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Abstract

Severe aplastic anemia (SAA) is an acquired, T cell-driven bone marrow (BM) failure disease 

characterized by elevated interferon gamma (IFNγ), loss of hematopoietic stem cells (HSCs), 

and altered BM microenvironment, including dysfunctional macrophages (MФs). T lymphocytes 

are therapeutic targets for treating SAA, however, the underlying mechanisms driving SAA 

development and how innate immune cells contribute to disease remain poorly understood. In 

a murine model of SAA, increased beta-chemokines correlated with disease and were partially 

dependent on IFNγ. IFNγ was required for increased expression of the chemokine receptor 

CCR5 on MФs. CCR5 antagonism in murine SAA improved survival, correlating with increased 

platelets and significantly increased platelet-biased CD41hi HSCs. T cells are key drivers of 

disease, however, T cell-specific CCR5 expression and T cell-derived CCL5 were not necessary 

for disease. CCR5 antagonism reduced BM MФs and diminished their expression of Tnf and Ccl5, 

correlating with reduced frequencies of IFNγ-secreting BM T cells. Mechanistically, CCR5 was 

intrinsically required for maintaining BM MФs during SAA. Ccr5 expression was significantly 

increased in MФs from aged mice and humans, relative to young counterparts. Our data identify 

CCR5 signaling as a key axis promoting the development of IFNγ-dependent BM failure, 

particularly relevant in aging where Ccr5 expression is elevated.
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Introduction

Severe aplastic anemia (SAA) is a rare, acquired bone marrow (BM) failure disease, 

mediated by T cell-induced destruction of hematopoietic stem cells (HSCs) and their niche 

resulting in fatal pancytopenia [1, 2]. Patients diagnosed with SAA show increased levels of 

interferon gamma (IFNγ) in BM and peripheral blood compared to healthy individuals [3–

5], and exhibit an accumulation of BM CD4+ T cells overexpressing IFNγ and TNF, while 

regulatory T cells are reduced [5]. IFNγ can induce apoptosis [3, 6, 7], limit self-renewal of 

HSCs, and drive HSC terminal differentiation during infection [8–10], though mechanisms 

of HSC loss in SAA have not been clearly defined.

Treatments for SAA patients include immunosuppressive therapies (IST; antithymocyte 

globulin and cyclosporine) and HSC transplantation (HSCT) [11]. The 5-year response rates 

with IST are ~65–70% in young patients, whereas patients over the age of 40 do not respond 

well. HSCT is increasingly pursued as a first-line therapy, particularly in young patients 

[12]. Older patients have increased rates of IST-refractory disease and have an increased risk 

of developing graft-versus-host disease (GvHD) in HSCT [13]. The thrombopoietin receptor 

agonist, eltrombopag, has shown efficacy in patients with refractory disease in combination 

with IST [14], however, the precise mechanisms underlying refractory disease in older 

patients are unclear. SAA is associated with clonal hematopoiesis and an increased risk of 

developing myelodysplastic disease (MDS) and leukemia [15]. As SAA and MDS exhibit 

altered inflammatory states [16], understanding the basic biology of SAA pathophysiology 

may reveal better therapeutic targets to prevent MDS in patients treated for SAA.

SAA pathogenesis is difficult to study in patients because presentation occurs with 

profoundly hypocellular marrow and severe cytopenias [1]. To study BMF, mouse models 

have been developed based on IFNγ overproduction [17], lymphocyte infusion-induced 

damage [18], and chemical exposure. Lymphocyte-infusion models are based on GvHD, 

mirror many observations in human SAA patients, and have revealed important T cell-

intrinsic requirements for disease initiation [19]. In this model, macrophages (MФs) were 

required for the IFNγ-dependent loss of HSCs [20, 21]. IFNγ was necessary for persistence 

of MФs in the marrow during SAA, despite driving the loss of all other hematopoietic cells 

[20]. Blunting IFNγ signaling specifically in MФ-lineage cells, or depleting MФs, rescued 

SAA. Therefore, determining mechanisms underlying the IFNγ-dependent maintenance of 

BM MФs may reveal therapeutic targets for treating SAA.

CCR5 signaling modulates inflammation during arthritis [22], infection [23–25], and colitis 

[26, 27]. We demonstrate that production of CCR5 ligands and increased CCR5 expression 

on MФs during SAA required IFNγ signaling in MФs. CCR5 antagonism rescued HSC loss, 

severe thrombocytopenia, and mouse death. We reveal an intrinsic requirement for CCR5 in 

maintaining MФs in the BM during SAA development, and find that even in normal aging 

Ccr5 expression is increased. These findings suggest CCR5 antagonism may improve SAA 

treatment, particularly in aged patients where CCR5 ligands are elevated [28, 29], and MФ 
dysfunction promotes hematopoietic dysfunction [30].
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Methods

Mice

Animal protocols were approved by the Institutional Animal Care and Use Committee 

(Albany Medical College). C57BL/6 (H-2b/b), BALB/cAnN (H-2d/d), B6/SJL (B6.SJL-

Ptprca/Boy-AiTac), and FVB (FVB/NTac; H-2q/q) mice were purchased (Taconic; 

Germantown, NY, https://www.taconic.com/). Macrophages-insensitive-to-IFNγ (MIIG) 

mice [31] were a kind gift (Dr. M. Jordan). Hybrid B6F1(H-2b/d) mice were generated 

by crossing C57BL/6 or MIIG mice with BALB/c mice. UBC-EGFP (C57BL.6-Tg(UBG-

GFP)30Scha/J), CCL5-deficient (B6.129P2-Ccl5tm1Hso/J), and CCR5-deficient (B6.129P2-

Ccr5tm1Kuz/J) mice were purchased (Jackson Labs, Bar Harbor, Maine, https://www.jax.org). 

Aged C57BL/6J. NIA mice (20–30 months) were from National Institute on Aging. Mice 

were bred and housed in AMC’s Animal Resource Facility under microisolator conditions. 

Mice were assigned to groups and given accession numbers randomly; group size was based 

on prior publications.

BM failure induction

Hybrid F1 mice, 6–12 weeks old, received sublethal radiation (300 RADs, 137Cs source) 

followed by adoptive transfer of 60 × 106 C57BL/6 splenocytes from age- and gender-

matched donors via intraperitoneal injection [6, 18, 20]. Mixed BM chimeric mice received 

sublethal irradiation (500 RADs) and adoptive transfer of 75 × 106 splenocytes from age- 

and gender-matched donor FVB mice via intraperitoneal injection. Mice were euthanized by 

CO2 inhalation followed by cervical dislocation.

Mixed BM chimeras

Congenic wild-type mice (B6.SJL) were lethally irradiated via split-dose radiation (475 

RADS, 24 h apart) and reconstituted with 50:50 ratio of wild-type BM (UBC-EGFP) and 

CCR5-deficient BM containing (10 × 106 cells total). Six weeks post reconstitution mice 

were screened for chimerism, and then induced to develop SAA.

Blood collection and CBCs

Blood was collected into EDTA-coated tubes and analyzed (Heska Element HT5).

Protein analysis

BM cell lysates were homogenized manually with a pestle in buffer containing IGEPAL 

CA-630 and proteinase inhibitors. Chemokine analysis was performed using multiplex 

immunoassays (Bio-Rad).

Flow cytometry

Whole BM was flushed from femurs and tibias. After RBC lysis, cell suspensions were 

plated and stained (antibody details in Supplementary Table 1). For IFNγ staining, cells 

were incubated for 2 h in monensin, prior to permeabilization (BD Pharmingen) and 

intracellular staining. Data were collected on an LSR II (BD Biosciences) with FACSDiva 

software and analyzed using FlowJo software (TreeStar, Ashland, OR).

Seyfried et al. Page 3

Leukemia. Author manuscript; available in PMC 2022 February 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.taconic.com/
https://www.jax.org/


CCL5 neutralization

Anti-CCL5 (AF478; 150 μg; R&D Systems) or isotype control antibody was diluted in PBS 

and administered to mice via intravenous injection on days 3, 5, and 7 postradiation. BM 

was harvested 12 h post final injection (8 days postradiation).

CCR5 antagonism

Maraviroc (MVC; SelleckChem) was solubilized in 100% DMSO, and diluted with 

Sunflower seed oil (Helianthus annus, Sigma-Aldrich). Mice received daily intraperitoneal 

injections of MVC (30 mg/kg in 50 μl) or vehicle (Veh) starting 5 days postradiation.

Gene expression

Whole BM was flushed and pooled from hind limbs of three mice per group. RBCs 

were lysed and cells were stained to sort-purify MФs (F4/80, CD11b, and CD169; BD 

FACSAria II) and collected in RLT Lysis Buffer (Qiagen). mRNA was isolated (Qiagen 

RNeasy Micro Kit) and quantitative RT-PCR (Eppendorf realplex2 Mastercycler) performed. 

Transcriptional studies comparing young and aged mice and human MФs (data sets GEO 

GSE100907 [30]) were utilized. MФs were sort purified from young (2–4 months) and aged 

(20–30 months) mice and processed as described [30]. Human BM from young (<50 years 

of age) and old (>50 years of age) volunteers was obtained from healthy individuals after 

written consent as approved by institutional review board (University of Rochester), via BM 

aspiration and processed as described [30]. Differential expression analysis was performed 

using DESeq2–1.12.4 with an adjusted p value threshold of 0.05 within R version 3.3.0 [30].

Survival studies

SAA-induced and radiation control mice were monitored daily for 1 month and euthanized 

with when moribund. Euthanasia criteria were based on signs of dehydration, response to 

physical stimuli, and mobility. Mice were scored for dehydration (0: no visible tail bones 

and fur returns to normal after scruffing; 1: loose skin and fur while scruffing; 2: visible 

tail bones), stimulus response to petting or nudging (0: movement away or 1: failure to 

avoid stimulus), and ambulation (0: normal or 1: reduced movement, shaking, or unsteady 

ambulation); a combined score of 3 or more qualified for euthanasia.

Statistical analysis

Data were analyzed with GraphPad Prism software (version 9.0, La Jolla, CA) using two-

tailed Student’s t test, ANOVA and Tukey’s post hoc analysis (as indicated).

Results

Chemokines in murine SAA

Pro-inflammatory cytokines can suppress hematopoiesis and are associated with SAA [32]. 

To investigate a potential role for chemokines in SAA, we examined blood and BM for 

levels of β-chemokines 8 days postradiation. Similar levels of CCL2, CCL3, and CCL4 were 

observed in sera from radiation controls relative to mice induced to develop SAA, though 

a significant increase in CCL5 was noted in SAA-induced mice (Fig. 1A). In the BM, we 
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observed significant increases in β-chemokines in SAA, as compared to radiation controls 

(Fig. 1B).

CCL5, also known as RANTES (regulated upon activation, normal T cell expressed 

and secreted), can be produced by a variety of cells, including Th1 cells, important 

drivers of SAA [33]. To test the hypothesis that T cell-derived CCL5 was an important 

driver of disease, we induced SAA using donor splenocytes from mice deficient in Ccl5 
(Supplementary Fig. 1A). Mice induced to develop SAA with splenocytes from CCL5-

deficient mice exhibited no significant difference in time-to-death in survival studies relative 

to mice induced with wild-type splenocytes (Supplementary Fig. 1B), and we observed 

similar numbers of phenotypic HSCs (Lin− cKit+ CD150+ CD48−; Supplementary Fig. 1C). 

These data demonstrate that T cell-derived CCL5 was not necessary for disease induction. 

As many sources of CCL5 exist in vivo, we next neutralized CCL5 using a monoclonal 

antibody, administered in vivo during SAA (Fig. 1C). Blockade of CCL5 induced a subtle 

increase in the number of total HSCs (Fig. 1D). CD41hi HSCs exhibit platelet bias, and 

increased CD41hi HSCs were associated with protection in murine SAA [20]. Further 

analysis revealed that CCL5 neutralization increased CD41lo HSCs, whereas CD41hi HSCs 

were unchanged, consistent with our observation that CCL5 neutralization did not protect 

against SAA-induced thrombocytopenia (Fig. 1E). Together, these findings demonstrate that 

the chemokine CCL5 was dispensable for murine SAA disease.

Differential regulation of chemokine receptors on macrophages during SAA

CCL5 can bind multiple receptors, including CCR1, CCR3, and CCR5 [34], and CCL5–

CCR5 interactions can drive MФ survival during viral infection [35]. As MФ persistence 

correlates with SAA pathogenesis [20], we next measured surface expression of chemokine 

receptors on MФs via flow cytometry (Fig. 2A, B). We noted a similar proportion of CCR1+ 

MФs in the SAA group relative to radiation controls at both 8 and 12 days postradiation, 

whereas the proportion of CCR3-positive MФs was reduced during SAA, relative to controls 

(Fig. 2C). Expression of CCR5 was noted to be quite low on MФs in radiation controls, 

though it was significantly increased on MФs in SAA conditions on both days 8 and 12 as 

compared to radiation controls.

Previous studies demonstrated a requirement for IFNγ signaling in MФs for SAA, as MIIG 

mice, where MФs are insensitive to IFNγ, are protected from SAA disease relative to 

littermate controls (LC) [20]. SAA-induced MIIG mice exhibited significantly protected 

BM cellularity and BM MФs exhibited reduced surface CCR5 relative to LC mice 

(Supplementary Fig. 2A–C). Furthermore, the SAA-associated increase in BM chemokines 

was abrogated in MIIG mice relative to LC mice with SAA (Supplementary Fig. 2D). Thus, 

IFNγ-dependent pathogenesis in SAA correlated with increased chemokine production 

and increased MФ-specific CCR5 expression, which may promote MФ persistence and 

dysfunction in SAA-induced BM failure.

CCR5 antagonism protects against SAA pathogenesis

To determine if CCR5 signaling contributed to BM failure, SAA-induced mice were treated 

with the CCR5 antagonist, MVC, or Veh, beginning day 5 postradiation (Fig. 3A). MVC 
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is a small molecule antagonist that reversibly binds CCR5 locking the receptor in an 

inactive conformation. Whereas 83% of Veh-treated mice succumbed to disease beginning 

as early as 12 days post induction, CCR5 antagonism with MVC significantly improved 

survival during SAA (Fig. 3B). Cytopenias are an important clinical sign of disease, and 

while MVC treatment did not impact blood parameters during the 1st week of disease, 

MVC-treated mice exhibited increased WBCs day 12 post SAA induction, relative to 

Veh-treated mice (Fig. 3C). No improvement in either RBCs or hemoglobin was noted in 

MVC-treated mice, however, MVC induced a significant increase in circulating platelets 12 

days postradiation. MVC improved overall BM cellularity 8 days post SAA induction, and 

the pool of hematopoietic stem and progenitors (HSPCs; Lin−cKit+) was increased, relative 

to Veh-treated mice (Fig. 3D). The numbers of ST-HSCs (Lin− cKit+ CD150− CD48−) 

and LT-HSCs (Lin− cKit+ CD150+ CD48−) were similar, but a significant increase in the 

number of CD41hi LT-HSCs was observed in MVC-treated mice (Fig. 3E). Our observation 

of increased platelets and CD41hi HSCs in SAA-induced mice treated with MVC parallel 

models of MФ depletion [20], and suggest that platelet recovery is an important correlate 

of protection. Anemia was not improved at these time points, similar to studies in MIIG 

mice and MФ-depletion studies [20] where protection against hematopoietic failure was not 

associated with a dramatic improvement in red cell parameters.

CCR5 and BM T-cell responses during SAA

MVC-treated mice showed similar overall numbers of CD90hi CD3+ T cells on day 8, and 

a less striking increase in T-cell numbers was noted by day 12, relative to Veh-treated mice 

(Fig. 4A). The frequency of BM CD4+ and CD8+ T cells was increased in both Veh- and 

MVC-treated mice (Fig. 4B, C), suggesting CCR5 antagonism did not have a significant 

impact on BM T cell. Similar frequencies of IFNγ-secreting CD4+ and CD8+ BM T cells 

were observed on day 8, however, MVC treatment significantly reduced the frequency of 

IFNγ-secreting T lymphocytes by day 12 (Fig. 4D, E), demonstrating that MVC treatment 

mitigated prolonged Th1 responses in the BM.

As MVC cannot be targeted to specific cell populations, we next examined CCR5 

signaling specifically in T cells by inducing SAA with splenocytes from wild-type or 

CCR5-deficient mice (Supplementary Fig. 3A). Similar disease outcomes were observed in 

mice induced with wild-type and CCR5-deficient donor splenocytes, including hypocellular 

BM, increased Sca1 expression, and increased BM T cells (Supplementary Fig. 3B, C). 

Consistent with previous findings in a model of GvHD [36], CCR5-deficient splenocytes 

appeared to enhance inflammation and SAA as indicated by more severe thrombocytopenia 

at day 8 (Supplementary Fig. 3D). These data suggest that blocking CCR5 in T cells 

was not sufficient for MVC-mediated protection and demonstrate that CCR5 signaling 

in T cells may, in fact, be protective. In line with this observation, survival studies 

with CCR5-deficient splenocytes revealed slightly earlier time-to-death, relative controls 

(Supplementary Fig. 3E). Furthermore, blocking CCR5 starting at day 8 postradiation, 

revealed no protection, and mice began dying at earlier time points (Supplementary Fig. 3F). 

Therefore, the efficacy of CCR5 antagonism may depend on timing and the distinct cellular 

composition in the BM during the course of disease.
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CCR5 antagonism alters macrophage persistence and function in SAA

CCR5 was most highly expressed on T cells and MФs, though MVC did not modulate 

expression (Supplementary Fig. 4). CCR5 expression increased slightly on monocytes and 

neutrophils during SAA, but MVC did not impact their frequencies or numbers in the BM 

(Fig. 5A, B). However, MVC treatment resulted in decreased frequencies of BM MФs 

day 8 post SAA induction, but did not alter MФ numbers, likely reflecting the overall 

improvement in BM cellularity with MVC treatment (Fig. 5C). MФs and their production 

of TNF have been implicated in SAA pathogenesis [21], and we observed reduced TNF 

among MФs in MVC-treated mice on day 12, though this was not significant (Fig. 5D). 

These data are consisted with transcriptional changes of sorted MФs, where we observed 

an SAA-induced increase in Tnf and Ccl5 expression and CCR5 antagonism abrogated this 

during SAA (Fig. 5E). Antagonizing CCR5 during SAA transiently reduced the frequency of 

MФs, and diminished expression of two key inflammatory factors, TNF and CCL5, which 

may contribute to altered T-cell responses during SAA.

Macrophage-intrinsic role for CCR5 in SAA

As CCR5 can promote MФ survival we next sought to test the hypothesis that CCR5 

was required for MФ persistence during SAA. To determine whether CCR5 was necessary 

specifically in MФs we generated mixed BM chimeras containing both CCR5-deficient 

(CD45.2+; EGFP−) and wild-type BM (CD45.2+; EGFP+; Fig. 6A). This established an in 

vivo system to investigate the intrinsic role of CCR5 in MФ persistence during SAA. SAA 

was induced using donor splenocytes from FVB mice [21], and mice were examined 8 days 

post induction. A significant decrease in HSPCs and significantly reduced platelets was 

observed, consistent with development of SAA (Fig. 6B, C). Among total donor BM cells, 

similar frequencies of WT and CCR5-deficient neutrophils and monocytes were observed 

in radiation control and SAA-induced mice (Fig. 6D, E). Radiation control mice exhibited 

similar frequencies of donor WT and CCR5-deficient MФs, however, SAA mice exhibited 

significant increase in wild-type MФs relative to CCR5-deficient cells (Fig. 6F). Together, 

these data demonstrate that SAA conditions, including IFNγ-producing T lymphocytes, 

results in CCR5 expression on MФs and, furthermore that cell-intrinsic CCR5 expression in 

MФs provides a survival advantage thus supporting their persistence in the BM (Fig. 6G).

Elevated chemokines and Ccr5 in marrow macrophages in aging

Elevated levels of beta-chemokines have been noted in aged mice and humans [28, 29]. 

CCL3, CCL4, and CCL5 were significantly increased in the BM of aged mice, whereas 

CCL2 was diminished (Fig. 7A). Transcriptional analysis of BM MФs showed a significant 

increase in Ccl3 and Ccl4, and Ccl2 and Ccl5 were either unchanged or only moderately 

elevated (Fig. 7B). Among the relevant receptors for these chemokines, we observed a 

statistically significant increase in Ccr5 expression among MФs in aged mice relative to 

young mice (Fig. 7C). To determine the relevance of our findings to humans, we investigated 

expression of chemokine receptors in data sets obtained from MФs purified from young and 

old volunteers [30]. Although no significant difference was observed in expression of CCR5 

ligands in MФs (data not shown), a significant increase in Ccr5 was observed in MФs from 

aged individuals (Fig. 7D). Therefore, Ccr5 expression is increased during aging in BM 

Seyfried et al. Page 7

Leukemia. Author manuscript; available in PMC 2022 February 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MФs from both mice and humans, suggesting targeting CCR5 may be a novel therapeutic 

strategy to ameliorate SAA disease in aged patients where therapies are currently ineffective.

Discussion

Most cases of acquired SAA are idiopathic, and both genetic and environmental factors 

likely converge to induce disease. IFNγ has been implicated in SAA for decades, and 

its likely role in pathogenesis is consistent with the suppressive effects of IFNγ on 

hematopoiesis in a variety of contexts [10, 37, 38]. IFNγ can directly suppress HSC 

survival, self-renewal, and modulate differentiation [10, 39, 40], and IFNγ can also impact 

the function of mesenchymal stromal cells, known to support in vivo function of HSCs 

[41, 42]. Recently, IFNγ was found to be necessary for the survival and persistence of 

dysfunctional MФs in a murine model of SAA [20]. MФ depletion or reduction ameliorated 

disease in murine SAA despite having little impact on the levels of pro-inflammatory 

factors, including TNF and IL-1β [20]. Here, we demonstrate a striking increase in β-

chemokines in SAA, found to be dependent on IFNγ signaling in MФs, demonstrating the 

local BM chemokine milieu is important for SAA initiation and/or progression.

We first focused on CCL5 as it is produced by Th1 cells, and levels were high in the 

marrow and blood during acute SAA. CCL5 neutralization was associated with a subtle 

increase in the frequency of HSCs, though this was due to increased CD41lo HSCs, but not 

CD41hi HSCs, consistent with severe thrombocytopenia in mice given CCL5-neutralizing 

antibodies. CCL5 may promote expansion and function of a particular subset of HSCs 

primed to generate platelets [20, 38, 43, 44]. Indeed, mice recovering from radiation injury 

benefit from infusion of recombinant CCL5, and CCR5 was necessary for hematopoietic 

recovery in this model [45]. A key difference between radiation injury and induction of 

SAA is the intensity and context of inflammatory signals. Radiation induces a moderate 

increase in CCL5 [45]; in contrast, SAA conditions induce a profound increase in CCL2–

CCL5 in the marrow, compared to radiation alone. CCL5 is critical for megakaryopoiesis 

and thrombopoiesis [46], and whereas CCL5 may be important for recovery upon radiation 

injury, overactivation of CCR5 signaling may exhaust the hematopoietic system by driving 

expedited and unsustainable platelet production. CCR5 antagonism resulted in increased 

circulating platelets during the 2nd week of disease revealing a temporal component to the 

outcome of inflammatory signaling and platelet production in the context of SAA. It is also 

possible that receptors are differentially regulated in BM failure as compared to radiation 

injury.

CCL5 can be produced by a variety of cells, including activated T lymphocytes [47], 

however, donor T cell-derived CCL5 was not necessary for induction of SAA pathogenesis, 

HSC loss, and mouse death. Therefore, more potent sources of CCL5 may exist in the 

BM and/or redundancy with other chemokines that can bind CCR5 during SAA. We also 

demonstrated that CCR5-deficient T cells were able to migrate to the BM and induce 

disease. CCR5-deficient T cells induce severe GvHD due to failed recruitment of Tregs 

[48], consistent with observations of slightly more severe thrombocytopenia in SAA mice 

induced with CCR5-deficient splenocytes. MVC treatment beginning day 8 post-radiation 

did not protect against mortality, perhaps due to reduced Treg recruitment. Therefore, 
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additional studies are warranted to more fully understand how CCR5 antagonism impacts 

T lymphocytes, MФs, and disease outcomes, when administered during disease, and, 

furthermore, whether later treatment can rescue established disease.

While the precise ligand(s) important for disease are not known, we reveal a specific role 

for CCR5 in inducing SAA. Protection afforded by treatment with the CCR5 antagonist, 

MVC, correlated with reduced inflammatory MФs. Prior observations in a murine model 

of SAA revealed that IFNγ-dependent MФ persistence promoted SAA pathology and HSC 

loss [20]. IFNγ promotes survival of MФs during bacterial infection, via IL-6 and M-CSF 

[38]. Our data suggest that IFNγ may also preserve MФs and prevent cell death by inducing 

expression of CCR5, as evidenced by reduced CCR5 expression on MФs in MIIG mice, 

relative to LCs, during SAA that correlated with reduced numbers of MФs in MIIG mice 

[20, 38]. Our findings are consistent with observations that CCR5 promotes MФ survival 

during viral infection [35]. By generating an in vivo setting where both CCR5-positive 

and CCR5-deficient cells were present, we were able to show that CCR5 signaling was 

necessary to maintain MФs in the BM in SAA conditions. It will be important to determine 

if this is unique to acute, inflammatory diseases or if it is also relevant to low-level chronic 

inflammation, such as that observed in aging.

How MФs promote hematopoietic failure and HSC loss is still unclear, however, the 

ability of MФs to interact with many different cell types and produce a variety 

of inflammatory factors likely contributes to microenvironmental changes that drive 

hematopoietic dysfunction. Interestingly, only very mild rescue of anemia was observed with 

MVC, whereas thrombocytopenia was profoundly improved. Previous studies where MФs 

were transiently depleted also failed to improve anemia, but rescued hematopoietic function, 

consistent with the observation that MФs support erythropoiesis. While MVC treatment does 

not improve acute anemia, it is possible that anemia improves over time due to improved 

mouse survival and rescued HSCs.

Viral infections, including parvovirus B19, cytomegalovirus (CMV), and Epstein–Barr virus 

(EBV), have been associated with SAA [1, 49]. Parvovirus can infect a variety of cells 

and mediate direct cytotoxic effects [50, 51]. CMV and EBV are typically acquired in 

childhood and remain latent in immune cells, and their reactivation can occur upon IST in 

patients with SAA [52]. EBV and CMV elicit production of chemokines and expression of 

chemokine receptors, and the CCL5–CCR5 axis plays essential role(s) in T-cell expansion 

and migration during infection in vivo [53–55]. CMV and EBV infections are often 

subclinical, and their presence in the right context may promote signals necessary for SAA 

development. Our studies suggest the possibility that viral infection triggers a chemokine 

signaling axis, further supporting CCR5 in initiation of SAA.

CCR5 is a co-receptor for HIV and a mutant allele of Ccr5 (Δ32 allele) provides 

natural resistance to HIV infection. MVC is currently approved for patients with CCR5-

tropic HIV, and in HIV-infected patients where therapies were failing, MVC resulted in 

improved control of virus, and a significant improvement in WBCs, platelet numbers, 

and hemoglobin [56]. CCR5 antagonism was not only beneficial as an antiviral, but also 

improved hematopoietic function. CCR5 antagonists have also been pursued to reduce 
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tumor-associated MФs and regulatory T cells [57, 58]. Blocking CCR5 signaling in an F1 

mouse model of GvHD reduced T-cell infiltration into the liver, mitigated liver injury, and 

reduced FasL mRNA levels in the liver [59]. MVC has been studied as part of the standard 

GvHD prophylaxis following HSC transplant where it reduced the incidence of GvHD in 

high-risk patients 6 months post HSC transplant [60]. In mouse models of GvHD, CCR5 

signaling can also prevent disease by controlling migration of regulatory T cells [36, 48], 

thus mechanisms regulating migration and function of BM T cells, particularly during SAA, 

warrant further investigation.

Treatment for SAA has made remarkable advancements in recent years, however, refractory 

disease is devastating to individual patients and their families, and older patients continue to 

have poor outcomes [1]. Antagonizing CCR5 may augment IST and/or HSCT, particularly 

in aged patients as expression of Ccr5 in MФs is increased relative to young counterparts. 

Older patients may exhibit refractoriness to standard IST and exhibit more GvHD in part 

due to heightened responsiveness to chemokines. Although we did not observe an increase 

in chemokines expressed by MФs from aged humans, other sources of these ligands exist 

in the BM that may impact MФs locally. Additional studies are warranted to decipher how 

signaling via CCR5 in MФs, and other cell types, impacts blood production in disease and 

aging.

Supplementary Material
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Fig. 1. Increased chemokines in the BM during SAA in mice.
Mice were induced to develop SAA via splenocyte transfer following sublethal irradiation. 

Sera (A) isolated from peripheral blood and total bone marrow homogenates (B) were 

evaluated for beta-chemokine concentrations via a Luminex assay for radiation control mice 

(open circle, open bar) and SAA-induced mice (closed circle, grey bar) 8 days postradiation; 

n = 5–6 per group. C Mice were induced to develop SAA and treated with a neutralizing 

antibody to CCL5 (clone number 53405.111, R&D systems) on days 5–7 via intravenous 

administration. D BM was evaluated on day 8 post splenocyte transfer and LT-HSCs (LSK, 

CD150+ CD48−) and CD41+/lo and CD41hi LT-HSCs were enumerated in BM in SAA mice 

treated with isotype (filled circle) or anti-CCL5 antibodies (open circles). E Circulating 

platelets were evaluated at 15 days post SAA induction in mice treated with Isotype or 

anti-CCL5 antibodies as described in panel (C). Data represent data pooled from two 

independent experiments, mean ± SD is shown, and significance was determined by a 

Student’s t test; *p < 0.05, **p < 0.01, ***p < 0.001.
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Fig. 2. CCR5 expression is increased on macrophages during SAA.
Mice were induced to develop SAA and BM was examined 8 and 12 days postradiation. 

A The gating strategy to identify myeloid populations via flow cytometry is shown and 

populations were analyzed as follows: monocytes (CD11b+ Ly6Chi Ly6G−), neutrophils 

(CD11b+ Ly6Cint Ly6Ghi), and macrophages (MФs) (F4/80+ Ly6C− Ly6G− SSC-Alow 

CD169+). B Flow cytometry plots representing CCR3 and CCR5 gating strategy for F4/80+ 

Ly6C− Ly6G− SSC-Alow CD169+ MФs day 12 post-radiation. C The percent of CCR1, 

CCR3, and CCR5-positive MФs was determined via flow cytometry on days 8 (left panel) 

and 12 (right panel) postradiation for rad control (open) and SAA-induced mice (gray filled). 

The mean ± SD is shown and data are pooled from two independent experiments, n = 3–11 

per group; significance was determined by a Student’s t test. *p < 0.05, **p < 0.01.
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Fig. 3. CCR5 antagonism with maraviroc improves survival and bone marrow cellularity when 
administered during SAA.
A F1 hybrid mice were induced via splenocyte transfer following sublethal irradiation and 

treated with 0.6 mg maraviroc (MVC) via i.p. injection beginning 5 days postradiation; B 
Percent survival 30 days postradiation; radiation only (black dashed line) n = 9; radiation 

control mice treated with MVC (red dashed line) n = 9; SAA mice treated with vehicle 

(black solid line) n = 17; SAA mice treated with MVC (red solid line) n = 19. Data 

pooled from two individual experiments. Significance determined by log-rank (Mantel-Cox) 

test; *p < 0.05, **p < 0.01, ****p < 0.0001. C Complete blood counts for white blood 

cells (WBCs), red blood cells (RBCs), hemoglobin, and platelets are shown for Veh-treated 

mice (closed circles) and MVC-treated mice (red squares) on days 8 and 12 postradiation 

and ranges for radiation controls are depicted in gray (filled area, y-axis). D Total bone 

marrow cellularity and number of HSPCs per leg for Veh-treated mice (closed circles) and 

MVC-treated mice (red squares). E Graphs depict absolute number of short-term HSCs 

(ST-HSCs) (Lin− cKit+ CD150− CD48−), long-term HSCs (LT-HSCs) (Lin− cKit+ CD150hi 

CD48−), and CD41hi LT-HSCs, respectively. Data pooled from two individual experiments 

per time point showing mean ± SD, n = 5–12. Significance between groups within each time 

point was determined by a Student’s t test. *p < 0.05, **p < 0.01.
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Fig. 4. The impact of CCR5 antagonism on T lymphocytes in SAA pathogenesis.
F1 hybrid mice were induced via splenocyte transfer following sublethal irradiation and 

treated with 0.6 mg MVC via i.p. injection beginning 5 days postradiation. BM was 

harvested 8 and 12 days post-radiation. A Absolute number of BM T cells (CD90hi CD3+); 

frequencies of CD4+ (B) and CD8+ (C) subsets are shown as percent of total BM cells 

(%BMC). Data pooled from two individual experiments per time point, n = 5–9 per group 

per time point; statistical significance for all data was determined by ANOVA followed 

by Tukey’s post hoc analysis for multiple comparisons. *p < 0.05, **p < 0.01, ***p < 

0.001, ****p < 0.0001. D Flow cytometry plots representing gating strategy for IFNγ 
expressing CD4+ and CD8+ T cells; numbers on plots represent the percent of cells within 

the gated region. E Frequencies of IFNγ expressing CD4+ and CD8+ T cells 8 and 12 days 

postradiation. Data show one experiment, n = 2–5 per group per time point, showing the 

mean +/− S.D. Statistical significance for day 8 data was determined by ANOVA followed 

by Tukey’s post hoc analysis for multiple comparisons. *p < 0.05, **p < 0.01, ***p < 0.001, 

****p < 0.0001. Statistical significance for day 12 data was determined by a Student’s t test. 

**p < 0.01, ***p < 0.001.
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Fig. 5. CCR5 antagonism alters macrophage numbers and function during SAA.
F1 hybrid mice were induced via splenocyte transfer following sublethal irradiation and 

treated with 0.6 mg MVC via i.p. injection beginning 5 days postradiation. BM was 

harvested 8 and 12 days postradiation and myeloid cells were analyzed in SAA mice treated 

with either vehicle (closed circles) or MVC (red squares) with ranges for radiation controls 

shown by gray fill (y-axis). A Frequency and absolute number of monocytes per leg. B 
Frequency and absolute number of neutrophils per leg. C Absolute number of MФs per 

leg. D Intracellular staining of TNF was performed and the frequency of TNF expressing 

MФs is shown. Data pooled from two individual experiments showing mean ± S.D., n = 

6–12. Significance between groups was determined by a Student’s t test. *p < 0.05. E Bone 

marrow was pooled from three individual mice per group for fluorescence-based cell sorting. 

mRNA was extracted from MФs (F4/80+ CD11b+ Gr-1− CD169+ SSC-Alow) for qRT-PCR 

analysis. MФ gene expression is normalized to glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) and relative to radiation controls. Each qRT-PCR was performed at least twice 

and data points represent the mean of replicates. Data for Tnf are two individual pooled 

experiments and for Ccl5 are a representative experiment from individual experiments 

showing similar trends.
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Fig. 6. Intrinsic role for CCR5 in macrophages in SAA.
A Mixed BM chimeric mice were generated by lethally irradiating CD45.1 mice (split 

dose of 950 RADs total) followed by transplant of a mixture of CCR5-/- and wild-type 

whole BM (total 10 × 106 cells total). Following reconstitution of the hematopoietic system, 

mice were either sublethally irradiated (500 RADS) (open bars) or induced to develop 

SAA (grey bars) via sublethal irradiation plus adoptive transfer of splenocytes (75 million 

cells) from FVB donors. B BM was analyzed by flow cytometry and the frequency of 

HSPCs (Lin− cKit+ (LK)) among total BM cells (BMCs) is shown for radiation controls 
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(Rad; open bars) and SAA mice (gray bars); n = 3–7 per group. C Platelets as determined 

by CBC are shown in Rad (open bars) and SAA mice (gray bars). Significance between 

groups was determined by a Student’s t test. *p < 0.05, **p < 0.01. The percent donor 

wild type (UBG-GFP, green filled) or CCR5 deficient (open) among total bone marrow 

cells in radiation control mice (Rad; open bars, n = 3) and SAA mice (filled bars; n 
= 7) is shown for the indicated populations: D monocytes (CD11b+ Ly6Chi Ly6Glo), E 
neutrophils (CD11b+ Ly6Clo Ly6Ghi), or F MФs (F4/80+ Ly6C− Ly6G− SSC-Alow CD169+). 

Statistical significance was determined using a two-way ANOVA, **p < 0.01, and data are 

representative of two independent experiments showing the mean +/− S.D. G Schematic 

model illustrating the roles of CCR5 during development of SAA. IFNγ signaling in MФs 

promotes β-chemokine expression in the BM and increased expression of CCR5 on MФs. 

Signaling through CCR5 enhances the Th1 responses and increased IFNγ-producing T 

cells, promotes persistence of inflammatory MФs, and results in hematopoietic failure. 

Antagonism of CCR5 alters MФ function and reduces the IFNγ-producing T cells, thus 

preventing hematopoietic failure.

Seyfried et al. Page 20

Leukemia. Author manuscript; available in PMC 2022 February 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. Chemokines and their receptors in aged mice and humans.
A Total bone marrow protein was evaluated for beta-chemokines in marrow from young 

mice (8–10 weeks of age; filled circles) and aged mice (15–18 months of age; open circles). 

Concentrations of the indicated chemokine were normalized to total protein and each dot 

represents a single mouse, n = 6 per group and error bars represent SEM. Significance 

between groups was determined by a Student’s t test. *p < 0.05, **p < 0.01. B Expression of 

chemokines in sorted MФs from young and aged mice (n = 3 mice per group). C Expression 

of chemokine receptors in sorted MФs from young and aged mice (n = 3 mice per group). D 
Expression of chemokine receptors in sorted MФs from young volunteers (n = 4; <50 years 

of age) and aged volunteers (n = 3; >50 years of age). Differential expression analysis was 

performed using DESeq2–1.12.4 with an adjusted p value (q, exact value shown) within R 

version 3.3.0.
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