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Abstract

The single-chained sphingolipid sphingosine is an essential structural lipid and signaling 

molecule. Abnormal sphingosine metabolism is observed in several diseases, including cancer, 

diabetes, and Alzheimer’s. Despite its biological importance, there is a lack of tools for detecting 

sphingosine in living cells. This is likely due to the broader challenge of developing highly 

selective and live-cell compatible affinity probes for hydrophobic lipid species. In this work, we 

have developed a small molecule fluorescent turn-on probe for labeling sphingosine in living cells. 

We demonstrate that this probe exhibits a dose-dependent response to sphingosine and is able to 

detect endogenous pools of sphingosine. Using our probe, we successfully detected sphingosine 

accumulation in cells from patients with Niemann–Pick type C1 (NPC1), a lipid transport disorder 

in which increased sphingosine mediates disease progression. This work provides a simple and 

accessible method for the detection of sphingosine and should facilitate study of this critical 

signaling lipid in biology and disease.
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Sphingolipids are a diverse class of lipids defined by their long-chain amino alcohol 

backbones. In eukaryotes, these lipids play essential roles in both membrane structure and 

cell signaling pathways.1 Several sphingolipid species such as ceramides, sphingomyelin, 

glucosylceramide, sphingosine, and sphingosine-1-phosphate have emerged as integral 

signaling molecules in cell proliferation,2 apoptosis,3 migration,4 inflammation,5 and 

intracellular trafficking.6 Due to their central role in cellular function, disruption of 

sphingolipid metabolism can have devastating biological effects. Altered sphingolipid 

levels are associated with several diseases such as diabetes,7 cancer,8 Alzheimer’s,9 

and lysosomal storage diseases.10,11 Because of their biological and clinical importance, 

there is tremendous interest in detecting and quantifying sphingolipids in cells and 

biological samples. Mass spectrometry-based methods are the current standard for detecting 

cellular sphingolipids.12,13 These techniques have made it possible to accurately measure 

the abundance of specific sphingolipids in a wide range of samples but often require 

sophisticated instrumentation and preclude the non-destructive analysis of lipids in living 

cells. Alternatively, fluorescently labeled lipids have been used to indirectly study 

sphingolipid localization in cells but provide no information about endogenous lipid 

concentrations.14,15 Recently, methods have been developed for the live-cell imaging of 

sphingomyelin using fluorescent protein fusions of the sphingomyelin binding protein 

lysenin; however, the extension of this approach to other sphingolipids has been limited.16,17 

Sphingosine (Sph) and sphinganine (Spa) are single-chained sphingolipids which not only 

serve as the backbones of more complex sphingolipids but also have important biological 

signaling activity.18,19 They play essential roles in cellular function and diseases such as 

cancer20 and Niemann–Pick disease type C (NPC).10 Unfortunately, dissecting the exact 

function and behavior of sphingosines in biology and disease has been difficult due to the 

lack of effective techniques for their imaging and detection in live cells. The development 

of such tools is critical for the biological understanding, diagnosis, and treatment of 

sphingolipid-associated diseases.

Sphingosine and sphinganine have unique terminal 1,2-amino alcohol functionality. Recent 

studies have shown that fatty acid salicylaldehyde esters and 1,2-amino alcohols, such as 

those found in Sph and Spa, can react selectively under biological conditions.21,22 We 

hypothesized that a fluorophore ester of salicylaldehyde could be used as a probe for the 

detection of endogenous Sph and Spa. Additionally, this probe could be made fluorogenic 

by functionalizing the salicylaldehyde auxiliary with a fluorescence quencher, diminishing 

the fluorescence of the fluorophore ester. Upon reaction with Sph or Spa, the fluorophore 

would be transferred from the salicylaldehyde scaffold to the sphingolipid base and become 

unquenched due to its decreased proximity to the quencher (Figure 1A).23 In mammalian 

cells, Sph is 10-fold more abundant than Spa and would be the predominant species detected 

by such a probe.24

In designing our probe, we chose Bodipy FL as the fluorophore because its neutral charge 

and lipophilicity enhance cell permeability and partitioning into biological membranes.25 As 

a quencher, we chose Black Hole Quencher-1 (BHQ-1) due to its high quenching efficiency 

at the 509 nm emission maximum of Bodipy FL (Figure S1).26 In previous work, we 

determined that 4-(diethylamino)salicylaldehyde esters provided optimal hydrolytic stability 
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under physiological conditions.21 Therefore, we designed the reactive core of our probe 1 
to include analogous 4-dialkylamino functionality (Figure 1B). Additionally, we synthesized 

a control probe 2, which is identical to 1 except that it lacks the aldehyde necessary for 

selective reaction with terminal 1,2-amino alcohol groups and thus should not react with 

sphingolipid bases in the cell (Figure 1B).21,22 Detailed synthetic procedures for 1 and 2 
are provided in the Supporting Information. Using vesicles to model biological membranes, 

we tested the ability of compounds 1 and 2 to react with Sph and Spa under physiological 

conditions (pH 7.4, 37 °C). We found that 1 showed good stability (<4% hydrolysis over 

24 h) and reacted with both Sph and Spa to form the expected fluorescently labeled lipids 

(Figures S2 and S3). Control probe 2 was stable under these conditions and showed no 

reaction with Sph or Spa over 24 h (Figure S4). To determine if our probe is compatible with 

common cellular lipids, we incubated 1 in vesicles composed of several naturally abundant 

lipid species for 24 h (Figure S5A–S5D).27 Under these conditions, we observed no ligation 

products between 1 and any of the tested lipids, although 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine (POPS) 

did appear to slightly accelerate background hydrolysis of the probe. Additionally, 1 did 

not form ligation products with free cysteine, ethanolamine, cysteamine, or cystamine at a 

concentration (1 mM) exceeding physiological levels,28–30 although some acceleration of 

probe hydrolysis was observed (Figure S5E–H).

Having confirmed the reactivity of 1 toward Sph and Spa, we next quantified the 

fluorescence turn-on of 1 in the presence of these sphingolipid bases and potentially 

competing biomolecules. We found that when 1 (5 μM) was incubated with Sph (0.25 

mM) or Spa (0.25 mM) at 37 °C for 24 h, a 3- and 2.5-fold fluorescent turn-on 

respectively was observed. However, when 1 was incubated with serine (2.50 mM) or 

sphingosine-1-phosphate (Sph1P) (0.25 mM) under the same conditions, there was no 

change in fluorescence intensity as compared to untreated probe 1 (Figure 1C). These 

results agree with previous reports that, in the presence of phospholipid membranes, 

salicylaldehyde-modified lipids are only reactive toward molecules that are both lipophilic 

and contain 1,2-amino alcohol functionality.21 We were particularly encouraged to find that 

1 did not react with Sph1P, which is identical in structure to sphingosine except that the 

primary alcohol is phosphorylated. The selective reaction and turn-on of our probe with Sph 

and Spa in membranes encouraged us to explore the utility of this tool in live cells.

As mentioned, Sph is roughly 10-fold more abundant than Spa in mammalian cells.24 

Therefore, any observed response from probe 1 in live cells is likely attributable to Sph. For 

this reason, we chose to focus on Sph as the main analyte in our studies. To determine if 1 
could react with Sph in live cells, we incubated HeLa cells with 1 (7.5 μM) for 2 h. We then 

exchanged cell media for new media containing varying concentrations of Sph. We found 

that after a 20 h incubation, cells treated with exogenous Sph showed a dose-dependent 

increase in fluorescence (Figure 2A, B). The turn-on of 1 in response to Sph was also 

confirmed in three additional cell lines (Figure S6). To ensure that the observed increase 

in fluorescence was due to the reaction of 1 with Sph, and not a biological effect of the 

added Sph, we performed the same experiment with control probe 2. We found that when 

cells were incubated with 2 (7.5 μM) and then treated with Sph, no significant difference 
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in fluorescence was observed between nontreated cells and those treated with Sph (Figure 

2A and 2C). Furthermore, to confirm that the observed increase in cellular fluorescence 

was the result of the generation of a labeled sphingosine product and not the release of 

free Bodipy FL carboxylic acid (BFL) from 1, we treated cells with the expected Bodipy 

FL-Sph product (3) and BFL (Figure S7A). We found that cells treated with 3 showed a 

membrane fluorescence pattern consistent with that observed in cells treated with 1 and 

sphingosine, while cells treated with BFL showed diffuse fluorescence, which did not stain 

cellular membranes (Figure S7B). These results indicate that 1 reacts with sphingosine in 

living cells to generate Bodipy FL-Sph in a dose-dependent manner.

We next sought to apply this probe to the detection of endogenous levels of sphingosine 

in cells. We treated HeLa cells with 1 or 2 (20 μM) and imaged before and after a 16 h 

incubation. An increase in fluorescence (17.4%) was readily detected in cells treated with 1 
over the course of the experiment (Figure 3A). In contrast, control probe 2 showed only a 

slight increase in fluorescence (4.7%), which was significantly less than probe 1 (Figure 3A, 

B). These results suggested that 1 is sensitive enough to detect native sphingosine in cells 

and may be used for probing differences in the sphingosine levels of cells.

Changes in cellular sphingolipid levels occur in several diseases and often play a functional 

role in disease progression.31–33 Niemann–Pick type C1 (NPC1) is a lysosomal storage 

disorder caused by a mutation in the NPC1 gene, which encodes a large integral membrane 

protein (NPC1).34 The exact function of the NPC1 protein is not known, but when mutated 

in NPC1, it results in the accumulation of several lipids, including sphingosine, which 

plays a key role in promoting the disease phenotype.10 Patients with NPC1 feature a wide 

range of different neurological and systemic symptoms which differ from patient to patient, 

making an accurate diagnosis difficult. Current diagnostic standards include filipin staining 

and DNA sequencing, but these tests are not always confirmative.35 Therefore, a probe for 

detecting increases in cellular sphingosine could be a valuable tool for the diagnosis of 

NPC1 and similar disorders. To test the ability of 1 to detect increased sphingosine in NPC1, 

we cultured fibroblasts derived from healthy and NPC1 patients. We incubated these cells in 

the presence of 1 (7.5 μM) for 24 h.

We found that NPC1 cells showed a significantly higher fluorescence signal as compared to 

healthy fibroblasts (Figure 4). In line with our fluorescence results, we found that the cell 

line derived from an NPC1 patient had higher levels of Sph compared to healthy fibroblasts 

(Figure S8). Analysis of the same samples showed that Spa levels were elevated in NPC1 

cells, but, as expected, were roughly 10-fold less abundant than Sph, suggesting the majority 

of the fluorescence increase was due to increased Sph levels (Figure S8).

In summary, we developed the first chemical probe for the fluorogenic detection of Sph in 

living cells. The probe allows for the concentration-dependent detection of Sph in cultured 

mammalian cells using standard fluorescence microscopy techniques.

While this probe is sufficient to detect biologically relevant changes in Sph levels, it has 

limitations which will be the subject of future study. First, 1 is subject to hydrolysis under 

biological conditions, which contributes to substantial fluorescence background. Second, 
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the reaction rate of our probe is sluggish and requires long incubation times to illicit a 

sufficient fluorescence response. Third, quenching of Bodipy FL by BHQ1 in our probe is 

not complete, which may be improved by utilizing different fluorophore–quencher pairs. 

Finally, 1 has a low dynamic range, resulting in a small difference in fluorescence intensity 

between normal cells and cells with gross changes in Sph levels. In future work, we plan to 

explore different probe designs to improve probe stability and performance. We envision that 

this straightforward approach for the detection of specific sphingolipids will facilitate their 

study in biology and may hold promise as a diagnostic tool for lipid storage disorders like 

NPC1 and Gaucher disease.11

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) Proposed mechanism for the reaction between the salicylaldehyde-containing probe (1) 

and Sph or Spa. During the reaction, the fluorescent dye “F” is covalently attached to 

the sphingolipid base and separated from quencher “Q”, resulting in a highly fluorescent 

lipid product. (B) Chemical structure of probes synthesized in this study. (C) Fluorescence 

emission spectra of samples containing 1 (5 μM) after 24 h incubation in a DOPC liposome 

solution containing Sph, Spa, serine (Ser), sphingosine-1-phosphate (Sph1P), or buffer 

(control).
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Figure 2. 
(A) Fluorescence microscopy images of HeLa cells treated with 1 and 2 and exposed to a 

range of Sph concentrations (0–40 μM) for 20 h. (B and C) Quantified fluorescence response 

of 1 and 2 within large populations of cells after treatment with Sph (0–40 μM). Values are 

reported as means ± SD. Statistically significant changes in fluorescence are indicated as 

determined by one-way ANOVA: *P < 0.05, ****P < 0.0001.
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Figure 3. 
(A) Fluorescence microscopy images of endogenous sphingosine in HeLa cells treated with 

probe 1 and control probe 2 for 16 h. (B) Quantified fluorescence turn-on of 1 and 2 (final 

fluorescence [F]/ initial fluorescence [Fi]) within large populations of cells over 24 h. Values 

are reported as means ± SD. Significance was determined using an unpaired t test: ****P < 

0.0001.
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Figure 4. 
(A) Fluorescence microscopy images of Niemann–Pick disease type C1 (NPC1) patient-

derived fibroblasts treated with probe 1 (7.5 μM) for 24 h. (B) Pixel intensity map of images 

in panel A. (C) Quantified fluorescence response of 1 within large populations of cells. 

Values are reported as means ± SD. Significance was determined using an unpaired t test: 

**P < 0.01.
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