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M I C R O B I O L O G Y

Systemic inflammation and metabolic disturbances 
underlie inpatient mortality among ill children 
with severe malnutrition
Bijun Wen1,2†, James M. Njunge3,4†, Celine Bourdon2,3, Gerard Bryan Gonzales5, Bonface M. Gichuki3,4, 
Dorothy Lee2, David S. Wishart6, Moses Ngari3,4, Emmanuel Chimwezi3, Johnstone Thitiri3,4, 
Laura Mwalekwa4,7, Wieger Voskuijl3,8,9, James A. Berkley3,4,10‡, Robert HJ Bandsma1,2,3,9,11*‡

Children admitted to hospital with an acute illness and concurrent severe malnutrition [complicated severe 
malnutrition (CSM)] have a high risk of dying. The biological processes underlying their mortality are poorly 
understood. In this case-control study nested within a multicenter randomized controlled trial among children 
with CSM in Kenya and Malawi, we found that blood metabolomic and proteomic profiles robustly differentiated 
children who died (n = 92) from those who survived (n = 92). Fatalities were characterized by increased energetic 
substrates (tricarboxylic acid cycle metabolites), microbial metabolites (e.g., propionate and isobutyrate), acute 
phase proteins (e.g., calprotectin and C-reactive protein), and inflammatory markers (e.g., interleukin-8 and tumor 
necrosis factor–). These perturbations indicated disruptions in mitochondria-related bioenergetic pathways and 
sepsis-like responses. This study identified specific biomolecular disturbances associated with CSM mortality, 
revealing that systemic inflammation and bioenergetic deficits are targetable pathophysiological processes for 
improving survival of this vulnerable population.

INTRODUCTION
Severe malnutrition is a public health problem affecting over 
16 million children in low- and middle-income countries (1). It is 
associated with increased risk of mortality due to infectious diseases, 
including pneumonia and diarrhea, and accounts for nearly half of 
global deaths in children under 5 years (1). Complicated severe 
malnutrition (CSM) is defined as having one or more Integrated 
Management of Childhood Illness clinical danger signs, evidence of 
infection, severe edema, or unable to sufficiently feed, in addition to 
being severely malnourished (2). Children with CSM are primarily 
admitted to hospital because of acute illnesses, including serious in-
fections, and are often only identified as severely malnourished at 
that time. The World Health Organization (WHO) guidelines for 
management of children with severe malnutrition recommend 
empiric antibiotics, treatment of other medical conditions, and cor-
rection of nutritional deficiencies through therapeutic feeding (2).

Despite following WHO guidelines, reported inpatient mortality 
of children with CSM ranges 8 to 25% in African hospitals (3). 
Characteristics associated with increased risk of death, including HIV, 
young age, and very low anthropometry, are relevant for clinical 

management but do not indicate specific pathophysiological mech-
anisms that could be therapeutically targeted.

CSM is associated with substantial disturbances in metabolism, 
including altered protein and lipid metabolism, and increased sus-
ceptibility to dysglycemia (4–7). Comparing metabolic profiles of 
sick children with CSM before and after medical and nutritional 
stabilization, Bartz et al. (4) demonstrated that the metabolome at 
admission is characterized by high circulating levels of nonesterified 
fatty acids, ketones, even-chain acylcarnitines, and low levels of 
amino acids. Derangements in specific amino acids, acylcarnitines, 
and phospholipids corroborated studies comparing CSM to non-
malnourished hospitalized children or community controls (5, 6). 
Limited data from children and animal models indicate that these 
disturbances could be attributed to impairments in nutrient utilization 
and mitochondrial function (7–11). Mitochondria are bioenergetic 
organelles responsible for -oxidation, tricarboxylic acid (TCA) cycle, 
and oxidative phosphorylation, which are vital processes of con-
verting nutrients into ATP to support normal cellular functions. In 
a malnutrition rat model, malnutrition alone impairs mitochondrial 
function, reducing the capacity to oxidize free fatty acids (11).

Although disturbed energy metabolism has been described, its 
relationship with survival among children with CSM has not been 
explicitly demonstrated. To our knowledge, only two small studies 
have reported biomolecular perturbations in CSM related to death 
(4, 12). Bartz et al. (4) reported that low levels of leptin at admission 
were a predictor of subsequent inpatient mortality. However, except 
for leptin, other biomolecular markers quantified in this study were 
not associated with mortality when adjusted for confounders. Cir-
culating leptin reflects fat mass reserve with immune regulatory 
functions; it is unclear whether the observed difference was related to 
differences in body composition or recent food intake between sur-
vivors and nonsurvivors. Another small study from our own group 
demonstrated that increased systemic inflammatory markers were 
associated with inpatient mortality among children with CSM (12).
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A hallmark of infection is stimulation of host catabolism and 
activation of inflammatory responses, which are nutritionally costly 
bioenergetic processes (13). Dysregulation in host immune responses 
can lead to a sepsis syndrome, a life-threatening condition. A recent 
meta-analysis among well-nourished populations from high-resource 
countries identified that sepsis nonsurvivors had impaired energy 
metabolism, uncontrolled inflammation, proteolysis, and defects in 
organ healing (14). However, in the context of CSM, the rela-
tionship between host response to infection and mortality has not 
been characterized.

We postulated that the interplay between metabolic disturbances 
in energy metabolism and overwhelming host response to infection 
are central drivers of inpatient mortality in childhood CSM. To ex-
amine this hypothesis, we characterized biological processes associated 
with inpatient mortality among children with CSM using a multiomics 
case-control approach.

RESULTS
Characteristics of participants
Participants’ characteristics at enrolment are detailed in Table 1. 
Children included in this matched case-control study had a median 
age of 15 months [interquartile range (IQR): 9 to 27] and 45% were 
female. The median time to death was 6 days (IQR: 4 to 9), and time 
to discharge was 8 days (IQR: 6 to 11) after hospital admission. 
Anthropometric, demographic, and clinical characteristics were 
similar between nonsurvivors (NS) and survivors (S). Besides being 
severely wasted, most children were severely stunted. The prevalence 
of most clinical features was similar between groups, although non-
survivors more often had lower chest indrawing (P < 0.001) and 
diarrhea (P = 0.02). Participants in this nested study were represent-
ative of children from the F75 trial.

Metabolomic derangements at admission are associated 
with mortality
Of the 206 targeted metabolites, 144 met quality control criteria and 
were retained for analysis (table S1). Univariate analysis identified 
21 metabolites as the top significant analytes between NS and S at 
PFDR < 0.01 (Fig. 1A and table S2). In multivariable analysis, 14 me-
tabolites were selected by elastic net as influential analytes (Fig. 1B). 
For completeness, we considered the union of the top significant 
analytes (PFDR < 0.01) and the multivariable influential analytes as 
differential analytes, yielding a total 32 differential metabolites 
(fig. S1A). For matched case-control pairs, these 32 differential 
metabolites confidently discriminated NS from S [area under the 
receiver-operating characteristic curve (AUC) = 0.96, 95%CI: (0.95 
to 0.96); Fig. 1C]. The admission metabolome of NS was predomi-
nantly characterized by elevated levels of organic acids [isobutyrate, 
propionate, butyrate, homovanillate (HVA), fumarate, urate, and 
pyruvate], creatinine, and acetylcarnitine (C2), and reduced levels 
of 14 long-chain lysophospholipid (lysoPC), sphingolipid (SM), and 
phospholipid (PC) species (lysoPC a C16:0, lysoPC a C16:1, lysoPC a 
C17:0, lysoPC a C18:0, lysoPC a C18:1, lysoPC a C18:2, lysoPC a C20:3, 
lysoPC a C20:4, SM C24:0, SM C26:0, SM C26:1, SM(OH)C22:1, 
PCaaC42:2, and PCaeC40:2), as shown by the partial least squares (PLS)- 
correlation plot (Fig. 1D). These data indicate that increased levels of 
specific organic acids together with depletion of long-chain lipids 
were associated with mortality. Boxplots comparing concentrations 
of these metabolites between groups and also healthy community 

subjects are shown in fig. S2. Consistent findings were found with 
edema or weight-for-height Z-score (WHZ) adjusted (fig. S3).

Altered energy metabolism is associated with mortality
Among 144 measured metabolites, 103 were annotated in the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database and were used 
for pathway analysis (table S1). Nonannotated metabolites were pre-
dominantly phospholipids as expected. Five metabolic pathways were 
most strongly affected by the differential metabolomics [pathway im-
pact > 0.2 and −log(P) > 5], including (i) pyruvate metabolism; (ii) 
arginine biosynthesis; (iii) the TCA cycle pathway; (iv) alanine, asparate, 
and glutamate metabolism; and (v) arginine and proline metabolism 
(Fig. 2A). Moreover, levels of several metabolite ratios were differ-
entially affected. Fischer’s ratio [branched chain amino acids (BCAA)/
tyrosine and phenylalanine], which has been used as an indicator of 
liver metabolic function, and total urea cycle amino acids (citrul-
line, ornithine, arginine, and aspartate) were significantly lower in NS 
(Fischer’s fold change = 0.8, PFDR = 0.02; urea cycle fold change = 0.8, 
PFDR = 0.03; fig. S2). The ratios of acetylcarnitine to carnitine (C2/
C0) that mark -oxidation activity and those of kynurenine to trypto-
phan that indicate systemic immune activation were significantly ele-
vated among NS (C2/C0 fold change = 1.6, PFDR = 0.01; kynurenine/
tryptophan fold change = 1.4, PFDR = 0.04; fig. S2).

If the underlying state of the metabolic system were different 
between NS and S, in addition to changes in average metabolite 
abundances, the correlation patterns among metabolites would 
expectedly be differentially affected, whether the correlations be-
come stronger or weaker (15). Therefore, we compared metabolite- 
metabolite correlation patterns between NS and S, focusing on 
amino acids, biogenic amides, acylcarnitines, and organic acids, given 
their central roles in nutrient oxidation. A differential correlation 
network was revealed (Fig. 2B), which illustrates global differences 
in metabolism between NS and S. In this network, positively inter-
correlated amino acids densely clustered together. Among NS, these 
correlations were markedly weakened (dashed edges), with BCAA, 
arginine, and tyrosine showing the highest number of differential 
correlations (high node degrees), substantiating perturbations in 
the metabolism among these amino acids. For example, the positive 
correlations between amino acids in the urea cycle observed in S were 
significantly weakened in NS (arginine-ornithine: rS = 0.7, rNS = 0.1, 
and P∆r < 0.0001; citrulline-arginine: rS = 0.4, rNS = 0.04, and 
P∆r = 0.03). It is worth noting that meaningful changes in metabolite- 
metabolite correlations are not necessarily confined to adjacent 
metabolites in a pathway or metabolites with mean concentration 
changes (15). Tyrosine is upstream of dopamine biosynthesis, whereas 
HVA is an end product of dopamine degradation. Increased posi-
tive correlation of tyrosine with HVA in NS compared to S (P∆r = 
0.02) may suggest differential regulation of this pathway (fig. S4). 
Moreover, although the average concentration of hexoses did not 
differ between NS and S, the correlations between hexoses and 
TCA metabolites (-ketoglutarate, -hydroxybutyrate, and fumarate) 
were altered. In particular, hexoses were tightly maintained at a con-
stant level irrespective of TCA metabolite levels in S, whereas hexoses 
were negatively correlated with TCA metabolite levels in NS 
(fig. S4).

Overall, NS exhibited changes in mean concentrations and 
underlying correlation patterns of metabolites involved in specific 
amino acids and central energy utilization pathways. A schematic 
map of death-related metabolic alterations overlaid on the impacted 
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Table 1. Characteristics of study participants.  

Trial participants Nested case-control participants

Nonsurvivors 
(n = 127) Survivors (n = 653) P Nonsurvivors  

(NS; n = 92)
Survivors  
(S; n = 92) P

Age (months)†, 
means ± SDs 21.4 ± 16.6 22.7 ± 18.7 0.45 21.3 ± 17.7 21.2 ± 15.3 0.95

Gender (female), (%) 64 (50.4%) 296 (45.3%) 0.30 42 (45.7%) 42 (45.7%) 1.00

Anthropometric and nutritional features

MUAC (cm)†, 
means ± SD 10.7 ± 1.6 11.3 ± 1.4 <0.001 * 10.7 ± 1.6 10.9 ± 1.4 0.41

WHZ, means ± SD −3.8 ± 1.5 (n = 120) −3.2 ± 1.5 (n = 617) <0.001 * −3.8 ± 1.6 (n = 86) −3.4 ± 1.6 (n = 90) 0.16

WAZ, means ± SD −4.3 ± 1.4 651; −3.9 ± 1.4 <0.001 * −4.4 ± 1.4 −4.2 ± 1.4 0.28

HAZ, means ± SD −3.3 ± 1.7 (n = 124) −3.0 ± 1.7 (n = 652) 0.07 −3.4 ± 1.8 (n = 89) −3.3 ± 1.6 0.76

BMIZ, means ± SD −3.2 ± 0.9 (n = 4) −3.3 ± 2.1 (n = 34) 0.96 −3.3 ± 1.1 (n = 3) −4.2 ± 0.1 (n = 2) 0.33

Nutritional edema 
present, n (%) 47 (37.0%) 199 (n = 650, 30.6%) 0.16 29 (31.5%) 26 (28.3%) 0.63

Clinical features

HIV antibody test†, n 
(%)

Positive 47 (37.0%) 122 (18.7%) 35 (38.0%) 36 (39.1%)

Refused/died before 
testing 16 (12.6%) 24 (3.7%) <0.001 * 12 (13.0%) 12 (13.0%) 0.99

Diarrhea, n (%) 61 (48.0%) 267 (40.9%) 0.14 45 (48.9%) 30 (32.6%) 0.02 *

Severe pneumonia, n 
(%) 40 (31.5%) 153 (23.4%) 0.05 33 (35.9%) 22 (23.9%) 0.08

Chest indrawing 39 (30.7%) 105 (16.1%) <0.001 * 33 (35.9%) 13 (14.1%) <0.001 *

Fever, n (%) 36 (28.3%) 180 (27.6%) 0.86 31 (33.7%) 22 (23.9%) 0.14

Vomiting, n (%) 32 (25.2%) 183 (28.0%) 0.52 26 (28.3%) 18 (19.6%) 0.17

Impaired 
consciousness,  
n (%)

10 (7.9%) 18 (2.8%) 0.01 * 5 (5.4%) 2 (2.2%) 0.25

Cerebral palsy, n (%) 17 (13.4%) 99 (15.2%) 0.61 12 (13.0%) 15 (16.3%) 0.54

Chronic cough, n (%) 6 (4.7%) 44 (6.7%) 0.40 5 (5.4%) 10 (10.9%) 0.18

Hypothermia, n (%) 8 (6.3%) 35 (5.4%) 0.67 6 (6.5%) 8 (8.7%) 0.58

Convulsions, n (%) 7 (5.5%) 30 (4.6%) 0.66 6 (6.5%) 1 (1.1%) 0.05

Malaria, n (%) 6 (4.7%) 57 (8.7%) 0.13 4 (4.3%) 5 (5.4%) 0.73

Tuberculosis, n (%) 4 (3.1%) 12 (1.8%) 0.34 3 (3.3%) 3 (3.3%) 1.00

Anemia, n (%) 4 (3.1%) 22 (3.4%) 0.90 4 (4.3%) 2 (2.2%) 0.41

Original trial features

Recruitment site,  
n (%)

Kilifi County Hospital 23 (18.1%) 156 (23.9%) 23 (25.0%) 21 (22.8%)

Coast Provincial 
General Hospital 40 (31.5%) 250 (38.3%) 36 (39.1%) 43 (46.7%)

Queen Elizabeth 
Central Hospital 64 (50.4%) 247 (37.8%) 0.03 * 33 (35.9%) 28 (30.4%) 0.58

Randomization arm 
(modified F75), n 
(%)

68 (53.5%) 322 (49.3%) 0.38 50 (54.3%) 41 (44.6%) 0.19

†Factors used in propensity score matching of case-controls. *P < 0.05.



Wen et al., Sci. Adv. 8, eabj6779 (2022)     16 February 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

4 of 14

pathways is shown in Fig. 2C. It can be noted that, in NS, reductions 
of amino acids were accompanied by accumulations of downstream 
catabolic products (i.e., TCA cycle metabolites), implying obstruc-
tions in complete nutrient oxidation.

Acute phase and inflammatory responses are associated 
with mortality
We next compared the levels of 229 quantified untargeted proteins 
between NS and S. In univariate analysis, 10 proteins had altered levels 
between NS and S (Fig. 3A). Among NS, subunits of calprotectin 
(S10A8/S10A9), C-reactive protein (CRP), von Willebrand factor 
(vWF), and angiotensinogen (AGT; Q86U78) were increased, while 
histidine-rich glycoprotein (HRG; B2R8I2), complement component 
4 binding protein (C4BPB), antithrombin (Serpin C1), and heparin 
cofactor 2 (Serpin D1) were decreased (table S3). In multivariable 

elastic net analysis, 15 proteins were selected as influential analytes 
in distinguishing NS from S including CRP, AGT, and HRG proteins 
identified by the univariate analysis (Fig. 3B). Other proteins selected 
included coagulation factor X (Q5JVE7), macrophage-stimulating 1 
(Q53GN8), coagulation factor XI (FA11), vitamin D-binding–protein 
(VTDB), quiescin sulfhydryl oxidase 1 (QSOX1), and immunoglobulins. 
Discriminant performance of these 22 differential analytes yielded 
an AUC of 0.86 [95% confidence interval (CI): (0.86 to 0.87)] 
(Fig. 3C). Consistent findings were found with edema or WHZ ad-
justed (fig. S3).

Biological process enrichment analysis indicated that several pro-
cesses were positively linked to mortality, including coagulation, 
neutrophil aggregation, chemokine and cytokine production, posi-
tive regulation of peptide secretion, and defense responses to fungi, 
among others (Fig. 3D). Since we had hypothesized that systemic 
inflammation could be related to inpatient mortality in children 
with CSM, we quantified chemokines and cytokines involved in in-
flammation in plasma. Eight inflammatory mediators distinguished 
NS and S (P < 0.05; Fig. 3E). Specifically, NS had significantly higher 
levels of proinflammatory cytokines tumor necrosis factor– (TNF), 
interleukin-7 (IL7), IL8, IL15, granulocyte colony-stimulating factor 
(GCSF), and chemokine (C-C motif) ligand 2 (MCP1), and lower 
levels of macrophage inflammatory protein 1b and IL4, indicating 
that mortality was associated with elevated systemic markers of in-
flammation in children with CSM.

Integrative analysis reveals correlations between 
inflammatory markers and SCFAs and lysophospholipids 
associating with mortality
We investigated whether the 32 differential metabolites and 22 pro-
teins could be mapped on known metabolome-proteome reaction 
models using the IMPALA (Integrated Molecular Pathway Level 
Analysis) database. However, no direct common pathways and 
interactions were found.

We next performed cross-correlation analysis on the differential 
metabolites, proteins, and inflammatory mediators. Hierarchical 
clustering recapitulated biochemical class memberships of the 
analytes (Fig. 4A). For instance, lipids correlated with each other to 
form a cluster, while inflammatory mediators clustered together 
with the acute phase protein CRP and calprotectin (S100A8/A9). 
Several organic acids coclustered with the inflammatory mediators, 
including the three highly elevated SCFAs in the NS. These SCFAs 
appeared to be most prominently correlated with cytokine IL8, a 
key cytokine involved in neutrophil recruitment and degranulation. 
Given that SCFAs are microbial products and the role of IL8 in host 
response to bacterial infections, we examined the relationship be-
tween pooled SCFA (sum of propionic, isobutyric, and butyric 
acids) and IL8. As shown in Fig. 4B, children with higher pooled 
SCFA levels had higher IL8 levels (r = 0.3, P < 0.0001). We noted 
that 30% of the children with pooled SCFA and IL8 levels above the 
medians had been recorded as suspected sepsis cases by admitting 
clinicians, compared to only 8% suspected sepsis cases among those 
with either pooled SCFA or IL8 levels below the medians.

While correlations consistent in both groups may represent con-
served analyte interactions, differences in group-specific correlations 
reflect changes in the underlying pathophysiology. Differences in 
within- and between-class correlations were observed between NS 
and S. A number of within-class correlations were altered among 
NS, typified by reduced protein-protein correlations and increased 

Fig. 1. Metabolomic signatures associated with mortality. (A) Volcano plot of 
144 measurable metabolites. Top significant metabolites between NS and S are 
above the dashed line (PFDR < 0.01). Yellow and blue circles correspond to elevated 
and reduced levels in NS compared to S, respectively. (B) Frequency of metabolite 
selection by the elastic net multivariate analysis. Bars correspond to the percentage 
of the respective metabolite being selected by the model out of the 200 bootstrap 
samples. Influential metabolites are those selected >70% (dashed line) of times, 
with bar color denoting mean concentration higher (yellow) or lower (blue) in NS 
compared to S. (C) Score plot of individuals (NS in yellow; S in blue) clustered by 
multilevel partial least square discriminant analysis (PLS-DA) of 32 differential 
metabolites. The interface between the white and the gray shaded area represents 
the classification decision line. The first two components explained 42% of the total 
variance. Model performance and validity measures were as follows: cross-validated 
AUC = 0.96 ± 0.006, misclassification rate = 0.12 ± 0.01, DR2 = 0.74 ± 0.001 and DQ2 = 
0.63 ± 0.02. (D) Correlations between the 32 differential metabolites and PLS com-
ponents. Arrows denote the direction and magnitude of correlations. See fig. S2 
for boxplots of concentrations of the top contributing metabolites (correlation 
strength > 0.5). HVA, homovanillic acid; 5-HIAA, 5-hydroxyindole acetate; p-HPA, 
p-hydroxyphenylacetate; C2, acetylcarnitine.
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cytokine-cytokine correlations (fig. S5). Most between-class cor-
relation differences were found between long-chain lipids and inflam-
matory mediators. Long-chain lipids uniformly showed increased 
negative correlations with inflammatory mediators (CRP, calprotectin, 
MCP.1, GCSF, TNF, IL7, IL8, and IL15) among children in NS com-
pared to S (Fig. 4C). Differential correlation analysis confirmed sta-
tistical significance of these observations as illustrated by the presence 
of edges in the differential network (Fig. 4D). For instance, the acute 
phase protein, CRP, which is a key network hub (high-node degree), 
exhibited a negative correlation with lysoPC a C20:4 among NS but an 
insignificant correlation among S (rNS = −0.5, rS = −0.2, P∆r = 0.02). 
In contrast, VTDB, which is involved in immune activation processes 
in addition to being a vitamin D carrier, exhibited positive correla-
tions with long-chain lipids [lysoPC C20:4, SM(OH)C22:1, SM C24:0, 
and PCaaC42:1] in the NS, but not in the S (P∆r < 0.05). Hence, there 
was an enhanced interaction between lysophospholipids and in-
flammatory mediators among the NS.

Discriminant signatures identified are substantiated by 
unsupervised learning on integrated clinico-omics data
Given potential interactions between clinical manifestations and 
biomolecular changes, as a test for robustness, we performed similarity 
network fusion (SNF) on the complete clinico-omics data including 
clinical admission information (Table 1) and biomolecular data 
(144 metabolites, 229 proteins, and 19 inflammatory mediators). 
On the basis of this unsupervised integrative analysis, study subjects 
could be clustered into two primary clusters (A and B) (Fig. 5A). 
Cluster A was dominated by NS (67%), while cluster B was domi-
nated by S (65%). Features characterizing the death-dominated 
cluster (fig. S6) corroborated with discriminant features identified 
earlier (e.g., higher propionic acid and CRP together with lower 
lysoPCs). Thus, the distinct patterns between NS and S were 
recapitulated by the unsupervised method. The patterns were pre-
dominantly driven by differences in biomolecular signatures 
(concordance to fused network = 0.7) rather than clinical features 

Fig. 2. Metabolic pathways associated with mortality. (A) Pathways associated with metabolomic alterations in NS. Pathway impact indicates the sum of importance 
of the altered metabolites in the impacted pathway based on pathway topology; the −log(P) are test statistics for quantitative pathway enrichment analysis based on 
concentration differences between groups. Impacted pathways are above the dashed lines [impact >0.2 and −log(P) >5]. (B) Differential correlation network of metabolites. 
Nodes are metabolites, and edges connect metabolite pairs with differential correlations between groups (P∆r < 0.05). Solid edges denote increased and dashed edges 
denote reduced strengths of correlation in NS. The relative width of edges corresponds to the absolute difference in correlation strengths. Since no reversed correlation 
was detected, positive correlations are indicated by red and negative correlations are indicated by blue edges. Node color and size correspond to metabolite classes and 
node degree, respectively. (C) Mapping of univariately altered metabolites onto impacted pathways. Metabolites boxed in dark red or blue rectangles were significantly 
increased or decreased in NS (PFDR < 0.05), respectively; those in light red or blue showed marginal increase or decrease in NS (PFDR < 0.1); those boxed in white were 
comparable between groups. Grayed out metabolites were not measured. Right panel listed concentrations of key TCA cycle metabolites.
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(concordance to fused network = 0.1), as illustrated by edge color in 
patient-similarity network (Fig. 5B). This means that clinical fea-
tures did not identify all individuals with underlying death-related bio-
molecular changes. Moreover, this analysis also revealed underlying 

heterogeneity in patterns linked to mortality as subjects could alter-
natively be grouped into four clusters (C, D, E, and F). Clusters D 
and E had an almost even mix of NS and S, representing subgroups 
of children who did not exhibit strong death-related clinico- omics 
signals. Children in cluster D tended to be older and edematous (60%) 
and had worse amino acid and lipid status than others (fig. S6). Chil-
dren in cluster E tend to be younger and nonedematous (100%) and 
have better amino acid and lipid status than others (fig. S6). The un-
covering of these two clusters suggests that specific biomolecular 
characteristics were associated with edema and age, although these 
characteristics were not linked to mortality. Cluster C was highly 
dominated by NS (85%), whereas cluster F was dominated by S (72%), 
representing subgroups of children with strong death-related clinic- 
omics signals than those in other clusters. Children grouped into 
death-predominant cluster C showed increased inflammatory me-
diators and decreased lysoPCs and specific amino acids, consistent 
with the top discriminant features identified earlier (fig. S6). This 
death-predominant cluster consisted of children who died earlier 
(IQR: 4 to 7 days) or survived but remained in the hospital longer 
(IQR: 10–14 days) than other clusters, as depicted by circle sizes in 
the patient-similarity network of Fig. 5B, which was statistically con-
firmed (Fig. 5C). Z-scores representing how much the omic profiles 
of NS subjects deviate from S subjects showed that children who died 
early had the largest differences from those survived (Fig. 5D).

DISCUSSION
This study aimed to characterize pathways associated with inpatient 
mortality in children with CSM, a population with a high risk of 
death. We showed that among children with comparable anthro-
pometry and HIV status upon hospital admission, those who subse-
quently died in hospital had increased baseline levels of TCA cycle 
metabolites, acetylcarnitine, and acute-phase and proinflammatory 
proteins and cytokines, and decreased levels of specific amino acids, 
lysophospholipids, and sphingolipids. Consistent results were found 
in sensitivity analyses assessing further adjustment for nutritional 
edema status and using an integrative unsupervised method. The 
matched case-control design allowed us to eliminate effects simply 
due to differences in nutritional status between survivors and non-
survivors. These findings indicate that death is associated with 
altered energy metabolism related to mitochondrial dysfunction and 
inflammatory host responses, which are not treatment targets being 
emphasized by the current recommended guidelines. Overall, the 
present study provided first biomolecular evidence in support of the 
hypothesis that bioenergetic defects and overwhelming systemic 
inflammation underlie inpatient mortality of CSM (Fig. 6).

Metabolic flexibility of mitochondria is required for complete 
utilization of nutritional building blocks to maintain energy homeo-
stasis in the face of acute illnesses and severe malnutrition (16, 17). 
Alterations in amino acid metabolism, particularly reductions of 
urea cycle amino acids and BCAA, along with accumulations of 
incompletely oxidized energetic substrates (pyruvate, fumarate, 
-ketoglutarate, succinate, and acetylcarnitine) involved in -oxidation 
and the TCA cycle, were associated with CSM mortality. Although 
origins of these energetic substrates cannot be precisely pinpointed 
from blood sample profiling, their elevations point toward mito-
chondrial dysfunction in tissues including the liver. The hepatic 
TCA cycle is crucial for maintaining body glucose and energy ho-
meostasis. Disproportionate correlations observed between hexoses 

Fig. 3. Proteins and biological processes associated with mortality. (A) Volcano 
plot of 229 quantified proteins. Significant differential proteins are above the 
dashed line (P < 0.05). Yellow and blue circles correspond to elevated and reduced 
levels in NS compared to S, respectively. (B) Frequency of influential proteins being 
selected by the elastic net multivariate analysis. Bars correspond to the percentage 
of the respective metabolite being selected by the model out of the 200 bootstrap 
samples. Influential proteins are those selected >70% (dashed line) of times, with 
bar color denoting mean concentration higher (yellow) or lower (blue) in NS com-
pared to S. (C) Left: score plot of individuals (NS in yellow; S in blue) clustered by 
multilevel PLS-DA of 22 differential proteins. The interface between the white and 
the gray shaded area represents the classification decision line. The first two com-
ponents explained 21% of the total variance of the 22 differential proteins. Model 
performance and validity measures were as follows: AUC = 0.86 ± 0.019, misclassifi-
cation rate = 0.19 ± 0.024, DR2 = 0.50 ± 0.02 and DQ2 = 0.37 ± 0.04. Right: Correlations 
between the 22 differential proteins and PLS components. Arrows denote direction 
and magnitude of correlations. (D) Biological processes enrichment analysis of up- 
regulated proteins among NS associated with mortality. P value depicts the probability 
that a particular biological process is enriched in a group of proteins relative to other 
biological processes. (E) Standardized coefficients of inflammatory mediators. Color- 
filled bars represent significant cytokines associations with death (P < 0.05), with yellow 
denoting increase and blue denoting decrease in concentration in NS compared to S.
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and the TCA metabolites in the nonsurvivors may suggest dis-
turbances in hepatic pathways of glucose metabolism. Metabolic 
disturbances related to hepatic mitochondrial dysfunction have 
been noted in uncomplicated severe malnutrition as well as in 
CSM (4, 10, 11, 18). In an animal model of uncomplicated severe 
malnutrition, protein deprivation in the absence of infections can 
directly induce hepatic mitochondrial dysfunction leading to liver 
steatosis and ATP depletion (11). Similar to our finding in relation 
to mortality, Bartz et al. (4) reported that Ugandan children with 
CSM had lower levels of BCAA and arginine and higher levels of 
ketones and acylcarnitines on admission compared to after nutri-
tional stabilization. Reduction in BCAA has been reported during 

prolonged starvation, and arginine is a conditionally essential amino 
acid that becomes essential under stress and catabolic states. Ab-
normal accumulations of acyl–coenzyme A (CoA), products of fatty 
acid -oxidation, in mitochondria are exported to blood as acyl-
carnitines. Increased levels of acylcarnitines or ratios between acyl-
carnitines and free carnitine, therefore, imply an imbalance between 
-oxidation activity and acyl-CoA oxidation (19). Early small liver 
biopsy studies among fatal cases of severe malnutrition showed that 
hepatic mitochondria had morphological defects that may interrupt 
nutrient oxidation (10, 18). These similarities between our findings 
and previous work may reflect effects of malnutrition on mortality. 
However, it is not likely that these observed metabolic changes are 

Fig. 4. Cross-correlations of differential analytes. (A) Heatmap of hierarchical clustering of pairwise correlation among 32 differential metabolites (gray labels), 22 differ-
ential proteins (green labels), and 19 measured inflammatory mediators (purple labels) in all subjects. Correlations of SCFAs are highlighted in the black rectangle. 
(B) Correlations of pool SCFAs (sum of propionate, isobutyrate, and butyrate) with IL8. Dashed lines denote median levels of SCFA and IL8. (C) Group-specific correlations 
between lipids and inflammatory mediators and acute phase proteins among S compared to NS. Significant (PFDR < 0.05) correlations are represented by circles. (D) Dif-
ferential correlation network. Nodes are analytes, and edges connect analyte pairs with differential correlations between groups (P∆r < 0.05). Solid edges denote increased 
and dashed edges denote reduced strengths of correlation in the NS, with their relative widths corresponding to the absolute difference in correlation strengths. Since 
no reversed correlation was detected, positive correlations are indicated by red edges and negative correlations are indicated by blue edges. Node color and size correspond 
to analyte classes and node degree, respectively.
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solely attributed to nutritional causes but rather to an interplay be-
tween malnutrition, severe infection, and host inflammatory responses.

We found that inflammatory mediator proteins, calprotectin, 
CRP, vWF, and AGT, were higher in children who died than in those 
who survived. Calprotectin is predominantly expressed by neutro-
phils and plays a role in the inflammatory response to bacterial lipo-
polysaccharide by inducing neutrophil migration to inflammatory 
sites. CRP is a key acute phase protein produced by the liver in re-
sponse to IL6, binds to damaged cell membranes and pathogens, and has 
a functional role in directing complement activation, opsoniza-
tion, phagocytosis, and cytokine production. vWF is a biomarker of 
endothelial activation involved in platelet adhesion and aggregation 
for hemostasis and connects hemostatic and inflammatory pathways. 

Nonsurvivors also had increased levels of proinflammatory cyto-
kines, IL7, TNF, and IL8. TNF is a multifunctional cytokine that 
plays a role in inflammation, immunity, and antiviral responses. IL8 
is a potent chemoattractant that activates neutrophils and stimulates 
phagocytosis (20). Increased proinflammatory cytokines (IL2, IL6, 
and TNF) were previously noted to be univariately associated with 
inpatient mortality by Bartz et al. (4).

Metabolomic data supported the association between increased sys-
temic inflammation and mortality. Kynurenine-to-tryptophan levels 
were significantly elevated in nonsurvivors compared to survivors. 
Kynurenine is formed from tryptophan by the enzyme indolamine 2,3- 
dioxygenase, which is up-regulated by proinflammatory cytokines 
upon immune activation. Increased kynurenine- to-tryptophan ratio 

Fig. 5. Unsupervised integrative clustering of patients with CSM by similarity network fusion (SNF). (A) Alluvial plot tracing clustering path of study subjects based 
on the combined set of clinical variables, metabolites, proteins, and cytokines quantified. (B) Patient similarity matrix and network based on the two and four SNF clusters 
and their associated network representation. In the patient-similarity network, each circle denotes an individual; edges connecting individuals are weighted by the similarity 
score and colored by contributing data type(s) as per legend. (C) Differences in time to death and time to discharge of subjects grouped into SNF clusters C, D, E, and 
F. Statistical test was performed by Cox proportional hazard analysis of event time. n.s., not significant. (D) Z-score scatterplots of metabolites, proteins, and inflammatory 
mediators of children who died during the first 3 days, during day 4 to day 7, and beyond 7 days of hospitalization. Zero on the x axis represents the mean of children who 
survived from the respective analyte. The higher the Z-score, the more deviated the analyte is in NS with respect to S.
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has been shown to correlate with CRP in malnourished children 
in the MAL-ED cohort (21). Circulating SCFAs were significantly 
higher in the children who died than those who survived, and a 
positive correlation between SCFAs and inflammatory mediators, 
especially IL8, was observed. SCFAs are commonly regarded as 
microbial-derived metabolites. Elevated circulating SCFAs may be 
indicative of increased translocation of bacterial products from the 
intestinal microbiome to the host system. Increased intestinal in-
flammation and barrier dysfunction have been described in both 
complicated and uncomplicated severe malnutrition (22), and in sep-
sis (23). In line with our findings, a link between increased intesti-
nal and systemic inflammation and mortality has been reported 
CSM (12). Higher systemic levels of propionate and isobutyrate 
have been noted in Salmonellosis and sepsis (24–26). Weng et al. 
(24) showed that in patients with sepsis, serum propionate increased 
with sepsis severity and is an independent predictor for inpatient 
28- and 90-day mortality. Nevertheless, other possibilities for sys-
temic SCFA augmentation cannot be excluded, such as impaired 
utilization by colonocytes or other organs. For instance, ab-
sorbed SCFAs are metabolized first by the liver as energy sources, 
while hepatic energy metabolism is hampered in sepsis (27).

Cross-omics analysis further substantiated the close relationship 
between CSM mortality and sepsis. LysoPC (C16, 17, 18, and 20) 
and SM (C24, 26) levels were markedly lower in children who died, 
and decreased levels of these lipids correlated with increased levels of 
inflammatory mediators (CRP, TNFa, calprotectin, etc.). Intriguingly, 
serum lysoPC (C16, 18, 20) were previously found to be negatively 
correlated with gut permeability measured by lactulose-to-mannitol 
ratio in Malawian children with environmental enteropathy (28). 
Lysophospholipids and sphingolipids are bioactive lipids with com-
plex roles in inflammatory response. Lysophospholipids are produced 
by the action of the proinflammatory phospholipase A2 on phos-
phatidylcholine and have important regulatory roles in immune 

function, such as induction of monocyte chemotaxis and macro-
phage activation (29). Degradation of long-chain sphingomyelins 
can yield ceramides, which are structurally similar to lipopoly-
saccharide from Gram-negative bacteria and have proinflammatory 
and tissue-damaging effects (30). Although it cannot be excluded that 
production of these lipids from phospholipids is impaired, their 
reductions are likely attributed to increased degradation due to in-
creased inflammatory activities, and such reduction may adversely 
promote excessive proinflammatory response. Reduced circulating 
lysophospholipids have been consistently reported in bacterial 
infections including sepsis (31–33). Plasma LysoPC (C16:0, C 18:0, 
C 18:1, and 18:2) were found to be decreased on admission and nor-
malized with resolution of inflammation in patients with community- 
acquired pneumonia (33). In vivo administration of lysoPC C18:0 
was reported to improve survival from sepsis by enhancing neutro-
phil functions and bacterial clearance in a murine model (34). A 
recent meta-analysis supported the strong predictive role of reduced 
circulating lysophospholipids in sepsis mortality (14). Hence, 
mortality among CSM children may be associated with escalated 
immune activation and enhanced degradation of lysophospholipids, 
which can compromise host defense responses and prevent resolu-
tion of inflammation.

Systemic inflammation has been described to affect mitochondrial 
function. The production of reactive species during the acute-phase 
immune activation, such as reactive oxygen species (ROS), can 
directly impose damage to mitochondrial DNA and proteins in tis-
sues and organs (27). Toll-like receptor 4 activation was shown 
to cause depletion of hepatic mitochondria DNA in a mouse model 
of Gram-negative bacterial sepsis (35). Conversely, mitochondrial 
dysfunction, which can be induced by malnutrition alone, can affect 
inflammatory responses. The TCA cycle and oxidative phosphoryl-
ation in mitochondria are main processes of generating cellular ATP 
and ROS. Functional mitochondrial metabolism and ROS produc-
tion are necessary for T cell activation and energy-dependent bacte-
ricidal activity of macrophages (36). Mitochondrial dysfunction is 
believed to be a major determinant of mortality in sepsis (27). 
Structural derangement of mitochondria and impaired substrate 
utilization were seen in sepsis nonsurvivors (37, 38). In a large 
multiomics study, Langley et al. (39) showed that plasma lactate, 
pyruvate, acetylcarnitines, citrate, -ketoglutarate, and oxaloacetate 
were all higher in sepsis nonsurvivors than survivors upon hospital 
admission, reflecting incomplete substrate oxidation. A recent 
meta-analysis concluded that mitochondrial-related metabolites can 
reasonably predict sepsis mortality (14). Therefore, mortality from 
CSM and sepsis exhibits strong similarities with respect to bio-
molecular characteristics. It can be postulated that, compared to 
sepsis in well-nourished individuals, a preexisting defect in energy 
metabolism attributed to severe malnutrition puts children with 
CSM at a greater susceptibility of developing and maintaining a 
sepsis-like state in the face of infectious challenges, which, in turn, 
amplifies metabolic disturbances leading to bioenergetic failure, 
deterioration, and subsequent death, underscoring a malnutrition- 
infection synergistic relationship.

Last, other functional impairments may contribute to mortality 
in addition to the prominent pathways discussed above. For example, 
higher creatinine observed in the nonsurvivors may be indicative of 
a reduced renal filtration rate compared to surviving controls. Among 
children who died, the level of creatinine was also correlated with 
the other altered metabolites known to be excreted by urine, 

Fig. 6. Proposed pathways underlying mortality of CSM. Mortality in children 
with CSM can be attributed to the interplay between mitochondrial dysfunction 
and systemic inflammation. Severe malnutrition leads to defective mitochondrial 
energy metabolism, which increases individual’s susceptibility to impaired immune 
response against infections leading to sepsis-like systemic inflammation. Increased 
systemic inflammation, in turn, amplifies bioenergetic inefficiency. The interplay 
between bioenergetic failure and exacerbated inflammation can cause tissue and 
organ damages and ultimately lead to death.
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including uric acid, 5-hydroxyindoleacetate, p-hydroxyphenylacetate, 
and HVA. HVA, an end product of dopamine and norepinephrine 
metabolism (40), was highly increased in the nonsurvivors. Peripheral 
level of HVA is a marker for sympathetic nervous system activity. HVA 
levels remained significantly higher in nonsurvivors after adjusting 
for creatinine levels, suggesting that nonsurvivors may have a greater 
stress response than survivors. HVA and p-hydroxyphenylacetate 
could also be originated from the gut microbiota. Gram-negative 
bacteria such as Acinetobacter and Pseudomonas species can produce 
HVA and p-hydroxyphenylacetate (41). Elevations of circulating HVA 
and p-hydroxyphenylacetate were shown to be associated with de-
velopment of septic shock and mortality in acute critical ill patients 
(42, 43).

To our knowledge, this is the first study that comprehensively 
examined the multiomic profiles associated with mortality in 
children with CSM. In the study by Bartz et al. (4), only leptin was 
found to be associated with CSM mortality, but other targeted bio-
molecular measures such as ketones, fatty acids, creatinine, CRP, 
and TNF- were not associated with mortality, which may partly be 
attributed to their small sample size. The present study revealed that 
specific and targetable pathophysiological pathways are related to 
mortality in this group of children. The use of a matched design to 
identify case-control pairs with comparable age, nutritional, and 
HIV status upon admission provided a priori control of these 
potential confounders (i.e., anthropometry, age, and HIV) for the 
purpose of examining proteomic and metabolomic indicators. After 
accounting for these factors and conducting sensitivity analyses, we 
showed that nonsurvivors remained robustly different from survi-
vors. Hence, children who died exhibited substantial biomolecular 
differences from those who survived upon hospital admission, with 
those who died earlier showing the greatest differences. The hormone 
leptin was not identified by the proteomic panel in the current study. 
As mentioned above, leptin reflects fat mass and Gehrig et al. (44) 
previously reported that leptin correlates positively with anthro-
pometry in malnourished children. Bartz et al. and Njunge et al. 
reported that low leptin levels at admission and at discharge were 
associated with inpatient and early post-discharge mortality, re-
spectively, among children with CSM (4, 45). With our MUAC (mid- 
upper arm circumference)-matched design and sensitivity analysis 
on WHZ, differences in adipose reserve at admission are likely to be 
mostly adjusted for and less likely to explain immunometabolic dif-
ferences between survivors and nonsurvivors that we observed. 
However, a recent study reported a weak correlation between MUAC 
and plasma leptin, highlighting the limitations of anthropometric mea-
sures as a proxy for adipose tissue mass (46). Given the immuno-
modulating roles of leptin and imperfect existing indicators of 
adipose reserves, it can therefore not be excluded that lower leptin 
levels or reduced adipose reserves could predispose children with an 
increased vulnerability by affecting metabolism and immune func-
tion. To reconcile the causal relationships between leptin, sub-
strate availability, and immune-metabolic responses in the mortality 
of CSM, further mechanistic investigations are warranted.

One may suspect that these biomolecular differences could be 
primarily attributed to clinical evidence of infection at admission, 
considering that children who died had a higher prevalence of 
diarrhea and chest indrawing. However, the integrative analysis of 
clinico-omic data revealed that clinical features did not explain well 
the observed biomolecular disturbances or mortality outcome among 
children in this study. Namely, clinical data only weakly contributed 

to the clustering of subjects in the SNF analysis, and many mortality 
cases did not present any clinical signs of infection. The insignifi-
cant impact of clinical features is expected, since the case-control 
sample by design represents a subset of children with similar clinical 
profiles. Also, children with CSM are thought to have blunted re-
sponses to infection and often present with multiple nonspecific 
symptoms varying in severity, making accurate clinical diagnosis 
and prognosis challenging. Overall, these findings suggest that the 
metabolic and immune disturbances identified represent underlying 
pathways associated with mortality that cannot be readily recognized 
on the basis of clinical evidence after accounting for nutritional status. 
Notably, although the current matched case-control design has 
strengths in addressing our primary objective of interest, it inevitably 
has statistical limitations when used for other purposes. Thus, assess-
ing the precise effects of individual clinical features or comparing 
predictive performance between clinical and biomolecular features 
is beyond the scope of the study.

This study is not without limitations. First, post-discharge follow- 
up was not performed in the parent trial. Some of the children in the 
survivor group may have died shortly after discharge, as has been 
reported (45). Nevertheless, we excluded children who had prolonged 
hospital stay of over 14 days before being discharged to help mitigate 
the chance of including very sick children as controls. Second, only 
admission samples were analyzed, while admission samples do not 
necessarily reflect pathophysiological events that took place closer 
to the time of death. For instance, new onset of hospital-acquired 
Gram-negative infections could lead to sepsis and death in hours 
but would not be captured by the admission samples. SNF clustering 
revealed relationships between omic disturbances and time to death. 
Third, identification of the death-related biological processes was likely 
constrained by the limited coverage of the biomolecular panels and 
by the current search spaces of the public databases, although our tar-
geted metabolomic and inflammatory mediator panels were selected 
to examine specific pathways hypothesized to be important in mor-
tality of CSM. Last, this is a secondary study constrained by data and 
samples collected from the clinical trial. For instance, micronutrients 
that may provide insights into pathways were not measured because of 
limited sample volume. Although clinician-suspected septic cases 
were recorded in the trial, and these cases tend to coincide with chil-
dren of sepsis-like omic profiles, these suspected cases were not con-
firmed using standardized criteria or routine blood cultures due to 
limited resources. Further external validation and targeted mech-
anistic studies are warranted.

This study revealed that children with CSM who died exhibited 
a metabolic and proteomic profile akin to sepsis. We proposed that 
mitochondrial-driven metabolic dysfunction previously reported in 
malnutrition studies likely predisposes malnourished children to 
develop a sepsis syndrome when faced with an infectious or pro-
inflammatory challenge. Our findings have important clinical and 
treatment implications relating to antimicrobial therapy and other 
considerations in sepsis, including effects of feeding and pharmaco-
logical strategies to boost mitochondrial function and promote energy 
homeostasis, and to rebalance the inflammatory responses (47). 
Children with CSM are often only identified as severely malnourished 
at the time of admission, with children being directed to nutrition 
rehabilitation units where emphasis is placed on addressing nutri-
tional factors, while providing empirical antibiotic treatment and 
supportive medical management. Our finding on a sepsis-like profile 
underscores that besides optimizing the use of antibiotics (dosage, 
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duration, and timing of switching to second-line agents), many other 
considerations in treating sepsis should also be incorporated into 
the treatment of children with CSM, for instance, the potential use 
of immunomodulatory interventions. Overall, this study reveals a 
deeper biological understanding of their mortality, providing evi-
dence that efforts to reduce mortality among sick children with 
severe malnutrition admitted to hospital should focus on address-
ing the metabolic and inflammatory disturbances, as well as infec-
tious and immune causes of sepsis.

MATERIALS AND METHODS
Study design and subjects
This was a nested case-control study among children with CSM 
enrolled in a multicenter randomized control trial (NCT02246296). 
The trial investigated the effect of a lactose-free, low-carbohydrate 
milk formulated to limit carbohydrate malabsorption, diarrhea, and 
refeeding syndrome among children hospitalized for CSM in Queen 
Elizabeth Central Hospital, Malawi; Kilifi County Hospital; and 
Coast General Teaching and Referral Hospital, Mombasa, Kenya (48). 
Briefly, the trial enrolled children aged 6 months to 13 years at ad-
mission to hospital if they had CSM, defined as MUAC < 11.5 cm 
or weight-for-height Z-score < −3 if younger than 5 years old, 
BMI-for-age Z-score < −3 if older than 5 years old, or kwashiorkor 
edematous malnutrition at any age and had medical complications or 
failed an appetite test according to the WHO guidelines (2). Children 
were excluded if they had known allergy to milk products or did not 
provide consent. The primary outcome of the trial was the time to 
initial stabilization, defined as having reached the “transition” phase 
of treatment and switched to a standard higher caloric feed based 
on WHO guidelines. Of the 843 children enrolled, 8.9% died prior 
to stabilization and 6.2% died after the first stabilization. There was 
no difference in the primary outcome or mortality between the ran-
domization arms.

This nested study used clinical variables (Table 1) and blood 
samples collected from study participants on admission (before 
randomization) and stored at −80°C. Cases (NS) were children who 
died during hospitalization, while controls (S) were children dis-
charged alive within 14 days of hospitalization. S were matched with 
NS using propensity scores composed of age, HIV, and MUAC.  
Specifically, we used nearest neighbor matching as implemented in 
the R package “MatchIt” to identify the closest control subject for a 
given case subject based on the distance of their propensity scores. 
Diagnoses were performed on the matched sample to ensure that 
the distribution of the matched covariates (age, HIV, and MUAC) 
was similar between cases and controls (49). All available samples 
from NS (n = 92) were analyzed (fig. S7). For a metabolomic 
reference, an additional 10 nonstunted healthy community (HC) 
subjects were included (table S4). Baseline characteristics of sub-
jects were summarized as medians with interquartile ranges (IQRs) 
or means ± the SDs for continuous variables and percentages for 
categorical variables.

Metabolomic profiling
Metabolomic profiling was performed on serum collected at ad-
mission of 90 case-control pairs using two targeted platforms 
to measure a total of 206 metabolites. An aliquot of 25 l was ana-
lyzed using a commercial kit (AbsoluteIDQ p180 Kit; Biocrates Life 
Sciences AG, Innsbruck, Austria), which quantifies 188 metabolites 

including 22 amino acids and 21 biogenic amines by liquid chroma-
tography and tandem mass spectrometry (LC-MS/MS) and 40 acyl-
carnitines, 90 glycerophospholipids, 15 sphingolipids, and 1 hexose 
(sum of hexoses, representing 90 to 95% glucose) by flow injection 
analysis as previously described (5). Another 80 l was used to mea-
sure 18 organic acids (e.g., glycolytic intermediates and TCA cycle 
metabolites) using the LC-MS/MS–based TMIC PRIME assay (TMIC, 
Edmonton, Canada). Preprocessing steps of methanol deproteination 
and filtration were performed in-house before samples were shipped 
for analysis to The Metabolomics Innovation Centre.

Proteomics and inflammatory markers profiling
Untargeted proteomics and targeted inflammatory profiling were 
performed on plasma collected at admission of 87 case-control pairs. 
Using mass spectrometry, proteins were identified and quantified 
as previously described (45). Briefly, 10 l of plasma was depleted 
of the 12 most abundant proteins using spin columns (Thermo 
Fisher Scientific, Rockford, USA) following the manufacturer’s in-
structions. Labeled peptide pool samples were generated using the 
Tandem Mass Tag 10-plex kit (Thermo Fisher Scientific, Illinois, 
USA) and desalted using ZipTips (Millipore, Darmstadt, Germany) 
according to the manufacturer’s instructions. Chromatographic 
separation of peptides was carried out on the Dionex Ultimate 3000 
nanoflow liquid chromatography system on a 75 m by 50 cm C18 
reverse-phase analytical column and measured using a Q Exactive 
Orbitrap mass spectrometer coupled to the chromatography sys-
tem via a nanoelectrospray ion source (Thermo Fisher Scientific, 
Illinois, USA).

Concentrations of 29 inflammatory mediators were quantified 
using a human cytokine magnetic bead assay (EMD Millipore, 
Burlington, Massachusetts, USA) on the Magpix with Xponent 
software (version 4.2; Luminex Corp) and acquired median fluores-
cent intensity data analyzed using the Milliplex analyst software 
(version 3.5.5.0 standard). Table S5 lists all cytokines assessed.

Data preprocessing
For metabolomics, metabolites that had coefficient of variation <30% 
in quality control samples and were detected in at least 80% of sam-
ples in either group were retained for subsequent analysis. Among 
the retained metabolites, nondetected values were imputed by the 
lowest limit of detection (LOD/2). Two serum samples had insuffi-
cient volume for the analysis of organic acids, and, for these, bagged 
trees imputation from the “Caret” R package was used (50). For pro-
teomics, identifiers, protein names, and gene names were extracted 
from the ProteinGroup Matrix file from Maxquant (51). Proteins 
not detected in >20% subjects were removed. Data imputation for 
samples with <20% missing values was performed using k-nearest 
neighbor method. The data were then batch-corrected using the 
combat software (52). Before analysis, all data were log10-transformed, 
scaled to unit variance by autoscaling, and mean-centered.

Analysis of features associated with mortality
Both univariate and multivariate approaches were used to reveal 
features and differences in patterns of analytes associated with 
mortality. First, to identify individual analytes associated with mor-
tality, univariate conditional logistic regression accounting for the 
matched design was performed. P values were adjusted for multiple 
testing using the Benjamini and Hochberg false discovery rate (FDR) 
correction.
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Top significant analytes were selected on the basis of criteria as 
follows: FDR-corrected P value (PFDR) < 0.01 for metabolomics or 
P < 0.05 for proteomics. Then, an elastic net penalized logistic 
regression model was implemented on each omic dataset using the 
“glmnet” R package (53). Elastic net is a regularization method that 
simultaneously models all analytes while penalizing variable coeffi-
cients by both sum of squared coefficients and sum of absolute co-
efficients. This prevents overfitting due to high dimensionality and 
simultaneously allows for feature selection. Bootstrap resampling 
was used to evaluate the robustness of selected analytes. Bootstrap-
ping was performed at 200 iterations on the elastic net model with 
the optimized regularization value ( = 0.75) and analytes selected 
by the model for more than 70% of times were considered as influ-
ential analytes. Tuning of  was done on the basis of fivefold cross- 
validated misclassification error within each bootstrap sample, as 
previously described (54).

Considering that both univariate and multivariable analyses are 
relevant in understanding biological pathways, analytes that were 
statistically significant in univariate analysis or influential in multi-
variable analysis were considered as differential analytes. The dif-
ferential analytes were then included in a partial least square 
discriminant analysis (PLS-DA) implemented in the “mixOmics” 
R package (55) to better visualize their interrelationships and con-
firm the metabolomic or proteomic signature in differentiating NS 
from S while also considering the matched design by using multi-
level modeling. Tenfold cross-validation was used to assess the 
optimal number of components and the distributions of performance 
statistics: model fit (DQ2) and classification performance (AUC and 
misclassification rate) (56). The schematic of the analytical proce-
dures is shown in fig. S8.

Pathway analysis
To gain functional insight into pathways affected by differential omic 
profiles, we conducted pathway analysis. For metabolomics, we used 
the Pathway Analysis module on the MetaboAnalyst, which inte-
grates pathway enrichment and topology analyses (57). The list of 
all detected metabolites in our targeted platforms was used as back-
ground reference. The conversion from common metabolite names 
to KEGG IDs was done by the Metabolite ID Conversion module 
on MetaboAnalyst. Global test was used to analyze concentrations 
and identify subtle changes; relative-betweenness centrality was used 
to establish metabolite importance. A complementary analysis of 
18 biologically relevant metabolite ratios (table S1) was conducted 
using conditional logistic regression as described above. For pro-
teomics, the GO-enriched biological processes of differentially 
expressed proteins were determined using The Database for Anno-
tation, Visualization, and Integrated Discovery v6.8 Bioinformatics 
Resource (58).

Integrative analysis of metabolomic and  
proteomic datasets
To determine whether the differential metabolite and protein fea-
tures could be mapped onto known metabolome-proteome reaction 
models (substrate-enzyme-product), we analyzed the dataset using 
IMPALA [version 12 (59)]. IMPALA provides a pathway over-
representation and enrichment analysis functionality with user- 
specified lists of genes/proteins and/or metabolites.

Network analysis of multiomics data has been shown to provide 
a unique view in understanding biological systems. It exploits the 

property that biological molecules (e.g., proteins and metabolites) 
tend to behave in an orchestrated manner and exhibit interconnected 
relationships as a network. To identify correlation patterns associ-
ated with mortality, we performed differential correlation analysis 
on the omics data. Pairwise Pearson’s correlation coefficients across 
the differential analytes (metabolite, protein, and cytokines) were 
separately computed within the NS and S group. Analyte pairs were 
considered as correlated if their correlation coefficient was signifi-
cant at PFDR < 0.05 in either the NS or S group. Differences in cor-
relation strengths were subsequently compared between NS and S 
after the Fisher’s z-transformation at P < 0.05 using the “corTest” 
R package. The differential correlation network was visualized using 
Cytoscape v3.7.2 (60). Network properties were described using the 
“NetworkAnalyzer” tool integrated in Cytoscape. The computation 
of correlation matrices and network properties are detailed in Sup-
plementary Materials and Methods.

Sensitivity analyses
To examine the robustness of our findings, the following sensitivity 
analyses were conducted: (i) Univariate regression models were ad-
ditionally adjusted for admission edema status or WHZ, considering 
that these features may confound the relationship between metabo-
lites and mortality; (ii) multivariable analysis was performed on 
edema-adjusted or WHZ-adjusted residuals; (iii) influential obser-
vations were inspected based on PCA, hierarchical clustering with 
single linkage, and univariate distributions; discriminant analyses 
were repeated with them removed. Moreover, the main analysis 
used supervised learning methods. Thus, we performed the SNF, 
an unsupervised integrative multiomics analysis, using the com-
plete metabolomic, proteomic, and clinical data. The goal of the 
SNF analysis was to (i) evaluate whether the differences between NS 
and S were robust enough to be revealed in an unsupervised frame-
work without prior feature selection and (ii) reveal potential un-
recognized patient subgroups as our population is known to be 
heterogeneous. The SNF analysis is described in detail in Supple-
mentary Materials and Methods.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abj6779

View/request a protocol for this paper from Bio-protocol.
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