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SUMMARY

Learning to predict rewards is essential for the sustained fitness of animals. Contemporary views 

suggest that such learning is driven by a reward prediction error (RPE) — the difference between 

received and predicted rewards. The magnitude of learning induced by an RPE is proportional 

to the product of the RPE and a learning rate. Here we demonstrate using two-photon calcium 

imaging and optogenetics in mice that certain functionally distinct subpopulations of ventral/

medial orbitofrontal cortex (vmOFC) neurons signal learning rate control. Consistent with learning 

rate control, trial-by-trial fluctuations in vmOFC activity positively correlates with behavioral 

updating when RPE is positive, and negatively correlates with behavioral updating when RPE is 

negative. Learning rate is affected by many variables including the salience of a reward. We found 

that the average reward response of these neurons signals the relative salience of a reward, as it 

decreases after reward prediction learning or the introduction of another highly salient aversive 

stimulus. The relative salience signaling in vmOFC is sculpted by medial thalamic inputs. These 

results support emerging theoretical views that the prefrontal cortex encodes and controls learning 

parameters.
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Here, by developing a theoretical approach to test neuronal control of learning rate (a key 

reinforcement learning variable), Namboodiri et al. show that outcome responses in a thalamo-

orbitofrontal circuit guide learning rate by signaling the relative salience of outcomes.

INTRODUCTION

A simple, yet powerful model for learning that a cue predicts an upcoming reward is to 

update one’s predictions of future reward via a reward prediction error signal (RPE)—the 

difference between a received and predicted reward 1,2. This RPE model largely explains 

the response dynamics of midbrain dopaminergic neurons 2–4—the main identified neural 

system responsible for reward prediction learning 5–7. Even though the bulk of experimental 

work into the neuronal mechanisms of reinforcement learning focuses on the mesolimbic 

dopamine circuitry, a rich computational literature argues that the dopamine RPE circuitry 

cannot operate in isolation and that the brain likely contains complementary systems for 

learning 8–10. For instance, reinforcement learning algorithms contain parameters such as 

learning rate that also need to be learned. Since the net magnitude of learning due to an RPE 

is the product of the RPE and a learning rate for the reward, optimally tuning the learning 

rate (amount by which RPE updates reward prediction) can be highly beneficial to adapt 

learning to one’s environment 8–12.

Prior computational models have proposed many possibilities for how animals set learning 

rates. One of the earliest models to suggest that the learning rate is itself dynamic was the 

Pearce-Hall associative learning model, which proposed that learning rate is proportional 

to the absolute magnitude of the previous RPE, a variable often referred to as salience 

or associability 13. Other models propose that learning rates depend on the expected and 

unexpected uncertainty in the environment 10–12,14–16. Such learning of learning rate is a 

special case of the learning of parameters for reinforcement learning—previously referred 

to as “meta learning” or “meta-reinforcement learning” 8. Adaptive learning rates are also 

a consequence of more recently proposed second-order learning mechanisms operating 

on top of an initial model-free reinforcement learning mechanism (also referred to as 

“meta-reinforcement learning”)9. Regardless of the details, a common consequence of all 

the above learning algorithms is that the learning adapts to the properties and statistics of the 

environment.

Recent research has focused on employing these models to test whether activity in different 

brain regions correlates with learning rate. A key challenge in this endeavor is that learning 

rate is a latent cause of behavior that can be hard to measure directly. The most common 

approach to solve this problem has been to fit behavior using reinforcement learning models 

under conditions that are theoretically hypothesized to vary learning rate (e.g., systematic 

variation of uncertainty) 12,17–20. Using such approaches, multiple neural signals have been 

found to correlate with learning rate, including in the anterior cingulate cortex (ACC) 10,12, 

dorsal raphe serotonergic system 17,21, dorsomedial prefrontal cortex 18,20,22 and anterior 

insula 20

Here, we develop an alternative approach to test learning rate control and test the hypothesis 

that the orbitofrontal cortex (OFC) controls the learning rate of a reward. We tested 
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this hypothesis for a few reasons. First, prior research has demonstrated causal roles 

for the orbitofrontal cortex (OFC) in reward learning and adaptation 23–27. Second, OFC 

receives inputs from all the regions mentioned above 28–30. Third, OFC activity has been 

hypothesized to convey expected uncertainty, a key variable governing learning rate 10. 

Fourth, we previously observed that the suppression of reward responses in vmOFC was 

sufficient to reduce the rate of behavioral learning 26. Fifth, OFC activity correlates with the 

attribution of stimulus salience, a key variable thought to modulate learning rate 31. Thus, we 

tested whether vmOFC neurons act as a controller of learning rate by signaling the relative 

salience of rewards, and whether such signaling is mediated, at least in part, by one of its 

major inputs from medial thalamus.

RESULTS

Theoretical prediction for learning rate control

We first developed the following theoretical approach to identify a learning rate control 

signal during cue-reward learning. A model-free learning agent that learns the value of the 

cue will update cue value whenever there is an RPE at the time of the outcome. On trials 

in which there is a positive RPE, there will be a positive change (i.e., increase) in cue value 

(Figure 1A). The magnitude of this change will depend on both the RPE and the learning 

rate. Importantly, while RPE can be positive or negative on a trial, the learning rate is a 

positive number. Hence, if the learning rate increases for a given positive RPE, there will be 

a proportionally larger increase in cue value on the next trial. Similarly, on trials in which 

there is a negative RPE, there will be a negative change (i.e., decrease) in cue value (Figure 

1A). If the learning rate increases for a given negative RPE, there will be a proportionally 

larger decrease in cue value on the next trial.

If the learning rate control system has some intrinsic noise, the trial-by-trial variability in 

learning rate will cause corresponding trial-by-trial variability in cue value update. If we 

plot the relationship between learning rate on a trial and the magnitude of cue value update 

on the next trial, the slope of this relationship should be the RPE (since Δcue valuen+1 

= RPEn x learning raten). Thus, this slope should be positive on positive RPE trials and 

negative on negative RPE trials (Figure 1B, C). In contrast with the above predictions, as 

Δcue valuen+1 = RPEn x learning raten, the slope of the relationship between RPE on a trial 

and the subsequent cue value update is the learning rate. Hence, this slope should always be 

positive regardless of the sign of RPE as the learning rate is a positive quantity. Similarly, 

because RPE is the incentive value of outcome minus cue value, the slope of the relationship 

between the incentive value of outcome on a trial and the cue value update on the next trial 

is also the learning rate (i.e., Δcue valuen+1 = (outcomen – cue valuen) x learning raten), and 

hence always positive. In other words, unlike learning rate, an increase in RPE or outcome 

value on a trial should always cause an increase in cue value on the next trial. To sum up, 

the above test for positive correlation with cue value update after positive RPE trials and 

negative correlation with cue value update after negative RPE trials is a discriminative test 

for learning rate control.

To test whether these theoretical conclusions are valid during reinforcement learning under 

noise, we first simulated a temporal difference learning agent that sets learning rate to 
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a constant plus some noise (Figure 1D) (see Methods). To equate the magnitudes of the 

positive and negative RPEs, we simulated conditions in which the cue predicted reward at 

50% probability. Here, rewarded trials result in a positive RPE and unrewarded trials result 

in a negative RPE. Under these conditions with a noisy learning rate controller, we indeed 

observed a positive correlation between the learning rate control signal and the subsequent 

cue value update on positive RPE trials and a negative correlation on negative RPE trials 

(Figure 1E, F). We next tested if this prediction for a learning rate controller remains true for 

various conditions, including a non-linear mapping between cue value and reward-seeking 

behavior, a learning rate signal that is a function of volatility in the environment plus some 

noise, and when the reward probability is 80% or 20%. In all cases, we found that the sign 

of the slope between a learning rate control signal on a trial and the subsequent cue value 

update is the sign of the RPE on the trial (Figure S1). We also verified that this is true 

immediately after the reward probability is reduced from 100% to 50%, i.e., as the new cue 

value is being learned, or long after the new cue value has been stably learned (Figure S1). 

Thus, this test for learning rate control remains true under a variety of assumptions.

To sum up, we used this discriminative test to identify whether vmOFC activity abides by 

learning rate control. The above predictions for learning rate control are also true for a signal 

that controls the absolute magnitude of the RPE. Indeed, absolute magnitude of the RPE 

has itself been hypothesized to be a driver of learning rate 13. Hence, we will consider a 

signaling of the absolute magnitude of the RPE as another model of learning rate control for 

now and will consider this possibility later in the manuscript.

Trial-by-trial and average activity in vmOFC outcome responses reflects learning rate 
control

To investigate the above test for learning rate control, we behaviorally measured cue-reward 

learning on a discriminative Pavlovian trace conditioning task in head-fixed mice 26,32 

(Figure 2A). In this task, an auditory cue paired with a delayed reward (labeled CS+ for 

conditioned stimulus predictive of reward) and another auditory cue paired with no reward 

(labeled CS−) were randomly interleaved across trials (Figure 2A). Once learned, mice show 

anticipatory licking following CS+, but not CS− (Figure 2B). Thus, the anticipatory licking 

is a behavioral proxy for reward prediction/cue value.

We next validated that updates in anticipatory licking are indeed a proxy for cue value 

updates. To this end, we tested whether anticipatory licking updates positively after positive 

RPE and negatively after negative RPEs, consistent with cue value updating. To reliably 

induce positive and negative RPEs, we reduced the probability of reward following CS+ to 

50% (Figure 2C). In this session, reward receipt following CS+ induces a positive RPE (as 

received reward is larger than the predicted reward) and reward omission following CS+ 

induces a negative RPE (as received reward is less than the predicted reward). We measured 

the update in anticipatory licking due to positive and negative RPEs. We found that if a given 

CS+ trial is rewarded (i.e., positive RPE), animals increased their anticipatory licking on the 

next CS+ trial (may occur after interleaved CS− trials) (Figure 2D). Similarly, if a given 

CS+ trial is unrewarded (i.e., negative RPE), animals reduced their anticipatory licking on 
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the next CS+ trial (Figure 2D). Thus, consistent with cue value update, anticipatory licking 

increases after a positive RPE and decreases after a negative RPE.

However, it may be possible that such updating is instead driven by learning independent 

changes such as the motivation to lick. If so, after a rewarded CS+ trial, an increased 

motivation to lick should result in an increase in anticipatory licking even on the subsequent 

CS− trial. To test this possibility, we identified CS− trials that immediately followed CS+ 

trials and assayed whether anticipatory licking on these CS− trials depended on the outcome 

of the previous CS+ trial. We found that the update in CS− anticipatory licking did not 

depend on whether the previous CS+ trial was rewarded (Figure 2E). One concern with 

this control analysis could be that motivation may be present only when there is a reward 

expectation. Since animals do not expect reward after CS−, a motivation confound may 

not be testable on these trial types. However, we found this assumption to not be true. 

This is because licking during the pre-cue baseline, a period with no reward expectation, 

nevertheless showed clear effects of motivation depending on the previous trial’s outcome 

(Figure S2). However, once this baseline shift in licking due to motivation was subtracted, 

updates in cue-induced anticipatory licking was quantitatively consistent with RPE-induced 

updates in cue value (Figure S2). Thus, an update in anticipatory licking across CS+ trials 

provides a behavioral measure of cue value update.

We next tested whether the outcome responses of vmOFC neurons is consistent with 

learning rate control. If so, based on the results in Figure 1D-F, we would predict that 

vmOFC activity on a CS+ trial would be positively correlated with the subsequent CS+ 

anticipatory licking update after positive RPE, and negatively correlated with the subsequent 

CS+ anticipatory licking update after negative RPE. To measure activity in a large number 

of individual vmOFC neurons during reward prediction learning, we used two-photon 

microendoscopic calcium imaging 26 (Figure 2F). We found that the reward responses of 

vmOFC neurons (measured within 3 s after reward delivery) showed positive correlations 

with the subsequent update in CS+ anticipatory licking on positive RPE trials (Figure 2G-I; 

see Table S1 for a compilation of all statistical results including all details and sample 

sizes for all figures). We further found that the reward omission responses of vmOFC 

neurons (measured within 3 s after reward omission) showed negative correlations with 

the subsequent update in CS+ anticipatory licking on negative RPE trials (Figure 2G-I). 

Thus, these results are consistent with learning rate control and rule out the alternative 

possibilities of vmOFC responses controlling RPE or reward value. This is because these 

models predict a positive correlation of neural responses with cue value update on negative 

RPE trials. These results further rule out vmOFC reward responses controlling learning 

independent factors such as motivation. Mathematically, learning independent factors can 

be treated as a baseline shift independent of RPE in the equation shown in Figure 1A (i.e., 

ΔCue Value = RPE*learning rate + learning independent factors). Thus, the slope between 

such learning independent factors and cue value update should be independent of the RPE. 

In other words, an increase in learning independent factors such as motivation should 

produce more anticipatory licking on the next trial even if the current trial has a negative 

RPE. Thus, the above results are also inconsistent with an encoding of motivation. Finally, 

we previously demonstrated that vmOFC outcome responses causally control behavioral 

updating 26. Specifically, we observed that inhibition of vmOFC outcome responses impairs 

Namboodiri et al. Page 5

Curr Biol. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CS+ anticipatory licking update following RPE (replotted in Figure S2). Together, these 

results strongly support the conclusion that vmOFC outcome responses control learning rate.

We next tested whether the average activity of vmOFC neurons abides by additional 

predictions of learning rate signaling. For convergence of reward prediction learning in 

a stationary environment, theoretical reinforcement learning models require the average 

learning rate to reduce over time 8,11,33. Thus, a neural signal for learning rate should 

reduce over the course of initial learning when reward probability following CS+ was stably 

maintained at 100%. Consistent with this, we found that the overall response of vmOFC 

neurons to reward receipt reduced after learning (Figure 3A-C).

As there is considerable heterogeneity in vmOFC neural responses, we next identified 

neuronal subpopulations with similar task-induced activity patterns using a clustering 

approach 26. This approach allowed us to identify neurons that are active at similar times 

in the task, i.e. neuronal ensembles in vmOFC. Using this approach, we previously showed 

that vmOFC neurons cluster into nine different neuronal subpopulations/ensembles based 

on their time-locked activity profiles to the CS+ and CS− late in learning (Figure 3D) 26. 

Each neuron was assigned a cluster identity based on its activity late in learning when the 

reward probability was 100%. Due to our ability to longitudinally track the same neurons 
26, we were able to evaluate the response of these neuronal clusters under many other task 

conditions discussed later. Among all these clusters of neurons, we found positive reward 

responses early in the learning of the CS+-reward association (Figure 3D, E). Once mice 

learned to predict the upcoming reward upon CS+ exposure, there was a reduction in the 

reward responses of many clusters (Figure 3D, E). Some clusters (most prominently clusters 

1 and 3) even displayed a negative reward response late in learning (Figure 3D). These data 

show that the suppression of reward responses after reward prediction is specific to some 

neuronal subpopulations within vmOFC.

We next tested one more prediction for learning rate signaling. Learning rate should be 

higher in the presence of unexpected environmental variability 8,11,33. Consistent with this, 

compared to the session late in learning with 100% reward probability, the responses on 

rewarded trials was higher after switching to either the 50% reward probability session 

or another session with unpredictable rewards in the intertrial interval, both sessions with 

unexpected environmental variability (Figure S3). Thus, the reward responses of some 

vmOFC neuronal subpopulations, including those projecting to ventral tegmental area 

(VTA)—a midbrain regulator of learning—abide by this additional prediction for learning 

rate signaling.

Reward responses of specific vmOFC neuronal subpopulations signal the relative salience 
of a reward

As mentioned in the introduction, learning rate can be modulated by several variables. For 

instance, the Pearce-Hall model proposes that learning rate is modulated by the absolute 

magnitude of RPE 13. Though this variable is thought to modulate the salience of cues 

predicting rewards, it is calculated at the time of the outcome. For simplicity, we will 

refer to this salience calculated at outcome time as outcome salience. Compared to an 

unpredicted reward, a predicted reward in a stationary environment should have low salience 
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and learning rate, as the absolute magnitude of the RPE at its occurrence is low. A signaling 

of salience is consistent with many of the above findings (though see Supplementary Note 
2 for a detailed treatment). However, learning rate may also be modulated by the relative 

salience of a stimulus in relation to all other stimuli in the environment 34,35. The relative 

salience of a stimulus in comparison to other stimuli has been shown to drive attentional 

capture by that stimulus 36,37. Unlike the absolute magnitude of the RPE, the relative 

salience of a stimulus depends (by definition) on the other stimuli that are also present in 

the environment. Therefore, the relative salience of a stimulus such as an unpredicted reward 

should reduce when a much more salient stimulus is introduced in the rewarding context. We 

next tested if the vmOFC reward responses are consistent with a signaling of the absolute 

magnitude of RPE or the relative salience of a reward.

To this end, we investigated whether vmOFC reward responses are suppressed in a context 

independent of reward prediction due to the presence of another salient stimulus. Animals 

typically have higher learning rates for punishments than for rewards, and for salient 

stimuli compared to relatively less salient stimuli 38–42. For instance, prediction of highly 

salient aversive stimuli such as foot shocks or quinine (a bitter tastant) often occurs in 

single trials 43,44. We thus hypothesized that delivering rewards in a context that also 

includes the delivery of salient aversive stimuli would result in a suppression of vmOFC 

reward responses due to a relative reduction in the salience of sucrose, independent of the 

suppression due to reward prediction. To minimize sensory confounds, we used an aversive 

stimulus delivered using the same sensory modality as the reward (i.e., taste). We thus 

intermittently and randomly (i.e. unpredictable) delivered drops of either sucrose or high 

concentration quinine (1.5–2.5 mM) in a 3:1 ratio to headfixed mice (Figure 4A) (sucrose-

quinine experiment). Since the liquid deliveries were unpredictable and mostly sucrose, the 

animals consistently sampled the liquid to ascertain whether a given drop was rewarding or 

aversive. On a given trial, mice quickly suppressed their licking if the liquid was quinine, 

demonstrating aversion (Figure 4B, C).

In this task, quinine may also have been more salient than sucrose for two additional 

reasons. One, the mice in our task had considerable experience receiving sucrose under 

the two-photon microscope. However, quinine was a novel stimulus in the sucrose-quinine 

session. Novelty typically increases salience. Two, the presence of quinine reduces the 

context-reward association such that a high frequency of quinine could make licking in 

the context aversive, thereby making an estimation of quinine frequency more salient for 

deciding whether to lick. Regardless of the exact mechanism, this experiment thus allowed 

us to test whether vmOFC sucrose responses reduce in a manner consistent with the 

signaling of a reduction in the relative salience of sucrose.

Consistent with a signaling of relative salience, we found that unpredicted sucrose responses 

in vmOFC neurons were suppressed when delivered in a context containing quinine (Figure 

4D, E). In comparison, reward responses early in learning (Figure 4D, E, Figure 3B-D, 

Figure S4), and unpredicted reward responses after learning in the absence of quinine 

(Figure 4F), were positive across all clusters. To further demonstrate the effect of quinine 

presentation on the response to sucrose, we compared the sucrose trials prior to the first 

experience of quinine against the remaining sucrose trials in the first sucrose-quinine session 
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(Figure 4G). We found that the sucrose responses reduced considerably within the same 

session after the first experience of quinine. Overall, these results support relative salience 

signaling. We will note however that since this task does not differentiate motivational 

versus learning effects on licking, we cannot test whether learning rates are larger for 

quinine compared to sucrose in this task. Lastly, our use of a highly aversive concentration 

of quinine allowed us to demonstrate that an encoding of relative value or a lingering 

taste of quinine affecting sucrose encoding are not consistent with these observations (see 

Supplementary Note 2 in 45).

One potential concern with the above results could be whether the reward response 

adaptation due to reward prediction or quinine are correlated within the same neurons. To 

test this, we evaluated the activity of only those neurons that were longitudinally tracked 

across these sessions (Figure 5). We found that the reward responses were correlated across 

all three conditions in these neurons (Figure 5, correlations quantified in Table S1). Thus, 

the reward response adaptation due to reward prediction or the presence of quinine are 

correlated across the vmOFC neuronal population. This is also true for reward responses in 

the session with 50% reward probability (Figure S5). We further ruled out the possibility 

that vmOFC reward responses simply reflect an efference copy of an arousal signal that may 

vary across these conditions (Figure S5). To this end, we tested whether changes in pupil 

diameter in darkness, a measure of arousal, show similar changes as those seen in vmOFC 

subpopulations. We found that the mean pupil diameter responses to sucrose early in 

learning and after 50% reward probability reduction do not correlate with the corresponding 

vmOFC reward responses (Figure S5). Nevertheless, consistent with a reduction in the 

relative salience of sucrose in a context containing quinine, we observed a highly dampened 

pupil dilation for sucrose in this context (Figure S5). These observations show that a simple 

efference copy of an arousal signal is not sufficient to explain vmOFC reward responses. 

Thus, consistent with a system that signals the relative salience of a reward, vmOFC reward 

responses reduce in two independent settings due to reward prediction or the reduction of 

relative salience of unpredicted rewards. Cumulatively, the reward responses observed in 

vmOFC rule out typically assumed reinforcement learning variables such as RPE, absolute 

magnitude of RPE, reward value, relative reward value and expected future value (treated in 

detail in Supplementary Note 2 of 45).

Medial thalamic inputs to vmOFC control relative salience signaling in vmOFC

We next assessed the neuronal circuit mechanism for the relative salience signaling in 

vmOFC neurons. We hypothesized that reward responses in vmOFC may at least be partially 

controlled by inputs from medial thalamus (mThal). This is because a wide array of 

reward responsive regions such as basolateral amygdala, other prefrontal cortical regions, 

and pallidal regions project to the medial thalamus and can indirectly control vmOFC 

reward responses through mThal 46,47. Further, disconnection studies have shown that 

interactions between mThal and OFC are necessary for reward related decision-making 48. 

Despite this, whether reward responses in mThal→vmOFC input exhibit relative salience 

signaling and whether this input causally affects relative salience signaling in vmOFC is 

unknown. We first identified the anatomical locations of thalamic cell bodies projecting 

to vmOFC using viral 49 and non-viral 32 retrograde tracing approaches (Figure 6A). The 
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predominant thalamic structures projecting to vmOFC are the anteromedial and mediodorsal 

thalamic nuclei (Figure 6B, Figure S6). We then investigated the reward response plasticity 

of input from these regions to vmOFC. We compared unpredicted reward responses of 

mThal→vmOFC axons in sessions without and with quinine (Figure 6C-E). We found 

largely positive responses in these axons in response to unpredicted sucrose rewards in the 

absence of quinine (Figure 6F, Figure S6). These reward responses were suppressed in a 

session containing quinine (Figure 6F), showing qualitative correspondence with the reward 

response adaptation observed in vmOFC neuronal responses.

These results suggest that mThal input might contribute to the relative salience signaling 

observed in vmOFC neurons. To test the causal influence of mThal input on vmOFC reward 

responses, we optogenetically inhibited mThal→vmOFC input after reward delivery while 

imaging from vmOFC neurons (Figure 7A). To remove light artifacts, we discarded the 

imaging frames during optogenetic inhibition, and evaluated reward responses right after the 

termination of inhibition. Since GCaMP6s responses are slow with a decay time of roughly 

two seconds 50, a change in activity during the inhibition will be apparent even after the 

inhibition for up to two seconds. We found that individual neurons showed both positive and 

negative modulation of activity due to mThal inhibition (Figure 7B). To test whether mThal 

input affects vmOFC reward response adaptation, we inhibited mThal→vmOFC axons 

in a session containing unpredicted deliveries of sucrose and quinine. We found that the 

reduction in sucrose responses due to the presence of quinine was significantly dampened 

upon mThal inhibition, in all clusters except clusters 4 and 5 (Figure 7D). There was also 

a non-selective change in quinine responses in some clusters (Figure S7). Two potential 

confounds for this experiment are that vmOFC responses may reflect the presence of light 

due to the LED, or that mThal→vmOFC axons may show rebound excitation after the one 

second inhibition. We ruled these confounds out because we observed no effect on vmOFC 

neurons during spontaneous inhibition of mThal→vmOFC axons in the absence of rewards, 

or in virus control animals without opsin expression (i.e. with LED but no inhibition) 

(Figure S7). Therefore, these results strongly support a causal role for mThal→vmOFC 

axons in controlling the relative salience signaling in vmOFC.

Considering the cluster-wise variability in the effect of mThal→vmOFC inhibition on 

vmOFC reward responses, we next tested whether this variability is related to the variability 

in response adaptation across clusters. If mThal→vmOFC is responsible for controlling 

relative salience signaling and not just for controlling the positive reward responses (see 

Discussion below), the cluster-wise variability in relative salience signaling should predict 

the cluster-wise variability in the effect of mThal→vmOFC inhibition on vmOFC reward 

responses. We indeed found that the suppression of reward response due to the presence 

of quinine (Figure 4) predicts the average effect of mThal inhibition on a given vmOFC 

neuronal cluster/subpopulation (Figure 7E). Overall, these results demonstrate that the 

relative salience signaling in vmOFC neurons depends on mThal inputs.

DISCUSSION

Recent studies have begun investigating OFC activity using two-photon calcium imaging 
26,51–53. Using this approach to longitudinally track neuronal activity across tasks, we 
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identified neuronal subpopulations in vmOFC that signal learning rate. We propose that the 

most parsimonious explanation of our major findings is a learning rate control signal (see 

Supplementary Note 2 in 45). Consistent with this signal acting to control learning rate, 

there is significant correlation between vmOFC outcome response on a CS+ trial and the 

behavioral updating on the subsequent CS+ trial. Crucially, the sign of this correlation is 

the sign of the RPE on a trial—a strong prediction for learning rate control. Along with our 

previous findings that vmOFC reward responses causally controls behavioral learning based 

on recent reward history 26, the current results provide strong evidence that vmOFC neurons 

act to control learning rate. Interestingly, the learning rate signaling in vmOFC is consistent 

with a general signaling of the relative salience of a reward across different contexts. We 

then show that medial thalamic inputs to vmOFC exhibit qualitatively similar response 

adaptation as vmOFC neurons, and causally control the relative salience signaling of specific 

vmOFC subpopulations. Overall, these results bolster the emerging theoretical view that the 

prefrontal cortex acts as a meta learning system that can adaptively control learning rate 9, in 

addition to representing cognitive parameters for learning such as uncertainty 10, confidence 
54–56, surprise 57, value 58,59 and volatility 12.

A key challenge in identifying neuronal encoding of learning rate control is that learning 

rate is a latent cause of behavior. Our approach for the identification of learning rate 

control is different from that used commonly in the field. Prior studies first obtain an 

independent measure of learning rate by fitting a reinforcement learning model to the 

behavioral changes due to expected and unexpected environmental variability 12,17–20. Since 

behavioral learning depends on both learning rate and RPE, such an approach requires 

the careful dissection of RPE magnitude and learning rate on a trial-by-trial basis. Once 

a trial-by-trial estimate of learning rate is thus obtained, these studies look for correlation 

between trial-by-trial changes in neural activity with this independently measured estimate 

of learning rate. Instead, we develop a simpler, but powerful, discriminative test for learning 

rate control. The trial-by-trial activity of neurons controlling learning rate should correlate 

with the subsequent trial’s cue value update (measured by reward seeking), with a positive 

correlation after positive RPE trials and a negative correlation after negative RPE trials. 

This prediction results from the fact that learning rate acts as a positive multiplicative gain 

on the influence of RPE on cue value update. Importantly, this prediction is true under a 

variety of additional assumptions including a dependence of learning rate on volatility, a 

non-linear mapping between cue value and cue-induced reward seeking, or the probability of 

the reward following the cue. Thus, we believe that this approach can be used as a general 

test for identifying neuronal activity consistent with learning rate control.

In typical reinforcement learning algorithms, learning is “complete”, i.e. reward is predicted, 

when RPE at reward receipt becomes zero. Nevertheless, when rewards are delayed from 

their predictors, the resultant temporal uncertainty in the subjective estimation of the delay 

causes RPE to be significantly positive even after learning. Indeed, under delays less than 

even two seconds, midbrain dopaminergic neurons exhibit significant positive responses to 

a predicted reward even after extensive training 6,60–63. Thus, it is not possible to evaluate 

whether a received reward was fully predicted using only the RPE signal on a trial. The 

reward response adaptation observed in some vmOFC subpopulations may provide an 
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explicit signal that a delayed reward is as predicted as the reward response reverses in 

sign once a delayed reward is predicted. Hence, the signal from vmOFC can counteract the 

positive RPE signal from midbrain dopaminergic neurons and signal that a delayed reward is 

predicted despite the uncertainty in subjective timing. A similar “brake” on learning after the 

prediction of a delayed reward has been assumed in computational models of the learning of 

reward timing 64,65. In this sense, the vmOFC reward response adaptation takes into account 

whether the temporal uncertainty in a delayed reward is expected uncertainty due to the 

uncertainty in estimation of the fixed delay, a computation that has been behaviorally shown 

to exist in rodents 66. This is also consistent with a prior study on the ventral OFC 67.

We have shown that the general role of OFC in reward learning results at least in part 

from the control of behavioral learning rate. Consistent with a control of behavioral learning 

rate by OFC, we previously found that inhibition of vmOFC→VTA neurons during the 

reward, but not the cue, suppresses behavioral learning based on recent reward history 26. 

A previous study also found that inhibition of lateral OFC (likely also containing some 

ventral OFC) during the reward, but not cue, period of an instrumental task, affected 

behavioral adaptation dependent on reward history 23. Further, lesions of medial OFC 

affect learning and representation of outcomes associated with an action 68. This finding is 

potentially consistent with the control of learning rate, as lesion of medial OFC may cause 

“over-learning” of an action, thereby making it less sensitive to the expected outcome.

Careful future experiments are needed to examine the generality of these findings to 

different behavioral tasks and states. For instance, it has been argued that OFC function 

might be fundamentally different in Pavlovian versus instrumental tasks due to the 

differences in the mental representation of these tasks 68. Thus, it remains to be seen 

whether our findings would generalize to instrumental learning. Further, adaptive control of 

learning rate is typically studied in the context of dynamic uncertain environments. While 

some aspects of our task are dynamic (e.g. change in contingency while recording from 

the same neurons), it is necessary to test the generality of these findings in relation to the 

control of learning rate by expected and unexpected uncertainty 10–12,17. It will also be 

interesting to test whether OFC outcome representation in bandit tasks relate to learning 

rate 69. One interesting aspect of our task is that some clusters encode the outcome of a 

trial well past the reward was delivered (e.g., cluster 4, 6 in Figure 3D). Such long-lasting 

outcome encoding has previously been observed across different task conditions and species 

in the OFC 54,69,70. A limitation of our study is that it was conducted under moderate water 

deprivation and with a specific type of reward (sucrose) and aversive stimulus (quinine). 

It is likely that varying the levels of water deprivation will change the behavioral salience 

of these liquids. Thus, careful studies are required to ascertain the generality of these 

findings across behavioral states and different types of rewards/punishments. Relatedly, an 

aberrant learning rate for drugs of abuse in OFC (e.g. higher learning rate for positive 

RPEs compared to negative RPEs) might partially explain the role of OFC in drug addiction 
71,72. If our findings generalize to these different settings, that would suggest that OFC acts 

more generally as a system that prioritizes currently available rewards or punishments for 

learning, based on the current behavioral state.
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Future studies are also required to test whether relative salience signaling occurs in other 

brain regions. The anterior cingulate cortex has often been suggested to reflect variables 

required for adaptive learning rate control 10,12,57. Correlates of Pearce-Hall like salience 

have also been found in amygdala 73. Nevertheless, it is unclear if these regions exhibit 

a strong reduction in responses to delayed, but predicted rewards and rewards presented 

in a context containing more salient unconditioned stimuli. Interestingly, the ventromedial 

prefrontal cortex, an area adjacent to orbitofrontal cortex, primarily shows lower responses 

to aversive outcomes than rewarding outcomes at the single neuron level 74. This appears 

different from the results here and suggests that there may be considerable differences 

between the encoding of nearby prefrontal cortical regions. An interesting distinction from 

the function of other medial prefrontal cortical regions is that vmOFC activity does not 

control the expression of learned licking behavior 26, but regions such as the prelimbic 

cortex do 32,75.

Another major unresolved question is how OFC controls behavioral learning rate by 

interacting with the midbrain dopaminergic neurons signaling RPE 2,7. OFC has been shown 

to project heavily to the striatum 72,76,77. This projection may be particularly important for 

an interaction with the dopaminergic system. Though we have investigated vmOFC→VTA 

neurons in this and our previous study 26, this projection passes through the striatum, and 

may send collaterals to the striatum. Thus, we cannot rule out the possibility that collaterals 

in the striatum mediate some of the effects of vmOFC→VTA inhibition in our previous 

study 26. One especially promising circuit mechanism may be via the low threshold spiking 

interneurons in dorsal striatum, which show similar reduction in reward responses during 

instrumental learning 78. If true, this would raise an interesting possibility that the role of 

this output and OFC in the control of habitual behavior or behavior insensitive to negative 

outcomes 72,76,77,79 may be due to its role in controlling learning rate (e.g. learning rate to 

negative outcomes set too low). OFC could also control behavioral learning rate through its 

interactions with anterior cingulate cortex 10.

Though the circuit mapping experiments performed here cannot ascertain whether the role 

of mThal input to vmOFC is unique among other inputs, three features of the observed 

results are worth highlighting. One, inhibition of mThal input to vmOFC changes activity 

in vmOFC clusters proportional to the amount of adaptation in reward responses (Figure 

7E). In fact, we showed that 50% of the cluster-wise variance in the effect of mThal 

inhibition is explained by the variance in adaptation between clusters. Such a robust causal 

relationship between mThal input and vmOFC output suggests that mThal might indeed 

be one of main inputs contributing to the reward response adaptation observed in vmOFC. 

Two, a concern could be that that any strong input with reward activity would control 

reward response adaptation in vmOFC. An implicit assumption of this concern is that the 

observed effect is simply a reflection of the strength of reward encoding. The cluster with 

the strongest reward response in vmOFC is cluster 5 (Figure 3, 4). If a strong input to 

vmOFC contributes to the strongest output (i.e., cluster 5), we would expect a significant 

change in the activity of cluster 5 due to input inhibition. Yet, this cluster had one of the 

lowest effects of mThal→vmOFC inhibition (Figure 7). Thus, the effect of inhibition is not 

simply related to the strength of vmOFC activity. In this light, it is unlikely that any strong 

input would reproduce this effect. Lastly, thalamic outputs are excitatory 80 and exhibit 
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positive reward responses (Figure 6F). Yet, inhibition of mThal→vmOFC input increases 

neuronal response to reward in vmOFC excitatory neurons. These results imply a key role 

for vmOFC inhibitory interneurons in shaping the responses of vmOFC output neurons. 

This means that while mThal inputs are integral for the reward response adaptation in 

vmOFC output neurons, the computation happens within the vmOFC local circuit. Despite 

these noteworthy features of the mThal input to vmOFC, future work needs to address 

whether other inputs contribute to learning rate control by vmOFC. For instance, dorsal 

raphe serotonergic neurons have been shown to control learning rates 17 and may potentially 

do so through their interactions with OFC.

A potential confound for the response change in vmOFC due to inhibition of 

mThal→vmOFC input is that the observed vmOFC response changes may be due to a 

change in behavior resulting from the input inhibition. However, this is unlikely as the 

inhibition we performed is unilateral and restricted to the field of view under the lens. 

Indeed, based on tissue scattering and the LED power, it is likely that the inhibition of 

thalamic axons occurs only within 200 μm or less of tissue under the lens. In the behavior 

we measured (licking), we observed no effect of inhibition of thalamic axons (Figure S7C). 

Considering that behavioral effects in prefrontal circuits are typically only apparent in strong 

bilateral inhibition/lesion, it is highly unlikely that the small-scale inhibition in the local 

circuit under the lens produced any unmeasured behavioral effects that indirectly modulated 

vmOFC neuronal responses.

In conclusion, we have shown that vmOFC reward responses signal the learning rate 

for rewards. Whether these results generalize to a broad role for OFC in prioritizing 

environmental stimuli for learning remains to be tested. Nevertheless, the identification of 

mThal→vmOFC circuit as one involved in the control of learning rate opens the possibility 

to study the neural circuit control of the learning of parameters for learning, i.e., meta 

learning.

STAR Methods

RESOURCE AVAILABILITY

Lead Contact: Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Garret D Stuber (gstuber@uw.edu)

Materials Availability: This study did not generate new unique reagents.

Data and Code Availability:

• Microscopy and behavioral data reported in this paper for clustering is available 

on the Stuber lab Github page, along with the original code for clustering and the 

learning rate simulations (https://github.com/stuberlab).

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects and Surgery: All experimental procedures were approved by the Institutional 

Animal Care and Use Committee of the University of North Carolina and University of 

Washington and accorded with the Guide for the Care and Use of Laboratory Animals 

(National Institutes of Health). Adult male and female wild type C57BL/6J mice (Jackson 

Laboratories, 6–8 weeks, 20–30 g) were group housed with littermates and acclimatized to 

the animal housing facility until surgery. Survival surgeries were stereotaxically performed 

while maintaining sterility, as described previously 26,81. Induction of anesthesia was carried 

out by using 5% isoflurane mixed with pure oxygen (1 L/min) for roughly thirty seconds 

to a minute, after which anesthesia was maintained using 0.6–1.5% isoflurane. The surgeon 

monitored respiratory rate intermittently to ensure appropriate depth of anesthesia. The 

animals were placed on a heating pad for thermal regulation. Data from animals used 

in Figure 2–5, Figure S2, Figure S3 and Figure S4A, B were collected at UNC. For 

these animals, pre-operative buprenorphine (0.1 mg/kg in saline, Buprenex) treatment was 

given for analgesia. Eyes were kept moist using an eye ointment (Akorn). 2% lidocaine 

gel (topical) or 1mg/kg lidocaine solution was applied or injected onto the scalp prior to 

incision. Details of viral injection, lens and optic fiber implantation are provided below. A 

custom-made stainless-steel ring (5 mm ID, 11 mm OD, 2–3 mm height) was implanted 

on the skull for headfixation and stabilized with skullscrews as well as dental cement. 

Animals either received acetaminophen (Tylenol, 1 mg/mL in water) in their drinking water 

for 3 days, or 5 mg/kg carpofen 30 min prior to termination of surgery for post-operative 

analgesia. Animals were given at least 21 days (and often, many more) with ad libitum 

access to food and water to recover from surgery. Following recovery, animals used for 

behavioral studies were water deprived to reach 8590% of their pre-deprivation weight and 

maintained in a state of water deprivation for the duration of the behavioral experiments. 

Animals were weighed and handled daily to monitor their health. The amount of water given 

daily was between 0.6–1.2 mL and was varied for each animal based on the daily weight. 

A total of 38 mice were included in this study: 5 OFC-CaMKII imaging (0 female, Figure 

2–4), 7 OFC-VTA imaging (0 female, Figure S3, 4), 5 mThal→vmOFC axon imaging (3 

female, Figure 6, Figure S6), 7 mThal→vmOFC inhibition or control inhibition during 

vmOFC imaging (3 female, Figure 7, Figure S7), 10 anatomical tracing (8 female, Figure 

6B), and 4 pupil diameter tracking (0 female, Figure S5).

METHOD DETAILS

Head-fixed behavior: Trace conditioning was done exactly as before 26. A brief outline 

of these methods is summarized here. Water deprived mice were first trained to lick for 

random unpredictable sucrose (10–12.5%, ~2.5 μL) deliveries in a conditioning chamber. 

Mice received one of two possible auditory tones (3 kHz pulsing tone or 12 kHz constant 

tone, 75–80 dB) that lasted for 2 seconds. A second after the cues turned off, the mice 

received a sucrose reward following one of the tones (designated CS+), whereas the other 

tone resulted in no reward (designated CS−). The identity of the tones was counterbalanced 

across mice in all experiments. The cues were presented in a pseudorandom order and 

in equal proportion until a total of 100 cue presentations (trials) were completed. The 

intertrial interval between two consecutive presentations of the cues was drawn from a 
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truncated exponential distribution with mean of 30 s and a maximum of 90 s, with an 

additional 6 s constant delay. Early in learning (Figure 2) was defined as the first session 

of conditioning. Late in learning (Figure 2) was defined as the day that the area under a 

receiver operating characteristic curve (auROC) of lick rates to CS+ versus CS− remained 

high and stable (auROC larger than 0.7 on at least 2 consecutive sessions or larger than 

0.85). Two contingency degradation experiments were performed as described previously 
26, with reward probability reduced 50% in one (Figure 2,3) and background unpredictable 

rewards introduced in the intertrial interval in the other, with reward probability set to 100% 

(Figure S3, Figure 4). Exact parameters for the rates of unpredicted rewards were described 

previously 26. For the sucrose and quinine experiment (Figure 4), drops of sucrose (10–

12.5%, ~2.5 μL) or quinine hydrochloride dihydrate (1.5–2.5 mM, ~2.5 μL) were randomly 

delivered at a 3:1 ratio (60 sucrose drops and 20 quinine drops). The interdrop interval 

was a minimum of 13–18 s and a maximum of 2328 s. These were chosen to maintain a 

sufficient interval between consecutive drops so as to prevent any bleed-through of GCaMP 

fluorescence. Even though the hazard rate is not flat for these intervals, the animals did not 

show any behavioral evidence of temporal expectation of the delivery times.

2-photon microscopy: The methods were similar to those published previously 26. We 

used a calcium indicator (GCaMP6s) to image calcium changes using 2-photon microscopy. 

The injection coordinates and volumes for virus as well as the coordinates for implanting 

a gradient refractive index (GRIN) lens were as published previously 26. For mThal axon 

imaging (Figure 6) or inhibition (Figure 7), we injected 400500 nL of AAVDJ-CaMKIIα-

GCaMP6s (at an effective titer of ~1–2×1012 infectious units per mL, UNC Vector Core) or 

AAV5-CaMKII-eNpHR3.0-mCherry (~4×1012 infectious units per mL, UNC Vector Core) 

unilaterally in mThal (−1.3 AP, 0.5 ML, −3.5 DV from bregma). We used a resonant scanner 

(30 Hz frame rate acquisition, Olympus Fluoview FVMPE-RS) and performed an online 

averaging of 6 times to get an effective frame rate of 5 Hz, to minimize the size of recorded 

files as we had negligible motion artifacts. A GaAsP-PMT with adjustable voltage, gain 

and offset was used, along with a green filter cube. We used a long working distance 

20x air objective, specifically optimized for infrared wavelengths (Olympus, LCPLN20XIR, 

0.45 NA, 8.3 mm WD). We imaged either at 955 or 920 nm using a Ti-sapphire laser 

(SpectraPhysics, ~100 fs pulse width) with automated alignment. The animals were placed 

on a 3-axis rotating stage (Thorlabs, TTR001/M) to precisely align the surface of the GRIN 

lens to be perpendicular to the light path, such that the entire circumference of the lens 

is crisply in focus (within 1–2 μm). The imaging acquisition was triggered by a custom 

Arduino code right before the start of a behavioral session, and a TTL output of every 

frame was sent as an input to the Arduino. The imaging acquisition was triggered off at 

the end of the behavioral session (~ one hour). The data in Figure 2, 3 (OFC-CaMKII) and 

Figure S3 (OFC→VTA) were re-analyzed based on data from a previous publication 26. In 

every mouse, one z-plane was imaged throughout acquisition so that the same cells could 

be tracked through learning 26. After mice were trained, other z-planes were also imaged 

(one per session) to get a measure of the total functional heterogeneity in the network. 

A total of 2–6 z-planes per mouse were imaged in the OFC-CaMKII group, whereas 1–3 

z-planes were imaged in the OFC-VTA group. Thus, responses early in learning were from 

the plane tracked throughout learning, whereas the responses late in learning, including the 
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contingency degradation sessions, were from all imaged planes. The sucrose quinine session 

was run for most imaging planes at the end of the conditioning experiments 26. The data 

in Figure 4 were collected from the same animals as in Figure 2, 3, but have never been 

published previously.

Optogenetics during imaging: These animals received an injection of AAVDJ-

CaMKIIα-GCaMP6s in vmOFC and AAV5-CaMKIIαeNpHR3.0-mCherry (experimental) 

or AAV5-CaMKIIα-mCherry (control) in mThal. All animals showed significant expression 

of the opsin in mThal. Light was delivered for optogenetic inhibition to the full field of 

imaging by an LED kit with a peak wavelength of 615 nm (FV30SP-LED615, Olympus) 82. 

The frames containing light artifacts due to LED illumination were masked out for analysis 

(shown as white bars in Figure 7B, C). The same preprocessing pipeline as before (including 

motion correction, signal extraction and neuropil correction) was employed on this masked 

data. These animals were first trained to lick in response to random sucrose deliveries. We 

then performed optogenetic inhibition during sucrose consumption for multiple imaging 

planes. A random half of the trials received inhibition. The effect of the LED was calculated 

by comparing sucrose fluorescence on the trials with and without LED. The animals were 

subsequently trained on the trace conditioning paradigm (no imaging). Once anticipatory 

licking was high and stable, we imaged the same neurons that were imaged earlier to obtain 

PSTHs around CS+ and CS−. These PSTHs were used to classify neurons into the clusters 

identified using the much larger population of neurons in Figure 3. The classification 

was done using a linear support vector classifier (Scikitlearn), as was used previously for 

classifying OFC→VTA neurons 26. We then performed inhibition of mThal axons while 

imaging from vmOFC neurons during the sucrose and quinine session (Figure 7C, D). 

Here, to obtain a sufficient number of trials with and without inhibition, we first performed 

recordings without inhibition (80 trials), followed by with inhibition (80 trials). The effect of 

LED was calculated by comparing sucrose or quinine fluorescence with and without LED.

Retrograde tracing, histology and microscopy: 400 nL of rAAV2retro-hSyn-eYFP 

(~2×1012 infectious units/mL) or CTB-488 were stereotaxically injected at roughly 2.5 

AP, 0.5 ML and 2.3–2.5 DV from bregma using the surgical methods described above. 

3–5 weeks after surgery, animals were euthanized with an overdose of pentobarbital 

(~390 mg/kg, Somnasol, Covetrus EU-HS-045–100-0), and transcardially perfused with 

4% paraformaldehyde (PFA, Sigma-Aldrich, #158127). Perfused brains were incubated in 

4% PFA overnight and moved to a 30% sucrose solution (Sigma-Aldrich, #S0389) for 

~2 days prior to cryosectioning. 40 μm thick sections were used in tracing experiments. 

For retroAAV2 thalamic labeling (Figure 6B, Figure S6), eYFP signal was enhanced and 

stabilized using a chicken anti-GFP antibody (Aves Lab, #GFP-1020, 1:500 dilution), paired 

with a donkey anti-chicken secondary (Jackson Immunoresearch, #703–545-155, 1:1000 

dilution). GFP and eYFP have highly similar protein sequences, which allows the use of a 

GFP antibody for immunostaining. Brain sections were imaged using a 20x air objective on 

a confocal microscope (Olympus Fluoview FV3000). Resulting image tiles were stitched, 

and Z-stacks were taken at ~1 μm intervals and averaged across slices yielding a maximum 

intensity projection image. Brain atlas outlines (https://mouse.brainmap.org/static/atlas) 

were overlaid onto each image to allow assignment of thalamic subregions, in which labeled 
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cells were counted using ImageJ (https://imagej.net/Fiji). Percentage of total thalamic cells 

labeled (Figure 6B) was quantified as the number of cells per region divided by the sum total 

of all counted eYFP+ or CTB+ cells. The intermediodorsal nucleus was counted as part of 

the mediodorsal region.

Pupil measurements: Pupil area measurements were performed on an independent 

cohort of animals that went through the complete head-fixed behavior paradigm. Analysis 

was performed for the unpredicted sucrose without quinine condition, the early in learning 

condition, the 50% reward probability and the unpredicted sucrose and quinine delivery 

conditions. Pupil recordings were performed using a monochrome USB 2.0 CMOS Camera 

(ThorLabs DCC1545M) at 5 Hz. A triggered red LED flash in the inter-trial interval 

was used to align behavior and camera recordings. This flash occurred outside of the 

analyzed window for all recordings. To align the behavior and pupil recordings, LED 

flashes were detected using ImageJ and MATLAB to identify large fluctuations in pixel 

intensity that corresponded to LED onset from an ROI that contained the LED. The LED 

onset timestamps for the video recordings were aligned to the LED trigger timestamp 

in the behavior recordings on a trial-by-trial basis to account for dropped frames across 

the session, though very few frames were dropped overall. After the video and behavior 

recordings were aligned, we extracted data from the interval spanning 3 seconds before cue 

presentation to 3 seconds after reward delivery for the early in learning and 50% reward 

probability conditions, and 3 seconds before and after the first lick following uncued fluid 

delivery for the unpredicted sucrose without quinine and unpredicted sucrose with quinine 

sessions. We preprocessed the data with two runs of the CLAHE ImageJ plug-in 83 with 

default parameters to enhance local contrast for pupil discrimination. After preprocessing, 

we performed an average intensity grouped z-projection of 5 frame bins to reduce the data 

to 1 Hz for manual annotation of the pupil. We then drew an ellipse bounding the pupil 

for each resulting frame and extracted the area of the ellipse for each frame. For sessions 

with multiple trial types, we did not attach trial identity data to each trial until all pupil 

measurements were complete.

Temporal Difference (TD) Learning simulations: Here, we describe the methods used 

for the simulations used in Figure 1D-F and Figure S1. For these simulations, we assumed 

the same task structure as in our behavioral task. Thus, there were both CS+ and CS− cues 

predictive of reward and reward omission respectively. The cue-outcome delays were 3 s and 

the intertrial interval (ITI) was exponentially distributed with a mean of 30 s and a maximum 

of 90 s. The outcome periods were 3 s each for either cue. To model the structure of this 

task, we used a complete serial compound state space with a single state lasting 3 s. Thus, 

there was a single state for each cue and a single state for the outcome. Importantly, the ITI 

was similarly split to 30 states (the maximum possible ITI was divided into 3 s states starting 

after the previous outcome state). We have previously noted that this commonly used state 

space makes problematic assumptions about real animals 84, but nevertheless use it here 

for its simplicity in illustrating our main claim about learning rate. The task was simulated 

based on the temporal parameters listed above and the timeline for the task was converted to 

a timeline of states, with each time step lasting 3 s. The temporal difference value function 
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and update were then applied on this state space. Specifically, the value function was written 

as

V st = rt + γV st + 1

where V represents state value, s represents state, the subscript represents time step, γ 
represents the discount factor (assumed to be 0.99), and the angular bracket represents the 

expected value.

During learning, state values were learned by the TD learning rule

V st V st + αtδt

δt = rt + γV st + 1 − V st

where α represents learning rate and δ represents RPE.

For the learning rate controller used in Figure 1, we αt = 0.1 + 0.02N(0, 1) assumed that 

where the second term on the right-hand side is a normally distributed noise term. A total of 

10,000 randomly interleaved CS+ and CS− trials (with equal frequency) were simulated at 

100% reward probability, followed by the same number of trials at 50% reward probability. 

The plots in Figure 1E, F were made based on the learning rates at outcome times and 

the change in state value of the CS+ on the next CS+ presentation in the 50% probability 

condition.

In Figure S1, we assumed that the learning rate is itself learned based on the volatility in the 

environment. We defined volatility (υ) as

v =
κ zRPE

1 + κ zRPE

0where κ is a constant set to 5 and |ZRPE| refers to the absolute magnitude of the z-score of 

the current RPE against a rolling window (5,000 time steps) of previous RPEs. This form 

was used to keep the volatility between 0 and 1, and to ensure that whenever the current RPE 

deviates significantly from the previous RPEs in either direction, the environment is deemed 

to be volatile, i.e., there is high unexpected uncertainty about the environment. The learning 

rate was then updated based on this volatility using the following relationship.

αt αt + η vt − αt + 0.01N(0, 1)

where η is the learning rate for the learning rate and was set to 1. This learning rate ensured 

that whenever the volatility of the environment was deemed to be high, the learning rate was 

high, but at other times, the learning rate was low. To ensure that learning rate is always 

positive, we set its value to 0 whenever it became negative based on the above learning rule.
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For the non-linear mapping between cue value and reward-seeking behavior assumed in 

Figure S1, we assumed the following sigmoidal relationship.

L =
Lmax

1 + e− V − V 0.5 /τ

where L is the lick rate on a trial and Lmax is the maximum possible lick rate on a trial This 

is a sigmoid with half-point of V0.5 and rate of slope around this half-point controlled by τ. 

These parameters were set to Lmax = 10, V0.5 = 3 and τ = 0.4.

For the linear mapping between cue value and reward-seeking behavior, we assumed L = V.

QUANTIFICATION AND STATISTICAL ANALYSIS

Imaging data analysis: Preprocessing (motion correction, manual ROI detection, signal 

extraction, neuropil correction) using SIMA 85 for vmOFC cell body imaging was as 

described previously 26. For axon imaging, we used the same approach as for cell bodies 

for motion correction. For detection of axonal ROIs, we employed a manual hand-drawing 

method but with different criteria: 1) we drew ROIs only around parts of an axon that 

showed no resolvable overlap with other fluorescent regions, thereby making the ROIs 

small, 2) we drew ROIs along a single axon (at least those that can reliably be tracked 

along the imaging focal plane) only once (more on this below), 3) we drew ROIs around 

regions of an axon that are definitely within the imaging plane (these are often bright 

and sharply in focus), 4) we drew ROIs that were at least 10 pixels or so, in order to 

minimize noise. An example plane with manually annotated ROIs is shown in Figure S6. 

Despite these precautions, it is impossible to know whether different ROIs are from the 

same underlying axon, as axons move in and out of the imaging plane and are highly 

branched. Thus, we do not make any claims about the individual ROIs shown in Figure 

6F representing individual axons (though the example traces in Figure 6E, representing the 

axonal ROIs with the largest skew in activity, show distinct patterns). A common approach 

to identify ROIs that are putatively from the same axon is to remove segments that show 

high correlations. However, this threshold depends crucially on the signal to noise ratio 

of the recording. If the signal to noise ratio is low, segments of the same axon will show 

low correlations due to the noise dominating the fluorescence. Thus, the decision to set the 

threshold often becomes subjective, especially considering variability in signal to noise ratio 

between animals resulting from variability in GCaMP expression. We avoid this problem by 

not claiming that different ROIs are necessarily from different axons. Instead, we quantify 

both a population mean of all ROIs and separately perform a clustering analysis of ROIs 

based on their response profiles to identify heterogeneous response profiles (more on this 

below). We did not perform any neuropil correction for axon recordings as the neuropil is 

primarily due to signals of interest (i.e. from axons). Due to this reason, our earlier approach 

of ensuring no overlap with other axons is important to get isolation of signals.

The clustering analysis for vmOFC neurons was performed as previously published 26. 

Importantly, all clustering was performed based on the peristimulus time histograms 

(PSTHs) around CS+ and CS− in the session after learning with 100% reward probability. 
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So, any neuron that has an assigned cluster identity was recorded under the 100% 

contingency late in learning. Once a cluster ID was assigned to a neuron, the same cluster 

ID was used for that same neuron in all other sessions. This was possible because 2-photon 

imaging allowed longitudinal tracking of the exact same set of neurons across many days 

and tasks 26.

The clustering of axon ROIs (Figure S6) used the same approach but used PSTHs around 

sucrose alone (Figure S7G), or around both sucrose and quinine (Figure S6H). As we did 

not longitudinally track axons across these sessions, we performed clustering separately for 

these two sessions. Nevertheless, qualitative correspondence between the sucrose responses 

of some clusters can be seen by comparing Figure S6G and H. The benefit of performing 

cluster analysis for axons is that different identified clusters are almost certain to be 

from different underlying axons, as the clustering is done on average responses across 

trials, thereby reducing noise. Thus, we do not assess axon-by-axon heterogeneity as we 

cannot reliably identify individual axons. We can nevertheless assess heterogeneity of 

information encoding in the axonal population by interpreting cluster-wise differences in 

response profiles. This is philosophically similar to our approach with clustering of vmOFC 

neurons. We only interpret average results across all neurons within a cluster, thereby 

treating a cluster as a unit of information representation. The one big difference between the 

identification of cell body and axon clusters is that unlike in the cell body case, we cannot 

assess prevalence of each cluster among the axonal population. This is because the ROIs 

making up any cluster might potentially be overlapping and represent the same axon.

In Figure 3, we quantified reward responses as the coefficients of a General Linear 

Model (GLM) fit to reward delivery 26. Importantly, this GLM approach was applied to 

the deconvolved calcium fluorescence to remove fluorescence changes purely due to the 

dynamics of GCaMP6s. We employed a GLM approach primarily to separate lick related 

responses and reward prediction or receipt responses, as both licking and rewards generally 

produced positive responses 26. We did not employ a similar GLM approach for analyzing 

the sucrose and quinine responses in Figure 4 as these responses were evidently dissociated 

from licking responses. This is because licking was high for sucrose alone, high for sucrose 

in the sucrose-quinine session and low for quinine in the sucrose-quinine session; yet, the 

responses were generally high, low and high respectively, for these conditions.

To obtain the average population slope in Figure 2I, we first fitted a best-fit linear 

regression to the trial-by-trial variability in OFC reward response (separately in rewarded 

and unrewarded trials) with the licking update on the next trial for each neuron. We then 

averaged these slopes across all recorded neurons to obtain the average population slope 

separately for the positive RPE case (i.e. rewarded trials in the 50% reward probability 

session) and the negative RPE case (i.e. unrewarded trials in the 50% reward probability 

session). To obtain the visualization plot shown in Figure 2H, we first z-scored both the 

trial-by-trial variability of a neuron and the licking update (i.e. both axes) for each neuron 

and pooled these data for all neurons. We then binned the data along the activity z-score 

and calculated the corresponding mean lick update for that bin (using numpy.digitize with 

right=False, i.e., a datapoint is counted in a given bin if it is greater than or equal to the 

lower edge of the bin and less than the higher edge). The plot shows the lower edges of 
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the bins, with z < − 3 not shown due to low sampling. The z-scoring was performed prior 

to pooling to avoid confounding within-neuron and between-neuron variability. The actual 

quantification was done on the raw slopes instead of the z-scored data to avoid equating 

neurons with considerable difference in the trial-by-trial variability of reward responses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

We thank P. Phillips, J. Berke, D. Ottenheimer, A. Mohebi, K. Ishii, R. Gowrishankar, S. Piantadosi, J. Rodriguez-
Romaguera and Z.C. Zhou for comments on the manuscript, and S. Mihalas and all Stuber lab members for helpful 
discussions. We thank Karl Deisseroth (Stanford University) and the GENIE project at Janelia Research Campus for 
viral constructs.

Funding: This study was funded by grants from the National Institute of Mental Health (R00MH118422, 
V.M.K.N.; F31 MH117931, R.S.), National Institute of Drug Abuse (R37-DA032750 & R01-DA038168, G.D.S., 
and P30-DA048736) and Brain and Behavior Research Foundation (NARSAD Young Investigator Award, 
V.M.K.N.).

REFERENCES

1. Rescorla RA, and Wagner AR (1972). A theory of Pavlovian conditioning: Variations in the 
effectiveness of reinforcement and nonreinforcement. Classical conditioning II: Current research 
and theory 2, 64–99.

2. Schultz W, Dayan P, and Montague PR (1997). A Neural Substrate of Prediction and Reward. 
Science 275, 1593–1599. [PubMed: 9054347] 

3. Eshel N, Bukwich M, Rao V, Hemmelder V, Tian J, and Uchida N. (2015). Arithmetic and local 
circuitry underlying dopamine prediction errors. Nature 525, 243–246. [PubMed: 26322583] 

4. Mohebi A, Pettibone JR, Hamid AA, Wong J-MT, Vinson LT, Patriarchi T, Tian L, Kennedy RT, and 
Berke JD (2019). Dissociable dopamine dynamics for learning and motivation. Nature 570, 65–70. 
[PubMed: 31118513] 

5. Chang CY, Esber GR, Marrero-Garcia Y, Yau H-J, Bonci A, and Schoenbaum G. (2016). Brief 
optogenetic inhibition of dopamine neurons mimics endogenous negative reward prediction errors. 
Nat Neurosci 19, 111–116. [PubMed: 26642092] 

6. Le K., Claa LD., Hachisuka A., Bakhurin KI., Nguyen J., Trott JM., Gill JL., and Masmanidis 
SC. (2020). Temporally restricted dopaminergic control of reward-conditioned movements. Nat. 
Neurosci 23, 209–216. [PubMed: 31932769] 

7. Steinberg EE, Keiflin R, Boivin JR, Witten IB, Deisseroth K, and Janak PH (2013). A causal link 
between prediction errors, dopamine neurons and learning. Nat Neurosci 16, 966–973. [PubMed: 
23708143] 

8. Schweighofer N, and Doya K. (2003). Meta-learning in reinforcement learning. Neural Netw 16, 
5–9. [PubMed: 12576101] 

9. Wang JX, Kurth-Nelson Z, Kumaran D, Tirumala D, Soyer H, Leibo JZ, Hassabis D, and Botvinick 
M. (2018). Prefrontal cortex as a meta-reinforcement learning system. Nat. Neurosci 21, 860–868. 
[PubMed: 29760527] 

10. Soltani A, and Izquierdo A. (2019). Adaptive learning under expected and unexpected uncertainty. 
Nat Rev Neurosci 20, 635–644. [PubMed: 31147631] 

11. Iigaya K. (2016). Adaptive learning and decision-making under uncertainty by metaplastic 
synapses guided by a surprise detection system. eLife 5, e18073.

12. Behrens TEJ, Woolrich MW, Walton ME, and Rushworth MFS (2007). Learning the value of 
information in an uncertain world. Nat Neurosci 10, 1214–1221. [PubMed: 17676057] 

Namboodiri et al. Page 21

Curr Biol. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



13. Pearce JM, and Hall G. (1980). A model for Pavlovian learning: variations in the effectiveness of 
conditioned but not of unconditioned stimuli. Psychol Rev 87, 532–552. [PubMed: 7443916] 

14. Courville AC, Daw ND, and Touretzky DS (2006). Bayesian theories of conditioning in a changing 
world. Trends in Cognitive Sciences 10, 294–300. [PubMed: 16793323] 

15. Preuschoff K, and Bossaerts P. (2007). Adding prediction risk to the theory of reward learning. 
Ann. N. Y. Acad. Sci 1104, 135–146. [PubMed: 17344526] 

16. Monosov IE (2020). How Outcome Uncertainty Mediates Attention, Learning, and 
DecisionMaking. Trends in Neurosciences 43, 795–809. [PubMed: 32736849] 

17. Grossman CD, Bari BA, and Cohen JY (2020). Serotonin neurons modulate learning rate through 
uncertainty. bioRxiv, 2020.10.24.353508.

18. Hernaus D, Xu Z, Brown EC, Ruiz R, Frank MJ, Gold JM, and Waltz JA (2018). Motivational 
deficits in schizophrenia relate to abnormalities in cortical learning rate signals. Cogn Affect 
Behav Neurosci 18, 1338–1351. [PubMed: 30276616] 

19. Jepma M, Murphy PR, Nassar MR, Rangel-Gomez M, Meeter M, and Nieuwenhuis S. (2016). 
Catecholaminergic Regulation of Learning Rate in a Dynamic Environment. PLOS Computational 
Biology 12, e1005171.

20. McGuire JT, Nassar MR, Gold JI, and Kable JW (2014). Functionally Dissociable Influences on 
Learning Rate in a Dynamic Environment. Neuron 84, 870–881. [PubMed: 25459409] 

21. Iigaya K, Fonseca MS, Murakami M, Mainen ZF, and Dayan P. (2018). An effect of serotonergic 
stimulation on learning rates for rewards apparent after long intertrial intervals. Nat Commun 9, 
2477. [PubMed: 29946069] 

22. Wu X, Wang T, Liu C, Wu T, Jiang J, Zhou D, and Zhou J. (2017). Functions of Learning Rate in 
Adaptive Reward Learning. Front. Hum. Neurosci 11.

23. Constantinople CM, Piet AT, Bibawi P, Akrami A, Kopec C, and Brody CD (2019). Lateral 
orbitofrontal cortex promotes trial-by-trial learning of risky, but not spatial, biases. Elife 8.

24. Jones JL., Esber GR., McDannald MA., Gruber AJ., Hernandez A., Mirenzi A., and Schoenbaum 
G. (2012). Orbitofrontal Cortex Supports Behavior and Learning Using Inferred But Not Cached 
Values. Science 338, 953–956. [PubMed: 23162000] 

25. Miller KJ, Botvinick MM, and Brody CD (2018). Value Representations in Orbitofrontal Cortex 
Drive Learning, but not Choice. bioRxiv, 245720.

26. Namboodiri VMK, Otis JM, Heeswijk K. van Voets ES, Alghorazi RA, Rodriguez-Romaguera J, 
Mihalas S, and Stuber GD (2019). Single-cell activity tracking reveals that orbitofrontal neurons 
acquire and maintain a long-term memory to guide behavioral adaptation. Nat. Neurosci 22, 1110. 
[PubMed: 31160741] 

27. Wilson RC, Takahashi YK, Schoenbaum G, and Niv Y. (2014). Orbitofrontal cortex as a cognitive 
map of task space. Neuron 81, 267–279. [PubMed: 24462094] 

28. Barreiros IV, Panayi MC, and Walton ME (2021). Organization of Afferents along the Anterior–
posterior and Medial–lateral Axes of the Rat Orbitofrontal Cortex. Neuroscience 460, 53–68. 
[PubMed: 33609638] 

29. Morecraft RJ, Geula C, and Mesulam M-M (1992). Cytoarchitecture and neural afferents of 
orbitofrontal cortex in the brain of the monkey. Journal of Comparative Neurology 323, 341–358.

30. Ren J, Friedmann D, Xiong J, Liu CD, Ferguson BR, Weerakkody T, DeLoach KE, Ran C, Pun 
A, Sun Y, et al. (2018). Anatomically Defined and Functionally Distinct Dorsal Raphe Serotonin 
Sub-systems. Cell 175, 472–487.e20.

31. Boehme R, Deserno L, Gleich T, Katthagen T, Pankow A, Behr J, Buchert R, Roiser JP, Heinz 
A, and Schlagenhauf F. (2015). Aberrant Salience Is Related to Reduced Reinforcement Learning 
Signals and Elevated Dopamine Synthesis Capacity in Healthy Adults. J. Neurosci 35, 10103–
10111.

32. Otis JM, Namboodiri VMK, Matan AM, Voets ES, Mohorn EP, Kosyk O, McHenry JA, Robinson 
JE, Resendez SL, Rossi MA, et al. (2017). Prefrontal cortex output circuits guide reward seeking 
through divergent cue encoding. Nature 543, 103–107. [PubMed: 28225752] 

33. Sutton RS, and Barto AG (1998). Introduction to Reinforcement Learning 1st ed. (MIT Press).

34. Bower GH, and Trabasso T. (1964). Concept Identification. In Studies in Mathematical 
Psychology, Atkinson RC, ed. (Stanford University Press).

Namboodiri et al. Page 22

Curr Biol. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



35. Downing BD (1968). Salience and learning rate in concept identification. Psychon Sci 10, 73–74.

36. Siebold A, and Donk M. (2014). On the Importance of Relative Salience: Comparing Overt 
Selection Behavior of Single versus Simultaneously Presented Stimuli. PLOS ONE 9, e99707.

37. Zehetleitner M, Koch AI, Goschy H, and Müller HJ (2013). Salience-Based Selection: Attentional 
Capture by Distractors Less Salient Than the Target. PLoS One 8, e52595.

38. Frank MJ., Doll BB., Oas-Terpstra J., and Moreno F. (2009). Prefrontal and striatal dopaminergic 
genes predict individual differences in exploration and exploitation. Nat Neurosci 12, 1062–1068. 
[PubMed: 19620978] 

39. Galea JM, Mallia E, Rothwell J, and Diedrichsen J. (2015). The dissociable effects of punishment 
and reward on motor learning. Nat. Neurosci 18, 597–602. [PubMed: 25706473] 

40. Gershman SJ (2015). Do learning rates adapt to the distribution of rewards? Psychon Bull Rev 22, 
1320–1327. [PubMed: 25582684] 

41. Kojima S, Yamanaka M, Fujito Y, and Ito E. (1996). Differential Neuroethological Effects of 
Aversive and Appetitive Reinforcing Stimuli on Associative Learning in Lymnaea stagnalis. jzoo 
13, 803–812.

42. Mackintosh NJ (1976). Overshadowing and stimulus intensity. Animal Learning & Behavior 4, 
186–192. [PubMed: 964444] 

43. Slotnick B, and Coppola DM (2015). Odor-Cued Taste Avoidance: A Simple and Robust Test of 
Mouse Olfaction. Chem Senses 40, 269–278. [PubMed: 25787943] 

44. Ader R, Weijnen JAWM, and Moleman P. (1972). Retention of a passive avoidance response as a 
function of the intensity and duration of electric shock. Psychon Sci 26, 125–128.

45. Namboodiri VMK, Hobbs T, Pisanty IT, Simon RC, Gray MM, and Stuber GD (2021). 
Relative salience signaling within a thalamo-orbitofrontal circuit governs learning rate. bioRxiv, 
2020.04.28.066878.

46. Mitchell AS, and Chakraborty S. (2013). What does the mediodorsal thalamus do? Front Syst 
Neurosci 7, 37. [PubMed: 23950738] 

47. Jankowski MM, Ronnqvist KC, Tsanov M, Vann SD, Wright NF, Erichsen JT, Aggleton JP, and 
O’Mara SM (2013). The anterior thalamus provides a subcortical circuit supporting memory and 
spatial navigation. Front Syst Neurosci 7.

48. Izquierdo A, and Murray EA (2010). Functional interaction of medial MD thalamus but not 
nucleus accumbens with amygdala and orbital prefrontal cortex is essential for adaptive response 
selection after reinforcer devaluation. J Neurosci 30, 661–669. [PubMed: 20071531] 

49. Tervo DGR, Hwang B-Y, Viswanathan S, Gaj T, Lavzin M, Ritola KD, Lindo S, Michael S, 
Kuleshova E, Ojala D, et al. (2016). A Designer AAV Variant Permits Efficient Retrograde Access 
to Projection Neurons. Neuron 92, 372–382. [PubMed: 27720486] 

50. Chen T-W, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger 
MB, Jayaraman V, et al. (2013). Ultrasensitive fluorescent proteins for imaging neuronal activity. 
Nature 499, 295–300. [PubMed: 23868258] 

51. Banerjee A, Parente G, Teutsch J, Lewis C, Voigt FF, and Helmchen F. (2020). Valueguided 
remapping of sensory cortex by lateral orbitofrontal cortex. Nature 585, 245–250. [PubMed: 
32884146] 

52. Jennings JH., Kim CK., Marshel JH., Raffiee M., Ye L., Quirin S., Pak S., Ramakrishnan C., and 
Deisseroth K. (2019). Interacting neural ensembles in orbitofrontal cortex for social and feeding 
behaviour. Nature 565, 645–649. [PubMed: 30651638] 

53. Wang PY, Boboila C, Chin M, Higashi-Howard A, Shamash P, Wu Z, Stein NP, Abbott LF, and 
Axel R. (2020). Transient and Persistent Representations of Odor Value in Prefrontal Cortex. 
Neuron 108, 209–224.e6.

54. Hirokawa J, Vaughan A, Masset P, Ott T, and Kepecs A. (2019). Frontal cortex neuron types 
categorically encode single decision variables. Nature 576, 446–451. [PubMed: 31801999] 

55. Kepecs A, Uchida N, Zariwala HA, and Mainen ZF (2008). Neural correlates, computation and 
behavioural impact of decision confidence. Nature 455, 227–231. [PubMed: 18690210] 

56. Masset P, Ott T, Lak A, Hirokawa J, and Kepecs A. (2020). Behavior- and Modality-General 
Representation of Confidence in Orbitofrontal Cortex. Cell 182, 112–126.e18.

Namboodiri et al. Page 23

Curr Biol. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



57. Hayden BY, Heilbronner SR, Pearson JM, and Platt ML (2011). Surprise Signals in Anterior 
Cingulate Cortex: Neuronal Encoding of Unsigned Reward Prediction Errors Driving Adjustment 
in Behavior. J Neurosci 31, 4178–4187. [PubMed: 21411658] 

58. Ballesta S, Shi W, Conen KE, and Padoa-Schioppa C. (2020). Values encoded in orbitofrontal 
cortex are causally related to economic choices. Nature 588, 450–453. [PubMed: 33139951] 

59. Kuwabara M, Kang N, Holy TE, and Padoa-Schioppa C. (2020). Neural mechanisms of economic 
choices in mice. eLife 9, e49669.

60. Coddington LT, and Dudman JT (2018). The timing of action determines reward prediction signals 
in identified midbrain dopamine neurons. Nat. Neurosci 21, 1563–1573. [PubMed: 30323275] 

61. Cohen JY, Haesler S, Vong L, Lowell BB, and Uchida N. (2012). Neuron-type-specific signals for 
reward and punishment in the ventral tegmental area. Nature 482, 85–88. [PubMed: 22258508] 

62. Engelhard B, Finkelstein J, Cox J, Fleming W, Jang HJ, Ornelas S, Koay SA, Thiberge SY, Daw 
ND, Tank DW, et al. (2019). Specialized coding of sensory, motor and cognitive variables in VTA 
dopamine neurons. Nature 570, 509–513. [PubMed: 31142844] 

63. Kobayashi S, and Schultz W. (2008). Influence of reward delays on responses of dopamine 
neurons. J. Neurosci 28, 7837–7846. [PubMed: 18667616] 

64. Gavornik JP, Shuler MGH, Loewenstein Y, Bear MF, and Shouval HZ (2009). Learning reward 
timing in cortex through reward dependent expression of synaptic plasticity. PNAS 106, 6826–
6831. [PubMed: 19346478] 

65. Namboodiri VMK, Huertas MA, Monk KJ, Shouval HZ, and Hussain Shuler MG (2015). Visually 
cued action timing in the primary visual cortex. Neuron 86, 319–330. [PubMed: 25819611] 

66. Kheifets A., Freestone D., and Gallistel CR. (2017). THEORETICAL IMPLICATIONS OF 
QUANTITATIVE PROPERTIES OF INTERVAL TIMING AND PROBABILITY ESTIMATION 
IN MOUSE AND RAT. J Exp Anal Behav 108, 39–72. [PubMed: 28653484] 

67. Stolyarova A, and Izquierdo A. (2017). Complementary contributions of basolateral amygdala and 
orbitofrontal cortex to value learning under uncertainty. Elife 6.

68. Bradfield LA, and Hart G. (2020). Rodent medial and lateral orbitofrontal cortices represent unique 
components of cognitive maps of task space. Neurosci Biobehav Rev 108, 287–294. [PubMed: 
31743727] 

69. Costa VD, and Averbeck BB (2020). Primate Orbitofrontal Cortex Codes Information Relevant for 
Managing Explore–Exploit Tradeoffs. J. Neurosci 40, 2553–2561. [PubMed: 32060169] 

70. Simmons JM, and Richmond BJ (2008). Dynamic changes in representations of preceding and 
upcoming reward in monkey orbitofrontal cortex. Cereb Cortex 18, 93–103. [PubMed: 17434918] 

71. Everitt BJ, Hutcheson DM, Ersche KD, Pelloux Y, Dalley JW, and Robbins TW (2007). The orbital 
prefrontal cortex and drug addiction in laboratory animals and humans. Ann. N. Y. Acad. Sci 1121, 
576–597. [PubMed: 17846151] 

72. Pascoli V, Hiver A, Van Zessen R, Loureiro M, Achargui R, Harada M, Flakowski J, and Lüscher 
C. (2018). Stochastic synaptic plasticity underlying compulsion in a model of addiction. Nature 
564, 366–371. [PubMed: 30568192] 

73. Roesch MR, Esber GR, Li J, Daw ND, and Schoenbaum G. (2012). Surprise! Neural correlates 
of Pearce-Hall and Rescorla-Wagner coexist within the brain. Eur. J. Neurosci 35, 1190–1200. 
[PubMed: 22487047] 

74. Monosov IE, and Hikosaka O. (2012). Regionally Distinct Processing of Rewards and Punishments 
by the Primate Ventromedial Prefrontal Cortex. J. Neurosci 32, 10318–10330.

75. Parent MA, Amarante LM, Liu B, Weikum D, and Laubach M. (2015). The medial prefrontal 
cortex is crucial for the maintenance of persistent licking and the expression of incentive contrast. 
Front Integr Neurosci 9, 23. [PubMed: 25870544] 

76. Gremel CM, Chancey JH, Atwood BK, Luo G, Neve R, Ramakrishnan C, Deisseroth K, Lovinger 
DM, and Costa RM (2016). Endocannabinoid Modulation of Orbitostriatal Circuits Gates Habit 
Formation. Neuron 90, 1312–1324. [PubMed: 27238866] 

77. Groman SM, Keistler C, Keip AJ, Hammarlund E, DiLeone RJ, Pittenger C, Lee D, and Taylor JR 
(2019). Orbitofrontal Circuits Control Multiple Reinforcement-Learning Processes. Neuron 0.

Namboodiri et al. Page 24

Curr Biol. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



78. Holly EN, Davatolhagh MF, Choi K, Alabi OO, Vargas Cifuentes L, and Fuccillo MV (2019). 
Striatal Low-Threshold Spiking Interneurons Regulate Goal-Directed Learning. Neuron 103, 92–
101.e6.

79. Morisot N, Phamluong K, Ehinger Y, Berger AL, Moffat JJ, and Ron D. (2019). mTORC1 in the 
orbitofrontal cortex promotes habitual alcohol seeking. Elife 8.

80. Halassa MM, and Sherman SM (2019). Thalamocortical Circuit Motifs: A General Framework. 
Neuron 103, 762–770. [PubMed: 31487527] 

81. Resendez SL., Jennings JH., Ung RL., Namboodiri VMK., Zhou ZC., Otis JM., Nomura H., 
McHenry JA., Kosyk O., and Stuber GD. (2016). Visualization of cortical, subcortical and 
deep brain neural circuit dynamics during naturalistic mammalian behavior with head-mounted 
microscopes and chronically implanted lenses. Nat Protoc 11, 566–597. [PubMed: 26914316] 

82. Otis JM, Zhu M, Namboodiri VMK, Cook CA, Kosyk O, Matan AM, Ying R, Hashikawa 
Y, Hashikawa K, Trujillo-Pisanty I, et al. (2019). Paraventricular Thalamus Projection Neurons 
Integrate Cortical and Hypothalamic Signals for Cue-Reward Processing. Neuron 103, 423–
431.e4.

83. Zuiderveld K. (1994). Contrast limited adaptive histogram equalization. In Graphics gems IV 
(Academic Press Professional, Inc.), pp. 474–485.

84. Namboodiri VMK (2021). What is the state space of the world for real animals? bioRxiv, 
2021.02.07.430001.

85. Kaifosh P, Zaremba JD, Danielson NB, and Losonczy A. (2014). SIMA: Python software for 
analysis of dynamic fluorescence imaging data. Front Neuroinform 8, 80. [PubMed: 25295002] 

Namboodiri et al. Page 25

Curr Biol. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



HIGHLIGHTS

• Novel approach to test if neural activity abides by learning rate control.

• Outcome response in orbitofrontal cortex is consistent with learning rate 

control.

• OFC outcome response signals relative salience of an outcome.

• Medial thalamic input to OFC causally mediates encoding in OFC.
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Figure 1: Theoretical test for learning rate control
A. Schematic showing that during cue-reward learning, the update in cue value on a trial 

from the previous trial is the RPE on the previous trial multiplied by the learning rate on the 

previous trial. This relationship implies that the sign of the dependence between cue value 

update and learning rate on a trial is the same as the sign of the RPE on that trial.

B. Theoretical prediction for the dependence between trial-by-trial update in cue value on 

consecutive trials, and trial-by-trial fluctuations in different variables, for positive RPE trials. 

When RPE is positive, an increase in learning rate would cause a proportional increase in 

cue value. When RPE is positive, an increase in either outcome value or RPE would also 

cause an increase in cue value.

C. Theoretical prediction for the dependence between trial-by-trial update in cue value 

on consecutive trials, and trial-by-trial fluctuations in different variables, for negative RPE 

trials. When RPE is negative, an increase in learning rate would cause a decrease in cue 

value. This is because the learning rate modulates the magnitude of the cue value update in 

the direction of the RPE. On the other hand, when RPE is negative, an increase in either 

outcome value or RPE would still cause an increase in reward prediction. This is because 

the slope for the relationship between RPE or outcome value and cue value update, is the 

learning rate, a positive quantity.
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D. Simulation of a temporal difference learning agent that sets learning rate to a constant 

with some added noise. In this learning agent, we calculate the correlation between learning 

rate on a given trial and the subsequent update of cue value.

E. Results of simulations on positive and negative RPE trials during cue-reward learning 

when reward probability was set to 50%. The schematized predictions from B and C are 

verified in these simulations. Both learning rate and cue value update are z-scored similar to 

that shown in B and C, since the primary outcome of interest is the sign of the correlation. 

Please note that low learning rates produce minimal cue value updates for both positive and 

negative RPEs, even though the z-scores are divergent.

F. Summary of results from E calculated by binning z-scores of learning rate. Simulations 

for more various other scenarios are plotted in Figure S1.
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Figure 2: Trial-by-trial fluctuations in vmOFC reward responses reflect learning rate control
A. Differential trace conditioning task in headfixed mice 26,32.

B. Behavior early and late in learning. Early session was defined as the first day of learning 

and late session as the day when anticipatory licking in response to CS+ was high and stable 

(Materials and Methods) 26. Cue discrimination was measured as two times the area under 

a receiver operator characteristic curve between lick counts after CS+ and lick counts after 

CS−, minus one (Materials and Methods) 26.

C. Schematic showing that in a session with reward probability of 50%, RPE will be positive 

on rewarded trials and negative on unrewarded trials.

D. The change in anticipatory licking on consecutive CS+ trials (potentially with interceding 

CS− trials) is reliably positive after rewarded CS+ trials (positive RPE) and negative after 

unrewarded CS+ trials (negative RPE) (n=34 sessions from n=12 imaging mice). Thus, 

update in anticipatory licks can be used to estimate update in cue value. See Table S1 for all 
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statistical results in the manuscript for all figures, including all statistical details and sample 

sizes.

E. A potential concern is that receiving reward on a CS+ trial might increase general 

motivation to lick on the next trial, independent of cue value learning. If true, CS− trials 

immediately following a rewarded CS+ trial should show higher licking compared to 

CS− trials immediately following an unrewarded CS+ trial. This panel plots the update 

in anticipatory licking on CS− trials based on whether the immediately preceding CS+ trial 

was rewarded or unrewarded. The lack of licking update shows that the effect in D is not 

a learning independent motivation signal. See Figure S2 for evidence of motivation signals 

during the pre-cue baseline period.

F. Schematic showing the recording of vmOFC activity using two-photon microendoscopic 

calcium imaging.

G. Data from an example neuron showing the dependence between trial-by-trial update in 

anticipatory licking on CS+ trials, and trial-by-trial fluctuations in response on rewarded 

trials (positive RPE) and unrewarded trials (negative RPE). The lines show the best fit 

regression in each condition. The observed relationship is as expected if vmOFC controls 

learning rate on a trial-by-trial basis.

H. Z-scored, pooled, and binned data across all vmOFC neurons to visualize the dependence 

between trial-by-trial response fluctuations and licking update for the population of vmOFC 

neurons on positive and negative RPE trials. Each neuron’s data were z-scored separately for 

each axis, all z-scored data were then pooled, and binned into the four bins shown in the 

plot. Error bars are standard error of the mean. These data are shown purely for an intuitive 

visualization of the average relationship between these variables in the vmOFC population.

I. Statistical quantification of the average slope between reward response on a trial and 

licking update on the next trial across all neurons on both positive and negative RPE trials. 

No z-scoring was performed here to avoid assigning an equal weight to neurons with low or 

high trial-by-trial variability in responses.
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Figure 3: Reward responses of some vmOFC neuronal subpopulations reduce after reward 
prediction learning
A. Peri-Stimulus Time Histograms (PSTHs) of GCaMP6s fluorescence early and late in 

learning for all vmOFC neurons expressing CaMKIIα (excitatory neurons). All recorded 

neurons from both timepoints are shown.

B. Average PSTH across all recorded neurons early and late in learning

C. General Linear Model (GLM) coefficients for reward response early and late in learning 

from those neurons that were longitudinally tracked between these sessions (Materials and 

Methods) 26 (n = 1,590 tracked neurons). We performed the GLM analyses on deconvolved 

fluorescence traces to remove lick response confounds and the slow decay of GCaMP6s 

dynamics 26. The dashed line is the identity line where responses early and late are equal. 

The average response early and late is indicated by the red asterisk. On an average, the 

neuronal response to reward reduces significantly after reward prediction learning.

D. PSTHs of GCaMP6s fluorescence early and late in learning for nine subpopulations 

identified using a clustering of late responses 26. Each line corresponds to the average of 

CS+ PSTH across all neurons within a cluster (see text for rationale). The identification 

of neuronal subpopulations within CaMKIIα expressing vmOFC neurons using clustering 

algorithms, and the PSTHs late in learning, were published previously 26. The top row 
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shows responses time locked to cue onset and the bottom row shows responses time locked 

to reward consumption. Clusters 1 and 3 reverse the sign of their reward responses from 

positive (i.e. greater than baseline) early in learning to negative (i.e. less than baseline) late 

in learning. Error shadings correspond to confidence intervals.

E. Cumulative distribution function for General Linear Model (GLM) coefficients for reward 

response early and late in learning (Materials and Methods) 26. The y-axis effectively 

percentiles the responses shown on the x-axis. So, a reduction in reward response late in 

learning causes a leftward shift in the curves. These results demonstrate positive reward 

responses in all clusters early in learning, but negative reward responses in some clusters (1, 

3, 7, 8 and 9) late in learning, showing a flip in sign.
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Figure 4: Unpredicted reward responses of vmOFC subpopulations reduce in a context 
containing a highly salient aversive stimulus.
A. Schematic of unpredicted sucrose and quinine delivery. Unpredicted sucrose (10%) 

and quinine (1.5–2.5 mM) are delivered pseudorandomly in a 3:1 ratio (Methods). In this 

experiment, licks are necessary to sample the liquid.

B. Raster plot of licking (black ticks) from an example behavioral session from one animal. 

Animals lick at high rates after sucrose delivery, but immediately stop licking after sampling 

quinine deliveries.

C. Average lick rate across all animals and sessions (n=26 sessions from n=11 imaging 

mice). The histograms are time-locked to liquid delivery.
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D. The average PSTH for sucrose and quinine responses for all OFC-CaMKII neurons 

(n=3,716 neurons from 5 mice), aligned to the first lick after liquid delivery (i.e. initiation 

of consumption). The line graphs at the bottom show the average across all neurons within a 

cluster. The cyan line shows the average response of each cluster to reward early in learning 

aligned to first lick after liquid delivery (same as in Figure 3A). Responses of OFC→VTA 

neurons are shown in Figure S4.

E. Cumulative distribution function for fluorescence responses to unpredicted sucrose in the 

sucrose and quinine session, and the sucrose responses early in learning. In this case, since 

the response is evidently dissociated from licking (see text), we did not perform a GLM 

analysis.

F. Cumulative distribution function for reward response for all vmOFC neurons for the 

sucrose quinine session and another control session in which unpredicted rewards were 

delivered during conditioning after learning (“Background” session in 26). The positive 

responses to unpredicted sucrose without quinine after learning further supports the positive 

unpredicted sucrose responses observed early in learning (shown in D, E). Positive 

unpredicted sucrose responses in the absence of quinine are also replicated in two separate 

cohorts in Figure S4.

G. Cumulative distribution function for fluorescence responses to unpredicted sucrose in the 

sucrose and quinine session prior to the first ever experience of unpredicted quinine, and 

responses to unpredicted sucrose after the first experience of unpredicted quinine within the 

same session (i.e. same neurons). The average response of vmOFC neurons reduces after the 

first experience of quinine (i.e. leftward shift in curves). Note that these data only include 

the neurons that were recorded from the first sucrose and quinine session to only include 

trials before the first ever experience of quinine by the animals. Note also that the number of 

trials prior to the first experience of quinine is quite low (n = 2.6 trials on average), adding to 

the variability of responses in this condition.
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Figure 5. Reward responses of the longitudinally tracked neurons are correlated across three 
conditions:
Top row shows example longitudinally tracked neurons. Here, the intensity of a pixel 

corresponds to activity and hence, different brightness across sessions corresponds 

to different activity levels. The bottom row shows the peri-event histograms of all 

longitudinally tracked neurons. Each row in this heatmap across the different conditions 

corresponds to the same neuron. Neurons are sorted by their average activity early in 

learning. These data show that response to reward is correlated across all conditions 

(quantified in Table S1). For instance, the neurons that show the lowest amount of activity 

early in learning tend to be the neurons that show inhibitory reward responses late in 

learning or in the sucrose and quinine experiment (correlations quantified in Table S1). 

Please note that the responses of some neurons are saturated in the color map to ensure that 

the response patterns of most neurons are visible.

Namboodiri et al. Page 35

Curr Biol. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6: Medial thalamus (mThal) conveys reward responses to vmOFC and shows qualitatively 
similar reward response adaptation as vmOFC neurons.
A. Surgery schematic for retrograde anatomical tracing, showing injections of either 

retrogradely traveling virus (AAV2retro) or Cholera Toxin-B (CTB).

B. mThal cell bodies projecting to OFC counted using CTB and AAV2retro labeling. 

Representative images show AAV2retro expression (see Figure S6 for CTB expression). 

Top 5 thalamic regions are shown. See Figure S6 for counts in all thalamic nuclei, split by 

AAV2retro and CTB injections. AM: Anteromedial, MD: Mediodorsal, CM: Centromedial, 

Rh: Rhomboid, VM: Ventromedial. Scale bar = 50 μm.

C. Surgery schematic for mThal axon imaging in vmOFC.

D. Example zoomed-in mThal axon standard deviation projection image showing individual 

axons in vmOFC. The scale bar corresponds to 10 μm.

E. Example mThal GCaMP traces from individual axonal regions of interest (ROIs) 

(Methods).

F. Heat maps show trial-averaged responses from individual axon ROIs (do not necessarily 
correspond to distinct axons, see Figure S6 and Methods for details and interpretation) 

to unpredicted sucrose alone (left) or unpredicted sucrose and quinine (right, similar 

experiment as Figure 4A). The bottom traces show the average responses across all 

segmented mThal axon ROIs aligned to the first lick after liquid delivery (dashed line). The 

same animals (n=3) were used under all conditions, to be directly comparable; see Figure S6 
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for data from two more animals in the sucrose only condition. Mean sucrose response across 

the population is lower in the session with quinine compared to the session without quinine. 

The statistical test was applied using the mean fluorescence across all ROIs per animal as an 

independent measure. This adaptation is qualitatively similar to that seen in some vmOFC 

clusters (Figure 4).
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Figure 7: Medial thalamic input to vmOFC guides vmOFC reward response adaptation.
A. Schematic of mThal inhibition while imaging vmOFC CaMKIIα expressing neurons. 

Top shows surgery schematic and bottom shows experiment schematic.

B. Example neurons showing effect of mThal inhibition on unpredicted sucrose responses. 

Left neuron shows an increase in activity due to mThal inhibition, whereas the right neuron 

shows a decrease in activity. Frames around LED illumination were masked out (shown as 

white) to prevent light artifacts in imaging.

C. PSTH of cluster 1 showing effect of mThal inhibition on sucrose and quinine responses.
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D. Empirical cumulative distribution functions showing average fluorescence with and 

without LED for individual neurons within each cluster for sucrose and quinine responses 

(n=1,645 neurons in total from 3 mice). This shows the full distribution of the population 

responses, with a rightward shift signifying an increase in activity. Here, the red shadings 

correspond to clusters showing significant mean effect on their sucrose responses.

E. Cluster-wise relationship between relative salience signaling (measured by suppression 

in reward response due to the presence of quinine, Figure 4) and effect of mThal inhibition 

on sucrose response (i.e., change in sucrose response due to LED as shown in D minus 

the change in spontaneous response due to LED as shown in Figure S7). There is a strong 

positive correlation (~50% explained variance).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

chicken anti-GFP antibody (1:500 dilution) Aves Lab #GFP-1020

donkey anti-chicken secondary antibody (1:1000 dilution) Jackson Immunoresearch #703-545-155

Bacterial and virus strains

AAVDJ-CaMKIIα-GCaMP6s (effective titer of ~1–2×1012 infectious units 
per mL)

UNC Vector Core NA

AAV5-CaMKII-eNpHR3.0-mCherry (~4×1012 infectious units per mL) UNC Vector Core NA

AAV5-CaMKIIα-mCherry (~4×1012 infectious units per mL) UNC Vector Core NA

rAAV2retro-hSyn-eYFP (~2×1012 infectious units/mL) UNC Vector Core NA

Biological samples

Chemicals, peptides, and recombinant proteins

Cholera Toxin subunit B conjugated with AlexaFluor 488 (CTB-488) Molecular Probes NA

Critical commercial assays

Deposited data

Imaging and behavioral data for clustering This paper 10.5281/zenodo.5507624

Experimental models: Cell lines

C57BL mice Jackson Laboratory NA

Experimental models: Organisms/strains

Oligonucleotides

Recombinant DNA
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REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Calcium imaging data analysis scripts (Python) This paper 10.5281/zenodo.5507624

ImageJ NIH https://imagej.nih.gov/ij

Python 2.7 Anaconda https://www.anaconda.com/

SIMA v1.3 85 https://github.com/losonczylab/sima

Temporal difference learning simulations This paper 10.5281/zenodo.5507624

Other
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