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Abstract

Artificial intelligence based interpretation of cardiac magnetic resonance (CMR) studies relies on 

the ability to accurately identify the imaging plane, which can be achieved by both deep learning 

(DL) and machine learning (ML) techniques. We aimed to compare the accuracy of ML and DL 

for CMR view classification and to identify potential pitfalls during training and testing of the 

algorithms. Both DL and ML algorithms accurately classified CMR images, but DL outperformed 

ML (95% and 90%) when classifying images with complex heart anatomy. Reaching this level of 

accuracy required training on a carefully curated cohort of studies.

Background: Artificial intelligence is increasingly utilized to aid in the interpretation of cardiac 

magnetic resonance (CMR) studies. One of the first steps is the identification of the imaging plane 

depicted, which can be achieved by both deep learning (DL) and classical machine learning (ML) 

techniques without user input. We aimed to compare the accuracy of ML and DL for CMR view 

classification and to identify potential pitfalls during training and testing of the algorithms.

Methods: To train our DL and ML algorithms, we first established datasets by retrospectively 

selecting 200 CMR cases. The models were trained using two different cohorts (passively and 

actively curated) and applied data augmentation to enhance training. Once trained, the models 

were validated on an external dataset, consisting of 20 cases acquired at another center. We then 

compared accuracy metrics and applied class activation mapping (CAM) to visualize DL model 

performance.
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Results: The DL and ML models trained with the passively-curated CMR cohort were 99.1% 

and 99.3% accurate on the validation set, respectively. However, when tested on the CMR cases 

with complex anatomy, both models performed poorly. After training and testing our models 

again on all 200 cases (active cohort), validation on the external dataset resulted in 95% and 90% 

accuracy, respectively. The CAM analysis depicted heat maps that demonstrated the importance of 

carefully curating the datasets to be used for training.

Conclusions: Both DL and ML models can accurately classify CMR images, but DL 

outperformed ML when classifying images with complex heart anatomy.

Tweet:

Deep learning outperformed machine learning (95% vs 90%) when classifying images with 

complex heart anatomy. Reaching this level of accuracy required training on a carefully curated 

cohort of studies.
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Introduction

Artificial intelligence (AI) is increasingly utilized to improve the way cardiac magnetic 

resonance (CMR) studies are interpreted. AI holds the promise of improving the efficiency, 

standardization, and types of quantification that can be obtained from CMR datasets[1, 2]. 

Regardless of the AI task being utilized, one of the first necessary steps in the analysis 

of CMR images is the identification of the imaging plane depicted. Deep learning (DL) 

and classical machine learning (ML) (two subtypes of AI) can potentially do it without 

user input. Given the important role that AI is expected to play in future clinical image 

analysis, it is important for the cardiac imager to have a foundational understanding of how 

an algorithm that accomplishes this initial task is developed and of the potential sources of 

error that may impact the performance of the AI algorithm.

Although the terms ML and DL are often used interchangeably, the techniques they refer to 

are not the same. ML techniques are a collection of mathematical and statistical concepts 

such as random forest, support vector machine, K-nearest neighbors (KNN), etc. DL 

algorithms, on the other hand, are specialized techniques that are a subset of ML. The 

most important difference between the two approaches is that ML algorithms require direct 

input from the developer to address any errors. DL algorithms have built-in mechanisms 

for assessing and addressing the root of any inaccuracies and do not require guidance[3]. 

In order to “interpret” an image, both DL and ML must deconstruct the image into specific 

features, such as sharpness, curvedness, brightness, etc., that can be numerically inputted 

into a computer algorithm. This feature extraction process differs between ML and DL 

algorithms. DL applies a range of convolution filters to an image to extract the features from 

the image[3, 4]. By changing the weight assigned to any given feature, the DL algorithm can 

be trained to identify a specific type of image. On the other hand, ML algorithms use simpler 

feature extraction methods, such as applying a transformation to the image matrix[3].
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However, DL techniques can still be outperformed by ML techniques, such as linear 

regression, on certain tasks[5]. In addition, ML approaches may sometimes be more 

practical as they can be generally trained on less computationally demanding equipment and 

more quickly than DL techniques. The goals of this study were: (1) to determine whether 

DL is superior to ML for classifying different CMR views; (2) to identify strategies to 

develop a successful AI algorithm for identification of cardiac views; and (3) to gain insight 

into the aspects of a CMR image that are utilized by DL algorithms.

Methods

Dataset Building

Our dataset was composed of 200 unique CMR exams containing nearly 100,000 cine and 

late gadolinium enhancement images. The study was approved by the Institutional Review 

Board. To curate the dataset, we first retrospectively identified 100 consecutive patients, 

which represented a typical range of CMR indications (~15% stress testing, ~30% heart 

failure evaluation, ~30% arrhythmia evaluation, ~25% other). We refer to this first set the 

passively curated cohort since it was simply comprised of consecutive cases performed 

at our medical center. We then supplemented the dataset with 100 specifically selected 

and non-consecutive patients who had more complex cardiac anatomy or more challenging 

image quality. These additional 100 patients were selected to evenly represent 5 groups 

of challenging disease states: dilated cardiomyopathy, cardiac amyloidosis, atrial septal 

defect, coronary artery disease and patients with an implantable cardioverter defibrillator. 

The combination of the passively curated dataset plus the 100 specifically selected non-

consecutive CMR cases are referred to as the actively curated cohort. Of the 200 total exams, 

160 of these exams were used to train the algorithms, 20 were used for internal iterative 

testing, and the remaining 20 were set aside for validation. An additional 20 CMR exams 

acquired at a different institution were used for final validation of the algorithms on a dataset 

acquired elsewhere and referred to as the external validation cohort. A summation of the 

dataset is presented in Table 1. All images were acquired on a 1.5T scanner (Achieva, 

Philips Healthcare, Andover, Massachusetts) using a 5-Channel surface coil. A short-axis 

(SAX) stack covering the left ventricle and 2-, 3-, and 4-Chamber (2-Ch, 3-Ch, 4-Ch) 

views of the left ventricle were acquired using commercial steady state free precession and 

inversion recovery with a phase sensitive reconstruction pulse sequence. Each frame of each 

cine and the magnitude-, phase-, and phase-shifted images from each of late gadolinium 

enhancement images were labeled as either SAX, 2-Ch, 3-Ch or 4-Ch view. The 20 Cine-

CMR cases from another institution (1.5T Ingenia, Philips; V5.1.7) were acquired using a 

32-Channel array in the 2-, 3- and 4-Chamber views, and in 3 short-axis slices at the apical, 

mid, and basal ventricular levels using a steady state free precession pulse sequence. Since 

the images in the dataset only had these labels and no other details or annotations were 

utilized in training, the training of the algorithms was minimally supervised.

Data Preprocessing

Prior to training our models, we needed to preprocess the CMR files in our datasets. One 

of the first steps of the process was converting the CMR DICOM files into JPEG files, 

which were then sorted into patient folders. Once the files were curated, we applied the 
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preprocess_input function, the default preprocessing function from the Keras library. The 

function creates batches of images that can then be inputted for training the ML and DL 

models.

Machine Learning Algorithm: K-Nearest Neighbors

We trained and tested multiple ML-based classification algorithms, including random-forest 

classifiers, decision trees, and support vector machines. KNN notably outperformed the 

others in the preliminary testing, and accordingly, we decided to utilize this method as a 

representative model for ML-based classification. KNN is a clustering-based ML approach 

[6, 7]. The K value or “number of neighbors” was set to 3 and distance-weighted voting was 

used. ML algorithms such as KNN differ from DL because the weights in the DL evolve 

with each training iteration or epoch. Altering an inaccuracy for the KNN-approach requires 

programmer-directed changes to the algorithm or the training dataset.

Deep Learning Algorithm: VGG19 and Hyperparameters

For the DL algorithms, we trained and tested several neural networks, including VGG19, 

ResNet50, DenseNet, and Inception Net v3, which are some of the most popular neural 

networks used for image classification. Because the VGG19 neural network outperformed 

the other 3 neural networks, we used it as a representative for DL. VGG19 is a pre-trained 

neural network that was trained on the ImageNet dataset, a large dataset consisting of 

everyday objects. To repurpose the VGG19 network for our task, we removed the final 

classification layers of the VGG19 neural network and replaced them with a global 

average pooling layer and four fully convolutional layers. We then reprogrammed the 

last classification layers and trained them to only classify cardiac MRI views. None of 

the feature processing layers that preceded the classification layers were altered. By only 

training the last layer, we were able to reduce the training time and retain the feature 

processing abilities of an already effective neural network, which is a form of transfer 

learning.

When training the DL model, we conducted thorough experimentation to determine the most 

optimal values for the model hyperparameters, which can be altered to design models apt 

for our tasks. We set the number of epochs (training rounds) to 5 and the batch size to 32. 

The activation function set for all the feature extraction layers was the rectified linear unit, 

a ramp function, while the final layer of the DL model, the classification layer, utilized the 

softmax activation function, which is a generalization of the logistic function. During the 

training itself, we also applied the Adam optimizer and tracked loss using the categorical 

cross-entropy function.

Training and Testing

We utilized a total of 200 CMR cases, i.e. the entire cohort, to train and test our ML and DL 

algorithms. The cohort was organized into two different sets briefly described above.

Passively Curated Dataset: This dataset was curated from 100 randomly selected CMR 

cases. We split the images in the passively curated cohort randomly into three categories: 

training (~60% of images), testing (~20% of images) and validation (~20% of images). 
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Images included in the training category were used to determine the weights of the KNN and 

the Dense layers classifier of VGG19. The feature extraction layers of the two models were 

unchanged and used default ImageNet weights. The testing images were used to determine 

whether overfitting was occurring during training, and the validation images were used to 

determine the accuracy of the two models. Validation for the passively curated cohort was 

carried out in four different ways: 1. on the full validation dataset, which included all the 

images within the dataset generated from the passively curated cohort; 2. on a ‘balanced’ 

validation dataset, which was created by removing 90% of the SAX images to ensure that 

all views of the heart were equally represented, generated from the passively curated cohort; 

3. on a full validation dataset which included all the images within the dataset generated 

from the images with complex anatomy; and 4. on a ‘balanced’ validation dataset, which 

was created by removing 90% of the SAX images to ensure that all views of the heart were 

equally represented, from the images with complex anatomy. The balanced datasets were 

created to avoid skewing by over-representation of the SAX images.

Actively Curated Dataset: We trained another version of the DL and ML algorithms 

using the actively curated cohort which was a summation of the passively curated cohort and 

the above-described images with complex anatomy. In this case, the training set, containing 

2000 images (500 images for each view), was created from 160 randomly selected MRI 

cases (80 from the passively curated cohort and 80 cases with abnormal cardiac anatomy) 

from the larger dataset of 200 MRI cases. The size of the training dataset was amplified 

through augmentation as described below, allowing the full cohort training dataset to have 

10,000 images. The remaining 40 cases from the actively curated cohort were utilized to 

create the testing set consisting of 320 images, 80 from each view. The final validation of 

the algorithms trained and tested with the actively curated cohort was done on the 20 cases 

included in the external validation cohort.

We first used the passively curated dataset to measure the performance and “warm-up” the 

ML and DL models, which were then trained and tested on the actively curated dataset.

Data Augmentation

We utilized Keras, a module for designing and training neural networks, for data 

augmentation to amplify the full cohort training set size. Augmentations included rotating 

over 360°, flipping the image along the x and y axes, altering brightness and applying zero-

form component analysis whitening. The goals of applying these augmentations were to (1) 

increase the size of the training set and (2) diversify the features available for training[8, 9].

Visualization with Class Activation Maps

In order to understand the region of a CMR image used by the VGG19 model to classify 

images, we implemented class activation maps (CAM), a set of algorithms that create 

heatmaps highlighting which parts of an image are primarily influencing classification 

decisions[10]. This type of visualization is specific to the DL models and cannot be used for 

the KNN-based classification.
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Data analysis and Evaluation metrics

The McNemar test was used to compare the accuracy differences between the KNN-

classifier and the VGG19-classifier[11]. A p-value <0.05 was considered statistically 

significant. In addition, for each test conducted with the models, we evaluated performance 

using accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive 

value (NPV), and the F1 score, a statistic that assesses the accuracy of classification using 

the harmonic mean of the PPV and sensitivity.

Results

Results from the passively curated cohort

The KNN and DL algorithms trained on the passively curated cohort achieved very high 

accuracy of image view classification, when tested on the full set of validation images 

selected from the passively curated cohort and on the ‘balanced’ dataset (Table 2). On the 

balanced validation set, the KNN algorithm had an accuracy of 99.3% while the VGG19 

algorithm had an accuracy of 99.1%, a statistically significant but marginal difference.

When tested on the images with complex and abnormal anatomy, both the DL and the KNN 

models performed significantly worse (Table 2). The DL model had the lowest accuracy for 

classifying SAX images, at 57.2%, while the KNN model had the lowest accuracy for 4-Ch 

images, at 76.8% (Figure 1).

Results from the Actively Curated Cohort

The ML and DL algorithms trained using the actively curated cohort produced more uniform 

results across the four image views (Figure 2). The DL and ML algorithms showed more 

notable differences in diagnostic performance. Compared to the accuracy values achieved 

through training/testing on the passively curated dataset, the DL accuracy was nearly 93% 

while the ML accuracy was 87% following training on the actively curated cohort (Table 2).

In addition, we noted that images misclassified by the ML and DL algorithms had 

recurring patterns. For images mislabeled by both the ML and DL algorithms, the models 

misclassified the images with the same incorrect label in 71% of the cases. More than half 

the misclassified cases were of 4-Ch views being labelled as 3-Chamber.

We also assessed errors specific to the ML and DL models. The KNN algorithm performed 

most poorly in patients with implanted cardiac devices. On the other hand, the VGG19 

frequently confused 2-Ch views for SAX views and 4-Ch views for 3-Ch views (Figure 3).

Results from the Remote Cohort Validation

Validation on the remote cohort yielded accuracy values over 90% for both the ML and the 

VGG19-classifier models. The DL method was more accurate than the ML method, but the 

difference, according to the McNemar test, was not statistically significant (p = 0.25). It is 

also worth noting that the DL method and the ML method varied in their misclassifications. 

The DL method primarily missed 2-Ch images, while the ML method missed 3-Ch and 4-Ch 

images.
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Visualization by Class Activation Maps

The CAM analysis depicted regions of focus for the DL algorithm and showed that each 

of the 4 labels had a unique pattern (Figure 4). In 2-Ch images, the features extracted 

from the heart, as well as the superior anatomical structures, such as the collar bones, 

had more influence on the algorithm. For 3-Ch images, features extracted from the aortic 

root had the most weight, while for 4-Ch images features extracted from the left atrium, 

left ventricle, and the liver had greater importance in classification. However, for SAX 

images, the CAM indicated that the DL algorithm decision seems to be based more on the 

features extracted from the anatomic structures adjacent to the heart rather than the heart 

itself. Misclassifications by the DL algorithm seem to occur because the algorithm extracted 

features in a pattern that resembled those of another label.

Discussion

In this study, we used a minimally supervised training approach to show that: (1) DL was 

superior to ML for classifying cardiac imaging planes from CMR images as the complexity 

of the cohort increased; (2) the importance of an actively curated training dataset, which 

includes a wide range of disease states and image qualities to develop robust DL and 

ML algorithms; (3) the need to compose well-balanced validation datasets to determine 

the accuracy of an algorithm; and (4) the use of CAM patterns to understand the image 

features that are utilized by the algorithm to classify an image. We specifically chose the 

task of CMR view classification despite it being a relatively straightforward challenge, as 

view classification must precede most other complex operations, such as segmentation of 

the heart chambers. In addition, since one of the main goals of this study was to compare 

two different algorithms, we sought a problem that would not be too computationally 

challenging and something that is the first step of CMR image analysis.

There are many different AI approaches that can be utilized to achieve a specific task. 

Selecting the correct approach requires a deep understanding of the task that the algorithm 

needs to solve. Accordingly, prior to initiating our study, we performed preliminary testing 

on several candidate ML and DL algorithms that had the potential to correctly classify CMR 

images. Interestingly, in our assessment of DL algorithms for the specific task of CMR 

view classification, we discovered that ResNet50, despite being the premier neural network 

utilized for classification tasks, was inferior to VGG19. We ultimately selected KNN and 

VGG19 to formally test one of our main hypotheses, namely whether ML can outperform 

DL in CMR image classification, or vice versa. We found that both ML and DL algorithms 

could accurately categorize cardiac CMR views. However, the DL algorithm performed 

better as the complexity of cases increased and when tested on images acquired at another 

center. This suggests that the DL algorithm may be better suited for classifying a larger 

variety of images. This trend has been observed in general image classification as well[12]. 

In the 2012 ImageNet Large-Scale Visual Recognition Challenge (ILSVRC), a competition 

for classifying everyday images from nearly 1000 categories, the convolutional neural 

network AlexNet outperformed all ML algorithms. Its top-5 error rate was 15.3 percent, 

nearly 10.8% less than the runner up[4]. Since 2012, DL models have been consistently the 

champions of the ILSVRC competitions.
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Our study also demonstrated the importance of actively curating a training dataset in order 

to generate a robust algorithm to accomplish the goal at hand. We compared the use of 

an actively curated dataset, containing a diverse set of hand-picked images, to the use of 

a passively curated dataset that included consecutively performed CMR cases. On initial 

testing of an algorithm developed using this passively curated dataset, it was over 99% 

accurate for identifying the correct CMR imaging plane; however, as the algorithm was 

tested on more complex images, its performance clearly deteriorated. On the other hand, 

an actively curated training dataset that was generated by experts that proactively identified 

diverse types of cases encountered in clinical practice performed considerably better. This 

finding highlights the continued role of subject matter experts when developing an AI 

algorithm[13, 14].

In clinical research, it is well established that the sensitivity and specificity of a test are 

highly dependent on the prevalence of a disease state within a population. The same holds 

true when validating an artificial intelligence algorithm. As can be seen in Table 2, when 

the algorithms were trained and tested on the “fully passive dataset” of images, the ML 

algorithm seemed to outperform the DL algorithm; however, both algorithms performed 

similarly when compared using a more “balanced passive dataset.” The reason for this 

is that a CMR exam typically has many more short-axis images of the left ventricle 

than long-axis images. Because the ML algorithm tended to classify images as short-axis 

regardless of the actual view and because there were more short-axis images in the dataset, 

it appeared to perform better than it really did. Imbalanced data has been an issue that DL 

researchers across disciplines have faced, and applying data-level methods to balance classes 

is important in order to get an accurate picture of the algorithm’s performance[14].

An important part of validating an image analysis algorithm is to test it on a dataset acquired 

at an independent center. In our study, the DL algorithm marginally outperforms the ML 

algorithm for classifying CMR images on the external validation dataset. The importance 

of re-validating an algorithm on an external dataset is to avoid any imaging center-specific 

settings that are not actually related to the underlying anatomy itself. For example, perhaps 

an imaging center might systemically use a larger field of view when acquiring short-axis 

views of the heart and a smaller field of view when acquiring long-axis views of the heart. 

An algorithm might simply learn to recognize the field of view and use that finding to 

classify an image even though the field of view does not actually have anything to do with 

the underlying anatomy. Arnaout et al., voiced a similar sentiment and recommended using 

images with variations in quality and from a range of ages, hemodynamics and sizes to train 

DL models for medical image classification[15].

One of the challenges in the adoption of DL algorithms in clinical practice is the perception 

that the clinician does not know what an algorithm is “looking at” to make its decision. The 

lack of understanding of what features an algorithm utilizes is one of the factors that make 

clinicians wary of extensively using AI algorithms [16]. In this study, we used CAMs to 

identify the structures that our DL algorithm was using to classify images[12]. These CAMs 

have the potential to help developers and clinicians understand when and how an algorithm 

is failing and may be used to refine the algorithm. Misclassifications occur when CAM 

patterns resemble that of another label, suggesting that more detailed annotations on training 
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datasets may improve algorithm development. Additionally, a CAM can show the features 

being used by a DL algorithm to make the decision. This information may be provided to the 

clinician as a mechanism of oversight of the algorithm. Such oversight by physicians may 

allow DL algorithms to be more readily adopted into clinical practice.

Limitations

First, the algorithms we tested have been developed using relatively small sample sizes 

acquired at a single imaging center. It is possible, that the use of multi-center data to train 

the algorithm might result in somewhat different findings. Second, the task selected was 

fairly narrow in scope, i.e. classifying CMR images by imaging plane; however, identifying 

the cardiac imaging plane is a fundamental step needed before any further analysis of the 

images can occur. Future studies are needed to compare algorithms for performing other 

more complex tasks, such as identifying specific disease states or segmenting the heart.

In addition, the CMR views may not always be clear cut. Situations in which the imaging 

view is imperfectly acquired may represent a mixture of two different views. For instance, 

a 4-Ch image may look like a 3-Ch image, if the plane was slightly off-axis. Such a mixed 

view would likely be somewhat arbitrarily assigned to one view or another by an expert. An 

AI algorithm would similarly have to arbitrarily categorize it as one view or the other.

Conclusions

In this study, we showed that DL algorithms outperform ML algorithms for classifying CMR 

images especially as the complexity of a case increased. We highlighted the importance of 

actively curating a training dataset, which includes a wide range of disease states. We also 

underscored the need for creating balanced validation datasets to avoid biases when testing 

the performance of an algorithm. Finally, CAMs may be a useful tool to understand potential 

sources of error made by a DL algorithm when classifying an image.
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ASD Atrial Septal Defect

CAM Class Activation Map

CMR Cardiac Magnetic Resonance

DL Deep Learning
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KNN K-Nearest Neighbors

ML Machine Learning

NPV Negative Predictive Value

PPV Positive Predictive Value

2-Ch 2 Chamber

3-Ch 3 Chamber

4-Ch 4 Chamber

SAX Short Axis
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Figure 1: 
DL v ML Accuracy (Complex Anatomy Cases).

The figure depicts the accuracy of the passively trained ML and DL algorithms validated on 

CMR images with complex, abnormal anatomy. ML and DL performance varied more and 

the difference in classification accuracy was the greatest for short-axis images.
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Figure 2: 
DL v ML Accuracy (Actively Curated Cohort)

After training the ML and DL algorithms with the active cohort, ML and DL performance 

improved. The DL model also demonstrated an edge over the ML model, indicating that DL 

might be the preferable algorithm for datasets with complex cases.
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Figure 3: 
Sample of misclassified cardiac MRI images.

Top: Images Misclassed by both DL and ML; Left: SAX image misclassed as 3-Ch by DL 

and 4-Ch by ML; Center: 3-Ch image misclassed as SAX by DL and 2-Ch by ML; Right: 

4-Ch image misclassed as 3-Ch by both DL and ML

Middle: Images Misclassed by DL only; Left: 2-Ch image misclassed as SAX; Center: 3-Ch 

image misclassed as SAX; Right: 4-Ch image misclassed as 3-Ch

Bottom: Images Misclassed by ML only; Left: 2-Ch image misclassed as SAX; Center: 

3-Ch image misclassed as SAX; Right: 4-Ch image misclassed as 3-Ch
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Figure 4: 
Class Activation Map Patterns Generated for the DL Algorithm.

The figure above depicts class activation maps for the images processed by the DL 

algorithms. Each image view has a distinct CAM pattern and images misclassified by the DL 

model demonstrate the pattern of the misclassified image view.
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Table 1:

Dataset Description and Composition

Cohort SAX 2-Ch 3-Ch 4-Ch

Passively Curated 40157 (78.54%) 3558 (6.96%) 3562 (6.97%) 3849 (7.53%)

Complex Anatomy 35012 (78.76%) 3210 (7.22%) 3078 (6.92%) 3154 (7.10%)

Actively Curated 75169 (78.65%) 6768 (7.08%) 6640 (6.95%) 7003 (7.32%)

Remote Validation 80 (25%) 80 (25%) 80 (25%) 80 (25%)

The table describes the composition of the cohorts and the dataset used for training, testing and validation of the DL and ML algorithms.
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Table 2:

Algorithm performance for different training datasets

F1 Score PPV Sensitivity Specificity NPV Accuracy

Models Trained on Passively Curated Cohort

Validation on Full Dataset 

Deep Learning 0.988 0.988 0.988 0.996 0.996 0.988*

Machine Learning 0.995 0.995 0.995 0.998 0.998 0.995

Validation on Balanced Dataset 

Deep Learning 0.991 0.991 0.991 0.997 0.997 0.991*

Machine Learning 0.993 0.993 0.993 0.998 0.998 0.993

Validation on Full Dataset of Images with Complex Anatomy 

Deep Learning 0.70 0.90 0.64 0.88 0.88 0.64*

Machine Learning 0.82 0.90 0.79 0.79 0.93 0.80

Validation on Balanced Dataset of Images with Complex Anatomy 

Deep Learning 0.81 0.85 0.81 0.94 0.94 0.81*

Machine Learning 0.83 0.84 0.83 0.94 0.94 0.83

Model Trained on Actively Curated Cohort

Deep Learning 0.93 0.93 0.93 0.98 0.98 0.93*

Machine Learning 0.87 0.87 0.87 0.96 0.96 0.87

Remote Cohort Validation of Actively Curated Cohort

Deep Learning 0.95 0.96 0.95 1.0 0.98 0.95

Machine Learning 0.90 0.91 0.90 0.97 0.97 0.90

*
Statistically significant difference between DL & ML (p-value < 0.05)
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