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Nowadays, ocean observation technology continues to progress, resulting in a huge increase in marine data volume and di-
mensionality. +is volume of data provides a golden opportunity to train predictive models, as the more the data is, the better the
predictive model is. Predicting marine data such as sea surface temperature (SST) and Significant Wave Height (SWH) is a vital task
in a variety of disciplines, including marine activities, deep-sea, and marine biodiversity monitoring. +e literature has efforts to
forecast such marine data; these efforts can be classified into three classes: machine learning, deep learning, and statistical predictive
models. To the best of the authors’ knowledge, no study compared the performance of these three approaches on a real dataset. +is
paper focuses on the prediction of two critical marine features: the SSTand SWH. In this work, we proposed implementing statistical,
deep learning, andmachine learningmodels for predicting the SSTand SWHon a real dataset obtained from the KoreaHydrographic
and Oceanographic Agency. +en, we proposed comparing these three predictive approaches on four different evaluation metrics.
Experimental results have revealed that the deep learning model slightly outperformed the machine learning models for overall
performance, and both of these approaches greatly outperformed the statistical predictive model.

1. Introduction

Forecasting maritime parameters such as wave conditions,
tide length, wind direction, rainfall, etc., is of great im-
portance. For example, marine data prediction can help
optimize shipping routes by detecting rough seas, coastal
and offshore engineering, environmental protection, and
planning sea-related activities. +ese require real-time and
short-term prediction of the ocean marine data for the
following hours and next few days.

SST means the ocean’s surface temperature. +e fore-
casting of SST is considered an essential task in various real-
life situations (e.g., ocean weather and climate prediction,

fishing, and ocean environment protection). In this task, the
predictive model produces its future SST value in advance
(e.g., minutes or hours); thus, this predicted value can
improve the decisions related to several activities such as
fishing and maritime navigation. Similarly, SWH refers to
the significant wave height of oceans. Knowing the SWH in
advance is important for several maritime activities such as
surfing and maritime navigation. Predictive models can
predict the expected SWH based on the historical SWH in a
particular geographical maritime area.

+e dimensions of ocean marine data are rapidly in-
creasing. Furthermore, the vast majority of the ocean’s big
data is unstructured or semistructured, with complex or
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irrelevant relationships between the data, revealing many
shortcomings in traditional data analysis approaches. +ese
shortcomings have been addressed by developing machine
learning (ML) models, which have proven to be robust, fast,
and highly accurate [1]. For instance, Durán-Rosal et al. [2]
proposed using the evolutionary unit neural network
(EPUNN) and the linear model as the input portion to
reconstruct the data to meet the constantly changing data
flow.

+e literature includes three main approaches to
building predictive models for ocean marine data: statistical,
deep learning, and machine learning approaches. Popular
ocean wave models such as wave model (WAM), WAVE-
WATCH III model, and Simulating Wave Nearshore
(SWAN) were forecasted conventionally. However, re-
searchers commenced using ML to predict ocean waves
[3–8].

Using the SWAN wave model, an efficient multilayer
perceptron algorithm was proposed to forecast lake waves in
Michigan [3]. +is algorithm estimated relevant wave fea-
tures such as peak periods and heights in different weather
conditions. +e Artificial Neural Network (ANN) and
Support Vector Machine (SVM) models are both employed
for wave prediction purposes. +e SVMmodel, on the other
hand, was shown to be more accurate than ANN, with
slightly lower error than the ANN model. Besides, it is
characterized by its fewer parameters and faster computa-
tion time. In [7], Wu et al. proposed and developed a
physics-based machine learning (PBML) model that com-
bines the physics-based wave model with a machine learning
technique for multistep-ahead wave forecasting for marine
operations. Bento et al. developed a new methodology based
on deep neural network to predict the generated electrical
power of ocean wave energy systems [8]. Despite all of these
efforts, the literature has no comparison of the aforemen-
tioned three approaches. +is comparison should reveal the
performance gap between these approaches.

+is paper aims to predict the SST and the SWH for the
Korea Hydrographic and Oceanographic Agency dataset.
+e proposed work is motivated by comparing the statistical,
machine learning, and deep learning models to understand
the performance gap of these models. +e results of this
work should provide scientific evidence on which model fits
better the marine data. To anticipate the marine features
efficiently, the employed deep learning model combines the
gated recurrent units (GRU) with the regular neural net-
work. In the proposed architecture, the GRU layer is pre-
ceded by an input layer and followed by a fully connected
layer. As a result, the predicted values can be produced from
the output layer. To our knowledge, this is the first use of a
GRU model architecture for forecasting SST and SWH.
Besides, four different ML models have been utilized in the
current study, namely, Linear Regression (LR), Decision
Tree (DT), Support Vector Machine (SVM), and Random
Forest (RF) Regressor. In addition, a statistical model has
been applied to the same dataset to forecast both the
temperature and the wave height, which is the Autore-
gressive Integrated Moving Average (ARIMA) model.
Consequently, the prediction problem is treated as a

regression problem in machine learning techniques. How-
ever, ARIMA and GRU frame with this prediction problem
as a time series problem. +e main contributions of this
paper can be summarized as follows.

(1) To the best of the authors’ knowledge, we proposed
the first GRU model architecture for predicting SST
and SWH.

(2) A comparison among statistical, machine learning,
and deep learning models is held to evaluate which
model fits this prediction issue the best and to un-
derstand the performance gap between these models

(3) To our knowledge, this is considered the first time to
predict the SST and SWH features for the Korea
Hydrographic and Oceanographic Agency.

+e proposed comparison is generic. +us, it can be
applied to other marine data such as wind direction, salinity,
and water current predictions. In addition, the comparison
of the statistical, machine learning, and deep learning
models can be extended to other similar applications such as
climate forecasting, navigation and ship traffic, or fishing
activities.

+e rest of this paper is organized as follows. Background
regarding the GRU architecture and the machine learning
algorithms are briefly explained in Section 2. Section 3
discusses the related work. +e proposed methodology and
the system block diagram are presented in Section 4. +e
experimental results and discussions are detailed in Section
5. Finally, Section 6 summarizes the conclusion.

2. Background

2.1. Deep Learning-Based Prediction: GRU. Deep learning
algorithms, particularly recurrent neural networks (RNNs),
have been proven successful in a variety of applications,
including time series forecasting [9, 10]. +e RNN is a
powerful model that can learn a wide range of complex
relationships from an arbitrarily long sequence of data and
has been used to effectively solve many problems [11–13].
However, two well-known problems were raised because of
the depth of RNN, namely, exploding and vanishing gra-
dient. To address the difficulties mentioned above, two
variations of the recurrent model were introduced (i.e., GRU
[14] and LSTM [15]). +e GRU and LSTM architectures are
similar in design, and both contain gating techniques for
controlling the flow of data through the unit. Despite this,
due to its complicated structure, the LSTM takes a long time
to train and converge. GRU-DNN is simpler than LSTM and
has a less sophisticated architecture. As a result, it is faster to
train than LSTM [16].

In the GRU model, recurrent units capture patterns and
dependencies across time spans. Unlike the LSTM cell, GRU
does not have a unique memory gate, making it more ef-
ficient and quicker in data training. A standard GRU ar-
chitecture cell is depicted in Figure 1.

A GRU model is made up of a set of cells. +ere are two
gates and a state vector in each cell. In any cell of a GRU
model, there are two gate types: update z(t) and reset
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r(t)gates, with h(t)denoting the hidden state vector for the
current time point t. Each gate is made up of a single-layer
neural network. +e following equations illustrate the ar-
chitecture of GRU cell equations (1)–(4). +e hidden state of
the previous cell (denoted as h(t− 1)) and the current input
sequence vector (denoted as x(t)) are given to the cell as an
input. +e hidden state (denoted as h(t)) is the cell output.

z
(t)

� σ Wzx
(t)

+ Uzh
(t− 1)

+ bz􏼐 􏼑, (1)
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(t)

� σ Wrx
(t)

+ Urh
(t− 1)

+ br􏼐 􏼑, (2)

􏽥h
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� tanh Whx
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+ Uh h
(t− 1) ⊙ r
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(t− 1)
+ 1 − z

(t)
􏼐 􏼑⊙ 􏽥h

(t)
, (4)

where ⊙ denotes elementwise multiplication, σ(.) and
tanh(.) denote the sigmoid and hyperbolic tangent activa-
tion functions of the neural network (NN), respectively, 􏽥h

(t)

denotes the candidate hidden state, Wz, Wr, and Wh denote
the cell model’s weight matrices for the feedforward neural
networks, Uz, Ur, and Uh denote the cell model’s weight
matrices for recurrent neural networks, and the model biases
are bz, br, and bh.

+e output of a GRU cell (h(t), provided by equation (4))
is a linear interpolation between the current candidate state
􏽥h

(t)
and the prior concealed state h(t− 1). +is type of linear

interpolation is mostly used to learn long-term dependencies.
More precisely, as z(t)tends to 1, the previous hidden state
remains unchanged and may be maintained for a few time
steps. On the other hand, as z(t) goes to 0, the cell output
equals the value of the candidate state 􏽥h

(t)
, which is extremely

reliant on the current input and prior hidden state. +e
candidate state 􏽥h

(t)
is also reliant on the reset gate r(t), which

compels the cell to omit or preserve the last hidden states.

2.2. Machine Learning PredictionModels. Machine learning
includes three main categories, namely, supervised learning
(e.g., classification or regression), unsupervised learning
(e.g., clustering or association), and reinforcement learning
(e.g., reward-based). In this work, we focus on the first
category of the ML field, i.e., supervised learning [17]. +e
ultimate goal of the machine learning field is to design
models/programs which enable computer systems to
mimic the learning process of human beings from the
available data. Any ML-based system consists of three
components, namely, data, models, and learning. +e main
task of designing an ML system is to fit the data to the
model by tuning the model’s hyperparameters. +is task is
called model training; it is accomplished using hypotheses
based on performance criteria. Hyperparameter optimi-
zation aims to determine the ideal collection of the cor-
responding hyperparameters for a ML model. Identifying
the optimal configuration of hyperparameter values for a
predictive model has a direct effect on the models’ per-
formance and the tested dataset. While hyperparameter
tuning is a crucial step in the model training process to
ensure a successful ML application, it is a compute-in-
tensive procedure. +is is because of the large number of
possible combinations to test and the computational re-
sources required [18, 19].

+e regression task in the ML field is considered one of
the fundamental tasks. Designing an ML-based regressor
includes utilizing mathematical techniques to predict the
continuous output variable Y based on the value of one or
more input variables X. Linear Regression is the simplest
regression analysis for the sake of predicting the output
based on historical data. Hence, the life cycle of any ML
model contains four main stages which are selecting the
training data, choosing the target function, the represen-
tation for the target function, and selecting a function ap-
proximation methodology.

tanhσσ

~

-1

+h(t-1) h(t)

h(t)

x(t)

⊙

⊙

⊙

r(t) z(t)
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Figure 1: GRU-DNN cell architecture.
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2.3. Statistical Predictive Models. Time series modelling is a
dynamic research topic that tries to gather and examine
historical data of a time series in order to construct a model
that accurately describes the series’ inherent structure [20].
+is model is then used to forecast future values for the
series, taking into consideration that proper model fitting is
required for good time series forecasting.

Researchers have been focused on linear models for the
past few decades because they are simple to understand and
apply. In linear models, the future values are constrained to
be linear functions of past data. +e ARIMA [21–25] model
is one of the most popular and widely used linear stochastic
time series models. Other models, such as the Autoregressive
(AR) [21, 24–26], Moving Average (MA) [21, 24, 25], and
Autoregressive Moving Average (ARMA) [21, 23–25], are
subclasses of the ARIMA model.

Many time series, including those connected to socio-
economic [24] and business, exhibit nonstationary behav-
iour in practice. Time series with trends and seasonal
patterns are also nonstationary [27, 28]. +e ARMA model
can only be used for stationary time series data; they are
inadequate to describe nonstationary time series accurately.
As a result, the ARIMA model emerged to take into account
nonstationarity.

In the process of designing an ARIMA model, a non-
stationary time series can be rendered stationary by applying
finite-difference of the data points. If a time series is inte-
grated of order 1, expressed as I(1), it will be stationary after
the first differentiation and expressed as I(0). In general, if a
time series is I(d), it becomes a stationary series I(0) after
differentiation at d times [29].

An ARIMA model is denoted as ARIMA(p, d, q), where
p is the number of autoregressive terms, d is the number of
differences, and q is the number of moving averages [30].

3. Related Work

3.1. SST Forecasting. SST is a critical parameter to be
forecasted in the marine environment since it can affect a
variety of events such as sports, fishing, marine ecology, and
weather forecasting. Hence, predicting the SST in both the
short and long term is an active topic that has recently drawn
researchers’ attention. A prediction technique based on
Support Vector Machine (SVM) has been introduced for
determining SST in the Tropical Atlantic region [31]. +e
utilized dataset in [31] is considered the raw data feed to the
SVM model and is collected from two PIRATA buoys
(placed at 8°N 38°W and 10°S 10°W), employed in this study.
+e authors’ proposed system extends the work proposed in
[32], which uses the same PIRATA dataset.

Normally, the sea surface temperature can be predicted
both in the short term (i.e., a few days) and in the long term
(i.e., weekly and monthly). +is problem can be expressed as
a problem of time series regression. Hence, the same as [33],
the long short-term memory (LSTM) can be used to forecast
the SST. In this study [33], the time series is initially
modelled using an LSTM layer. Afterward, a fully connected
layer is employed to handle the output of the LSTM layer to
predict SST. In [33], the authors proposed making use of the

sea surface temperature values for the Baohai Chinese
coastal seas.

A method for forecasting daily sea surface temperatures
over the short and medium term has been developed using a
case study in the East China Sea using 36 years of satellite
time series data in [34]. Rather than the actual sea surface
temperature, this approach used the historical time series
satellite anomaly. A combined long short-term memory
(LSTM) and AdaBoost ensemble learning model is
employed in this machine learning system to achieve higher
accuracy and hence adequate temperature prediction. An-
other integrated Deep Gated Recurrent Unit and conven-
tional neural network (DGCnetwork) was also applied on
the East China Sea and the Yellow Sea dataset [35]. +e deep
GRU and the convolutional layers are used to extract the
deep hidden temporal features and spatial properties of SST
data, respectively.+is technique was successful in achieving
a 98 percent accuracy rate.

A hybrid approach has been introduced in [36] that
integrates both numerical and data-driven methodologies.
+is mitigates the drawbacks of just applying the numerical
forecast to the sea surface, which exhibits huge variances
when applied to a site-specific case study and decreased
accuracy for long-term prediction. +is study used deep
learning neural networks along with numerical estimators
at different locations in India for daily, weekly, and
monthly forecasting. To begin, conventional neural net-
works are implemented for prediction, followed by the
application of the LSTM across all timescales. +e LSTM is
sensitive to gap lengths and has higher data extraction
capability compared to the linear methods. A comparison
to the linear system (ARIMAX) [21] established that linear
models could not perfectly deal with broad and varying
time horizons.

In [37], the authors proposed building a predictive
model for predicting the SST of the entire China Sea. +ey
utilized collected data over 12 months.+ey proposed a deep
learning model using the LSTM architecture for the task of
SST prediction. +eir work proposed splitting the gathered
data into two parts, namely, SST anomalies and SSTmeans.
+en, they used each data split for training the proposed
LSTMmodel. Besides, they proposed using a self-organizing
feature map (SOM) neural network to classify different
subregions; these classifier model results are used to enhance
the SST forecasting accuracy.

3.2. SWH Forecasting. In [38], the authors collected the
marine data from three different regions, namely, (1) Gulf of
Mexico, (2) Korean region, and (3) UK region. +e utilized
datasets are gathered four times per day (i.e., every six hours)
from 13 stations scattered over these three areas. +e pro-
posed model predicts the daily SWH at 12 a.m. in each
station. +e authors proposed two models and compared
them against the extreme learning machines (ELM) and
Support Vector Regression (SVR) models. +e obtained
results outline a significant performance gap between the
proposed models and ELM and SVR. +e proposed models
outperformed the standard ELM and SVR.
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Wave height forecasting is crucial for various coastal
engineering applications. In [6], Mahjoobi et al. employed
support vector machines (SVR) and multilayer perceptron
(MLP) for forecasting significant wave height. For that
purpose, the authors utilized data set of Lake Michigan
where wind speed is used to predict wave height values.
Similarly, Shamshirband et al. [39] used wind data to
forecast wave height using data gathered from two different
locations of the Persian Gulf. +e experiments are per-
formed using a numerical model (i.e., Simulating Waves
Nearshore (SWAN)) and ML-based models (i.e., artificial
neural networks (ANN), extreme learning machines (ELM),
and SVR) for wave height modelling.

Deep learning technology is increasingly being utilized
to forecast time series data in a variety of sectors. Authors of
[40] used a conditional restricted Boltzmann machine
(CRBM), including temporary information in the classical
deep belief network (DBN), to predict the significant wave
height. +is prediction used key model parameters derived
by applying the particle swarm optimization (PSO) algo-
rithm to the wave data. For the entire prediction error, CE
and RMSE are employed as evaluation metrics.+is research
evaluated themodel’s efficiency using two different statistical
measures, namely, RMSE and the Nash–Sutcliffe coefficient
of efficiency (CE).

Forecasting significant wave height (SWH) is an essential
technique in offshore and coastal engineering. Due to the
randomness and fluctuation characteristics of waves, precise
prediction of the SWH is a difficult task. +e authors of [41]
use a new deep learning algorithm called the gated recurrent
unit network (GRU) to forecast SWH through different time
durations. +e wind speed data for the SWH were gathered
from six buoy stations through various sites in the Taiwan
Strait and its nearby waters and were used as input for the
algorithm. +ree different statistical metrics, including
RMSE, coefficient of correlation (R), and an index of
agreement (IA), have been used in this paper to evaluate the
algorithm’s efficiency.+e paper presented that the GRU can
produce more accurate forecasting values and capture the
overall data trend.

+e discussion of the existing methods shows that there
is no comparison of the different methods (i.e., machine
learning, deep learning, and statistical models) in terms of
prediction accuracy. +us, there is a need to study the
performance gap of these methods for predicting marine
data.

4. Methodology

In this work, we proposed a set of predictive models which
are based on three different approaches (i.e., machine
learning, deep learning, and statistical). +e proposed ge-
neric framework is composed of three stages: data gathering,
preprocessing, and machine learning model deployment.
+is system makes use of the Korea Hydrographic and
Oceanographic Agency dataset (available at: https://www.
khoa.go.kr/eng/). +e data collection stage targets collecting
vital marine features via installed sea sensors. +e obtained
data is preprocessed and fine-tuned for the purpose of

filtering. Finally, the dataset is subjected to training and
tuning the parameters of the predictive models. +e overall
framework block diagram for estimating both SWH and SST
is presented in Figure 2.

Regarding the raw data, first, we proposed preprocessing
this huge dataset to address the noisy andmissing values that
are commonly encountered during data acquisition. Second,
prior data is used to predict the next step, known as the lag
method [42]. +us, the lag is applied to the significant
features, which are temperature and wave height, to forecast
the next values. Basically, the lag value is not determined
until we explore various lag values and then observe the
resulting accuracy rates. Finally, the best lag value with the
highest accuracy is selected. +is section exposes the details
of the proposed GRU-DNNmodel, the process of tuning the
machine learning models, and the statistical ARIMA model.

4.1. StackedGRU-DNNModel. +e first model is a proposed
GRU-DNN model architecture (a deep learning model).
Different model architectures result in different prediction
rates. +us, the main challenge was to find the best GRU
architecture that fits the data at hand. +e proposed Stacked
GRU-DNN is a flexible custommodel, where its architecture
is varied according to the training data. In other words, the
proposed model has no specific architecture, and its
hyperparameters are obtained during the hyperparameter
optimization process.

+e proposed GRU-DNN stacking model is represented
as seen in Figure 3. As depicted in Figure 3, the proposed
model consists of an input layer that receives model input, a
GRU layer, a fully connected layer(s), and, lastly, a single
neuron output layer that produces the forecasted result. We
aim at using the proposed model structure to use a recurrent
layer that can learn and model time series patterns in data,
besides the additional fully connected layer(s) that recom-
bine the extracted representation learned through previous
layers and get extra representations of more levels of
abstraction.

Practically, over/underfitting difficulties in neural net-
work models are caused by the neural network model’s
excessive/insufficient training epochs [43]. As a result, one
possible solution to the DL-based model’s over/underfitting
concerns is to apply the early stopping strategy [44], which is
used to cease training when generalisation performance
starts to degrade for a number of epochs. To track the
generalisation performance, in the proposed model, the
training data is separated into training and validation
groups.

+e dropout approach [45] is another way to deal with
the overfitting problem. Dropout is a regularisation strategy
that allows you to train neural networks with alternative
topologies in parallel by randomly dropping out a certain
proportion of layer neurons. Dropout is indicated by the
black neurons in the fully connected layers, as seen in
Figure 3.

One of the well-known adaptive optimization algo-
rithms which have been shown to be effective in solving
practical DL issues is the Adam optimizer [46]. DL model
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uses the Mean Square Error (MSE) loss function, which is
provided by equation (5). +at is, the proposed GRU-DNN
model is trained with the goal of minimizing the loss
function given a training data (Xi, Yi)􏼈 􏼉

N
i�1 of N

observations.

min
w

1
N

􏽘

N

j�1
Yj − F Xj, w􏼐 􏼑2􏽮 􏽯, (5)

where w signifies the network coefficient, F: Rk⟶ R1 is
the neural network flow, and k denotes the size of the input
vector (i.e., number of lag features).

4.1.1. GRU-DNN Hyperparameter Optimization. +e opti-
mization of the proposed model hyperparameters is a part of
machine learning methods. +e model parameters (coeffi-
cients) utilized to govern the training task are as hyper-
parameters. Such parameters (e.g., learning rate, number of
layers/neurons of a network/layer, lag order of ARIMA

model, etc.) must be fine-tuned in order to obtain good
fitting/generalisation of the model in a process known as
hyperparameter tuning.

In the proposed model, the optimal model hyper-
parameters are obtained utilizing a distributed asynchro-
nous hyperparameter optimization approach [47].
+erefore, for parameter finding and optimization, we used
the Tree Parzen Estimator (TPE) [47] method in the
Hyperopt package (available at http://hyperopt.github.io/
hyperopt/). Table 1 shows the proposed GRU-DNN
model hyperparameters and their search spaces for deter-
mining the best model hyperparameter values.

4.2. Machine Learning Models. One of the main obstacles
for designing machine learning models is tuning the
hyperparameters of the model. +is is because different
hyperparameter values can lead to different accuracy levels.
In the proposed system, four machine learning models are
employed, which are Linear Regression, Support Vector
Regression (SVR), Decision Tree (DT), and Random Forest
(RF). Each learning model is subjected to a grid search in
order to achieve the optimal parameter tuning. +e
hyperparameters are essential for being one of the primary
sources that influence the behaviour of a machine learning
model in general. Hence, determining the optimal
hyperparameters combination is a critical goal which re-
duces a predefined loss function and produces better
outcomes. For instance, the degree, kernel, epsilon, and
gamma are all adjusted in SVR to reach the highest ac-
curacy. In RF, however, grid search is applied to determine
the optimal hyperparameters (i.e., max_features, min_-
samples_leaf, number of estimators, and min_samples_s-
plit). Similarly, the max depth and criterion are the
hyperparameters of the DT. Table 2 shows the optimized
values for the hyperparameters of the employed four ML
models. In addition, for ML models, we tuned the number
of the lag features which is considered as a hyperparameter
that requires optimization. Hence, the optimized lag fea-
tures transform the time series problems into supervised
ML ones.

4.3. ARIMA Model. We proposed a new ARIMA model to
solve the proposed problem. In the proposed model, we used
the autocorrelation function (ACF) and partial autocorre-
lation function (PACF) to get the ARIMA parameters such
as p, d, and q. By viewing the ACF scheme at d� 1, the
parameter qmay be determined once these procedures have
been completed.+e first lag is essential, while the second lag
is not significant. +us, the MA term has a value of 1 and is
represented by q.+eACF for the second differencingmeans
the lag advances quickly towards the far negative zone,
implying that the series may have been overdifferences. As a
result, even though the series is not entirely stationary, we set
the order of differencing to 1. In the end, the last parameter
of the ARIMA model is p, which may be determined by
examining the PACF diagram.

We demonstrated how to decompose a time series for
checking the presence of a seasonal component by

Data Collection

Pre-Processing
&Construction

Lag

Hyperparam
- Opti

Data
preprocessing

Hyperparameter
tuning

Training &
Validation

Model
Validation

Model
predection &
deployment

Model
training

KOREA HYDROGRAPHIC AND
OCEANOGRAPHIC AGENCY

Figure 2: +e block diagram of the proposed system.
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decomposing one sample (i.e., minimum of wave height-
series of ocean marine necessary parameters). We used the
seasonaldecompose function from the statsmodels library in

the Python program to decompose the time series. +e
decomposition shows that the minimum time series of
ocean waves has a seasonal part for one marine feature type.
Since the time series has a definite seasonality, the SAR-
IMA, which uses seasonal differencing including charac-
teristics (P, D, Q, and S), is the way to proceed. We
proposed utilizing a grid search for the P, D, and Q pa-
rameters to find the best seasonal parameters within var-
ious values (e.g., 0, 1, 2, and 3). In contrast, the search space
for parameter S encompassed 6, 12, and 24. +ese pa-
rameters are determined via a grid search, which entails
testing numerous seasonal parameters and reporting the
combination of parameter values with the highest accuracy
metrics scores.

5. Experimental Results

5.1. Experimental Setup. +e experiments were performed
on a computer running 64-bit Linux OS with two 2.3 GHz
Intel 8-core processors. All of the utilized predictive
models were implemented in the Python programming
language version 3.8.5. Moreover, deep learning model
(i.e., GRU-DNN) implementation is performed using
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Figure 3: Stacked GRU-DNN model.

Table 1: +e search space of the GRU-DNN model hyperparameters.

Hyperparameters Value
No. of GRU cells [4, 8, 16]
No. of FC layers [1, 2]
No. of FC layers’ units [4, 8, 16]
Hidden layers activation [Relu, Linear]
Batch size [4, 8, 16]
Droupout rate of FC layers [0.0, 0.1, 0.2]

Table 2: +e hyperparameters values of the ML models.

Decision tree
Best parameter Significant wave height Water temperature
Criterion Mae Mae
max_depth 7 10
max_features Auto Log2
min_samples_split 4 Default

Random forest
Bootstrap True True
max_depth 100 90
max_features 3 2
min_samples_leaf 5 5
min_samples_split 8 12
n_estimators 200 200

SVR
C 100 1
Degree 1 1
Gamma Auto Default
Epsilon Default 0.2
Kernel Poly Poly
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Keras (Available at https://keras.io) and Tensorflow [48]
version 2.3.1. Furthermore, the following libraries are
utilized in our work: Hyperopt [47], statsmodels [49],
Scikit-Learn [50], pandas [51], Numpy [52], and Mat-
plotlib [53].

5.2. Dataset. As previously stated, the Korea Hydrographic
and Oceanographic Agency dataset includes gathered real-
time observed marine data [54]. +is data is updated every
30 minutes from the located underwater network at latitude
34.223611 and longitude 128.4205552. Relevant data, such
as salinity, temperature, wave height, water current, and
surface direction, is sensed and forwarded to central sea
buoys through surrounding sensors placed in each sector.
Afterwards, the buoys filter pertinent data before trans-
mitting it to the above-ground base station. We utilized the
data from ten different stations/buoys. In this work, we
collected the data from ten different buoys at different
locations.

5.3. Evaluation Metrics. Evaluating the machine learning
algorithms that are being used is a critical component of any
proposed system. Four assessment metrics are used to de-
termine the correctness of this system. +e mean absolute
error (MAE) is one of these metrics that estimate the average
of the difference between original and forecasted values.
Hence, we can determine how far the predictions differ from
the actual data. Mathematically, MAE is represented as
follows:

MAE �
1
N

􏽘

N

i�1
Yi − 􏽢Yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (6)

where Yi denotes the true values, 􏽢Yi represents the predicted
values, and N represents the number of observations.

+emean squared error (MSE) and the root mean square
error (RMSE), on the other hand, are also deployed to assess
the accuracy of regression problems. +e MSE is the average
of the square of the difference between actual and predicted
values. +e MSE is expressed as

MSE �
1
N

􏽘

N

i�1
Yi − 􏽢Yi􏼐 􏼑

2
. (7)

Basically, when we consider the square of the error, the
effect of larger errors becomes more evident. +e standard
deviation of these errors, which occur during the prediction
process, is known as the RMSE. In this case, we take the root
of the values into account while calculating the accuracy.+e
RMSE is calculated as

RMSE �

�����

1
N

􏽘

N

i�1

􏽶
􏽴

Yi − 􏽢Yi􏼐 􏼑
2

. (8)

Finally, the R_Squared (R2) value, which ranges from 0
to 1, reflects whether a model fits a given dataset. Similarly, it
quantifies the closeness to the regression line with respect to

the actual values. +e following formula can be used to
calculate the R2 metric:

R
2

� 1 −
􏽐

N
i�1 Yi − 􏽢Yi􏼐 􏼑

2

􏽐
N
i�1 Yi − Y( 􏼁

2 , (9)

where Y denotes the mean true values.

5.4. Results. +e first point of comparison is the perfor-
mance of the implemented models over the utilized four
evaluation metrics discussed in Subsection 5.3. +e ob-
tained results are listed in Table 3 and 4 for predicting SST
and SWH, respectively. +e reported values are the mean
and standard deviation predicting of the utilized ten
stations. In Table 3, the GRU-DNN and SVR models
outperform the other models over the four evaluation
metrics, where the GRU-DNN model was slightly better
than the SVR model. +e worst model was the ARIMA
model. +is is because the proposed model predicts 1000
steps ahead. +e ARIMA model performance degrades as
the value of step ahead prediction increases.

For the SWH forecasting, the listed results in Table 4
show that the RF and GRU-DNN outperformed the other
predictive models. +e RF model slightly outperforms the
GRU-DNN model. Again, the ARIMA model failed in
achieving competitive results. +is is linked to the same
reason for the large size of the step ahead prediction.

+e second point of comparison is the visual illus-
tration. In Figures 4 and 5, we have the actual values
against the predicted values for the SST and SWH, re-
spectively. +us, deep learning, machine learning, and
statistical models are contributing with a subfigure in
Figures 4 and 5, where the machine learning models are
represented by the best performing model. +e scatter
plots in Figures 4 and 5 show a perfect fit for the deep
learning and machine learning models in 4(b), 4(c), 5(b),
and 5(c).

5.5. GRU-DNN Hyperparameter Analysis. GRU-DNN
model is trained in a supervised learning fashion using lag
features (i.e., using K previous observations), where K

denotes the number of previous observations used in the
training and forecasting task. Typically, K is considered
as a hyperparameter that needs to be optimized. +ere-
fore, we performed a grid search method to obtain the
optimal K value. Figure 6 depicts the grid search for
different values of K hyperparameter over search space
ranges from 1 to 15. Specifically, Figure 6(a) presents the
model performance for water temperature forecasting
using various K values, where K � 6 achieves the lowest
MAE error. Similarly, K � 4 is the optimal value for
significant wave height forecasting as shown in
Figure 6(b). It is noteworthy that the experiments pre-
sented in Figure 7 are for the first dataset of each fore-
casting problem, assuming that the rest of the datasets
have similar behaviour.
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Table 4: +e evaluation metrics for the SWH prediction of different models.

Model MAE MSE RMSE R2 (%)
ARIMA 0.4786± 0.2648 0.5060± 42.26 0.6311± 0.3460 NA
D-tree 0.0709± 0.0099 0.0203± 0.0061 0.1282± 0.0207 94.13± 1.23
RF 0.0646± 0.0096 0.0174± 0.0061 0.1164± 0.0207 95.01± 1.25
SVR 0.0698± 0.0087 0.0198± 0.0066 0.1259± 0.0210 92.96± 2.55
LR 0.0681± 0.0094 0.0196± 0.0065 0.1248± 0.0213 94.42± 1.20
GRU-DNN 0.0673± 0.0293 0.0186± 0.0195 0.1218± 0.0652 94.63± 3.77
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Figure 4: +e actual SST vs. the forecasted SST, (a) ARIMA, (b) SVR, (c) GRU-DNN.

Table 3: +e evaluation metrics for the SST prediction of different models.

Model MAE MSE RMSE R2 (%)
ARIMA 0.9601± 0.4270 1.6392± 1.0761 1.1958± 0.4820 NA
D-tree 0.0772± 0.0170 0.0272± 0.0121 0.1346± 0.0318 99.49± 0.21
RF 0.0607± 0.0144 0.0190± 0.0106 0.1076± 0.0287 99.63± 0.19
SVR 0.0515± 0.0096 0.0138± 0.0072 0.0954± 0.0230 99.73± 0.13
LR 0.0651± 0.0144 0.0226± 0.0088 0.1302± 0.0251 99.88± 0.03
GRU-DNN 0.0498± 0.0353 0.0136± 0.0219 0.0934± 0.0738 99.74± 0.40
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Figure 5: +e actual SWH vs. the forecasted SWH, (a) ARIMA, (b) LR, (c) GRU-DNN.
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Figure 6: Model performance of using a different number of lag features. (a) Water temperature. (b) Significant wave height.
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6. Conclusions

+ehuge advances of ocean observation systems yield a large
amount of marine data. +us, this huge data can be utilized
to train predictive models to forecast future marine data. In
this work, we proposed predicting SST and SWH by
implementing machine learning, deep learning, and statis-
tical techniques models. In turn, a comparison of these three
approaches is conducted on different evaluation metrics,
namely, MAE,MSE, RMSE, and R2.+e comparison utilized
a real dataset obtained from the Korea Hydrographic and
Oceanographic Agency.+e simulation results show that the
machine learning models are slightly better than the
implemented deep learning model. +e best model that
predicted the SST was the DTs, while the Linear Regression
model was the best model for SWH forecasting. +e sta-
tistical model (i.e., ARIMA) has been confirmed to have the
worst performance.
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