

< 0.05). Number of total differentially expressed mRNA transcripts is shown above the 

bar for each cell line. N is as described in (D). (F) Gene set enrichment analysis of 

differentially expressed gene transcripts between KRAS or RIT1 AALE cell lines and 

vector controls using GOseq (56). mSigDB hallmark gene sets specific to KRAS signaling 

are shown. Circle size = −Log10FDR of enrichment significance determined by GOseq. 

Analysis performed with N = 3 RNA-seq replicates per isogenic cell line.
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Figure 3. Wild-type RIT1 overexpression mimics oncogenic RIT1 activation.
(A) Correlation heatmap showing pairwise correlations of each proteome and 

phosphoproteome replicate to every other replicate. To enable correlation of proteome with 

phosphoproteome, phosphosites were collapsed to the protein level by taking the median 

of all phosphosites for each protein. Rows are Spearman correlation; columns are Pearson 

correlation. Proteome and phosphoproteome data were generated from 2 to 4 technical LC-

MS/MS replicates per cell line generated from N=2 biological replicates per cell line. (B) 
Principal component analysis of RNA-seq data from AALE cells. Circles denote individual 

control vector, RIT1WT, or KRASWT transcriptomes, as labeled; diamonds denote RIT1-

variant or KRAS-variant transcriptomes, as labeled. PC1 explains 96.2% of variance, PC2 

explains 2.16% of variance. N = 3 RNA-seq libraries per cell line. (C) Bar plot showing 

percentage of differentially abundant proteins (|Log2Fold-Change| > 2) in wild-type AALE 

cells that are also differentially abundant in variant AALE cells. Numbers next to bars 

indicate number of proteins represented; N as described in (A).
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Figure 4. Wild-type RIT1 and RIT1M90I promote an epithelial-to-mesenchymal (EMT) 
transition phenotype.
(A) Gene set overlap analysis of up-regulated (“Up”; Log2Fold-Change>2) and down-

regulated (“down”; Log2Fold-Change<−2) proteins in each condition in AALE cells, using 

MSigDB Hallmark Pathways (36). Gene sets sorted by descending average −Log10FDR 

across all conditions. Circle size = −Log10FDR of gene set overlap analysis determined 

by MSigDB. The analysis was based on data generated from 2 to 4 technical LC-MS/MS 

replicates per cell line generated from N=2 biological replicates per cell line. (B) Log2Fold-
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Change in protein abundance of hallmark EMT genes in AALE cells expressing wild-type 

or variant RIT1 or KRAS relative to abundance in cells expressing the control vector. 

Proteins are sorted by average Log2Fold-Change across all conditions. N is as described in 

(A). (C) Log2Fold-Change in protein abundance of N-cadherin (CDH2), fibronectin (FN1), 

and vimentin (VIM) in AALE cells expressing wild-type or variant RIT1 or KRAS. N is 

as described in (A). (D) Transcription factor target enrichment analysis of differentially 

expressed genes in RIT1M90I AALE cells using Enrichr libraries through ChEA3. FET, 

Fisher’s exact test. Analysis performed on N = 3 RNA-seq libraries compared to 3 vector 

controls. Arrows indicate proteins of the Snail family. Black denote confirmed EMT genes 

in dbEMT (49); dark gray denote EMT-associated genes in the literature. (E) Real-time PCR 

of relative Log2Fold-Change of mRNA expression in perturbed AALE cells of vimentin 

(VIM), Snail (SNAI1), and Slug (SNAI2). N=3 biological replicates; * P <0.05 and ** P < 

0.01 by two-tailed t-test. (F) Immunofluorescence of Vimentin stained cells. N=3 biological 

replicates; *** P <0.001 by two-tailed t-test. (G) Representative immunofluorescence 

images of Vimentin stained cells. Scale bar corresponds to 89.1μm. N = 3 replicates per 

cell line. (H) Wound healing scratch assay. Percent wound confluence at hourly time points 

are shown with SEM error bars. N=16 replicates per cell line; data shown is representative of 

N = 3 independent experiments; * P <0.05, ** P <0.01, *** P <0.001, and **** P <0.0001 

by two-tailed t-test each time point, corrected for multiple testing. (I) Representative images 

of wound healing at time of wound making (0 hours) and at end time point (13 hours). Data 

are representative of 3 independent experiments. Scale bar, 300μm.
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