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Lognormals, power laws 
and double power laws 
in the distribution of frequencies 
of harmonic codewords 
from classical music
Marc Serra‑Peralta1,2, Joan Serrà3 & Álvaro Corral1,4,5*

Zipf’s law is a paradigm describing the importance of different elements in communication systems, 
especially in linguistics. Despite the complexity of the hierarchical structure of language, music has in 
some sense an even more complex structure, due to its multidimensional character (melody, harmony, 
rhythm, timbre, etc.). Thus, the relevance of Zipf’s law in music is still an open question. Using discrete 
codewords representing harmonic content obtained from a large-scale analysis of classical composers, 
we show that a nearly universal Zipf-like law holds at a qualitative level. However, in an in-depth 
quantitative analysis, where we introduce the double power-law distribution as a new player in the 
classical debate between the superiority of Zipf’s (power) law and that of the lognormal distribution, 
we conclude not only that universality does not hold, but also that there is not a unique probability 
distribution that best describes the usage of the different codewords by each composer.

For centuries, physics has dealt with deterministic mathematical laws, such as Newton’s laws of mechanics, the 
laws of electromagnetism, or the laws of relativity1. It were Maxwell and Boltzmann who, in the nineteenth 
century, discovered probabilistic or statistical laws in the study of the motion of the (hypothetical) particles 
constituting a gas. The so-famous Planck’s radiation law can be understood as another instance of a probabilistic 
law. The great insight of Maxwell, Boltzmann, and Planck (and others, like Einstein) was the introduction of 
probability to infer the mechanics of the constituents of matter and radiation. That insight has been one of the 
most successful knowledge programs in the history of humankind. Although the just-mentioned examples of 
probabilistic laws are valid in the “ideal case” (no interaction between the constituents), an interaction (at least 
with the surroundings) has to be present to ensure the existence of a state of equilibrium. In general, the study of 
how macroscopic behavior emerges from microscopic interactions (either in equilibrium or out of equilibrium) 
is the goal of statistical physics.

In ecology, in the social sciences (sociology, economics, demography), and in the study of technological and 
information networks, one is, in some sense, in a situation similar to statistical physics, in which there is an 
enormous number of individual entities whose behavior depends on each other, leading to an emerging collec-
tive behavior2,3. Despite the lack of well-defined underlying microscopic laws, it is remarkable that one may find 
regular statistical laws describing the aggregated properties of the constituent entities, and even more remarkable 
that it is the same law which seems to capture a particular but important aspect of many of these systems4–7. This 
ubiquitous and nearly universal law is Zipf ’s law8, which describes how the constituent entities, or tokens, are 
distributed into larger groups, or types. In this way, Zipf ’s law states that the size distribution of these groups 
(measured in terms of constituent entities) follows a power-law distribution with a loosely constrained value 
of the exponent, close to 2 (for the probability mass function). In an additional twist in favor of the meaning-
fulness of statistical “natural” laws beyond physics, Zipf ’s law emerges again when one considers quantitative 
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approaches to human sciences (mainly the study of language9–13), where the nature of the interactions between 
the constituent entities is not so clear14,15.

However, there have been serious issues with the Zipf ’s paradigm, and with power laws in general, being the 
most important of them the lack of generality of the results13,16 and low statistical rigor17–22. In the first case, a very 
small number of datasets are usually analyzed in order to establish the validity of Zipf ’s law in every particular 
system. For instance, in quantitative linguistics, research articles are usually focused in about a dozen (or even 
less) texts23,24, with the selection of them seeming rather arbitrary. Therefore, many published claims should be 
considered as anecdotic examples, or conjectures, rather than well-established facts.

Regarding statistical rigor, proper fitting methods and goodness-of-fit tests have seldomly been used, being 
replaced many times by visual, qualitative checks. Moreover, some apparently rigorous procedures19 have been 
found to yield inconsistent results25,26. Therefore, it is not yet established for which systems Zipf ’s law is a rough or 
even bad approximation and for which systems it is a good description in some range or limit. An annoying side 
effect of the lack of proper statistical tools is the recurrent debate about if the lognormal distribution is superior 
or not to the power law to describe (some) Zipfian systems27,28. A further concern is some ambiguity in the defini-
tion of Zipf ’s law13,29,30, which admits several mathematical formulations not strictly equivalent between them.

In recent years, several authors have tried to overcome the problems of Zipf ’s law in linguistics. For instance, 
Moreno-Sánchez et al.13 analyzed different mathematical alternatives to Zipf ’s law, using all English texts (tens 
of thousands) available from the Project Gutenberg digital library. In a sort of complementary study, Mehri and 
Jamaati31 considered just one text (the Bible) but in its translation to one hundred distinct languages. An alter-
native approach, instead of analyzing many different individual texts, has been to use big corpora (collections 
such as the British National Corpus formed by gathering many text fragments). Although this is also a valid 
procedure, one cannot assert that results (for instance, a claimed double power-law distribution comprising 
Zipf ’s law for large word frequencies32–34) are not an artifact arising from the mixture of rather different sort of 
texts35. In other words, the statistical properties of the British National Corpus could be different if the corpus 
were compiled in a different way (e.g., changing the length of the selected fragments), and very different also to 
the ones of a hypothetical text of the same length from a single author.

In the last years, diverse forms of artistic expressions have been approached through the eyes of complex-
systems science36. In this paper, we deal with music. Music seems to be a necessary and sufficient condition for 
“humanity”37, in the sense that music has been present across all human societies in all times, and other animal 
species do not seem to have real musical capabilities. Thus, music is a uniquely human attribute (needless to say, 
if any extraterrestrial intelligence were ever discovered, one of the first questions to figure out would be about 
its relationship with some sort of music38,39 ). Even more, music is one of the human activities that attracts more 
public interest (e.g., at the time of writing this, out of the 10 Twitter accounts with more followers, 6 correspond 
to popular musicians or musical performers40 ). Certain parallelisms between natural language and music have 
been noted in the literature, where music has been sometimes categorized as a “language”41; nevertheless, there is 
no clear notion of grammar and semantic content in music37,41 although there exist relations in terms of rhythm, 
pitch, syntax and meaning42.

In any case, one can conceptualize music as a succession (in time) of some musical descriptors or symbols, 
which can be counted in a Zipf-like manner43, with the frequency of appearance of each different symbol playing 
the role of the size of the groups (types) in which Zipfian systems are organized. A remarkable problem is that, 
in contrast to language24, the individual entities to analyze in music can be extraordinarily elusive to establish. 
For instance, Manaris et al.44 mention several possibilities involving different combinations of pitch and dura-
tion, as well as pitch differences, illustrating the multidimensional character of music. This, together with some 
technicalities to deal with musical datasets, may explain the fact that the study of Zipf ’s law and other linguistic 
laws in music has been substantially limited in comparison to natural language. Nevertheless, some precedents 
are of interest. Using a simple pitch-duration pair as a metric, Zanette41 fitted a variant of Zipf ’s law to four 
classical musical pieces, finding a rather high power-law exponent (up to 4.6 for the probability mass function 
of frequency, except for a piece by Arnold Schönberg). Later, Liu et al.45 did the statistics of pitch jumps for five 
classical composers to find even higher power-law exponents. In a more large-scale study, Beltrán del Río et al.46 
analyzed plain pitches (of which there is a maximum “vocabulary” of 128) in more than 1800 MIDI files, contain-
ing classical music, jazz, and rock, to fit a generalization of Zipf ’s law. This, in general, resulted in a rather high 
power-law exponent. In any case, these publications did not use very high statistical standards.

In a more recent attempt, studying popular Western music, Serrà et al.47 considered the combination of pitch 
classes present in short time intervals (harmonic and melodic chords, in some sense) to construct discretized 
chromas. Aggregating individual pieces for fixed lustrums of the twentieth century, and using maximum-like-
lihood estimation with the necessary goodness-of-fit tests, they found a robust exponent for the tail close to 2.2 
(in agreement with Zipf ’s law), which remained stable across the different historical periods that were analyzed. 
Distributions of timbral indicators were also explored in that work, as well as by Haro et al.48; intriguingly, the 
latter reference found that Zipf ’s law for timbre is not only fulfilled by music but also by speech and natural 
sounds (such as rain, wind, and fire).

In this paper, we analyze classical music using its “crystallization” into electronic MIDI scores, by means of 
a rather large database. One could argue that, in order to access genuine expressions of music, audio recordings 
are preferable to MIDI scores, due to the fact that the latter may lack the richness and nuances of interpretation49 
(although there are MIDI files created from the life performance of a musical piece). Nevertheless, for our pur-
poses, scores contain the essence of music, and, in the case of music previous to the twentieth century, they are 
our best remainder of the original intention of the composer. Moreover, as to undertake statistical analysis we 
need to deal with discretized elements, scores provide an objective first step in such discretization.

In the next sections, we present the characteristics of the corpus used (“Data, processing, and elementary sta-
tistics”), describe the extraction of harmonic codewords from the MIDI files (“Data, processing, and elementary 
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statistics” and Supplementary Information, SI), introduce the probability distributions to fit the codewords counts 
(power law, double power law, and lognormal, “Power-law, double power-law and lognormal fits”), explain 
the statistical procedure (“Power-law, double power-law and lognormal fits” and SI), and present the results 
(“Results”). Naturally, we end with some conclusions. The code used in this paper is available in Github50.

Data, processing, and elementary statistics
Data.  As a corpus of classical music scores we use the Kunstderfuge database51, including 17,419 MIDI scores 
of composers from the twelfth to the twentieth century. Different aspects of this musical corpus have been 
analyzed elsewhere52,53. We perform a preliminary cleaning in which we identify and remove traditional songs, 
anthems, anonymous pieces, and also MIDIs arising from live performances, leading to a remainder of 10,523 
files. In general, these files contain the name of the composer and an indication of the name of the piece. Further 
removing files that we are not able to process, files for which we cannot obtain the bar (and cannot determine 
therefore the temporal unit), files corresponding to very short pieces, and files corresponding to repeated pieces, 
we retain 9327 of them corresponding to 76 composers, ranging from Guillaume Dufay (1397–1474) to Olivier 
Messiaen (1908–1992). The complete list of composers, in chronological order, is provided in Table 1. Details of 
the data cleaning and the method of detection of repeated pieces in the corpus are provided in the Supplemen-
tary Information.

Harmonic codewords.  Our analysis focuses on the harmonic content of music, understood as the com-
bination of pitches across all instruments in short time frames. A complete summary for the obtention of the 
elementary units in which we decompose music is provided in the Supplementary Information (see also Ref.53); 
Fig. 1 provides a simple illustration. The different steps are: 

	 (i)	 Conversion of each MIDI file (corresponding to a piece) into a text file (containing the time occurrence, 
duration, and pitch of each note).

	 (ii)	 Transformation of pitches into (twelve) pitch classes (i.e., collapse into a unique octave).
	 (iii)	 Segmentation into elementary time intervals (given by the score beats).
	 (iv)	 Construction of chromas: 12-dimensional vectors (C,C#, . . .G#,A,A#,B) , counting the contribution of 

notes from each pitch class for each elementary time interval and for each stave. That is, we collapse all 
staves in the piece into a single chroma sequence.

	 (v)	 Discretization of chromas (using a discretization threshold), which yields the harmonic codewords to 
analyze. These are 12-dimensional vectors of binary elements (0, 1).

	 (vi)	 Transposition to C major (major pieces) or A minor (minor pieces).
	 (vii)	 For each composer, aggregation of all the time series of transposed discretized chromas (corresponding 

to each piece) into a unique dataset.

Table 1.   Name of the 76 classical composers in the Kunstderfuge corpus analyzed in this paper. The order is 
chronological (from left to right and from top to bottom, established by the average between birth and death). 
The results of the best fit (in bold), followed by other good fits are included. pl = (simple) power law, dpl = 
double power law, ln = lognormal. Number of composers fitted by a unique distribution: 14 (pl 0; dpl 8; ln 6). 
Number of composers with two good fits: 61 (pl, ln 7; dpl, ln 25; ln, pl 14; ln, dpl 15).

G. Dufay: ln, dpl; J. Desprez: ln, dpl; C. de Morales: dpl, ln; G. P. da Palestrina: ln, dpl

O. Lassus: ln, dpl; T. L. de Victoria: dpl, ln; W. Byrd: dpl, ln; C. Gesualdo: dpl, ln

J. Dowland: dpl, ln; C. Monteverdi: ln, pl; G. Frescobaldi: dpl, ln; S. Scheidt: ln, pl

J. J. Froberger: dpl, ln; J. B. Lully: dpl, ln; J.-H. d’Anglebert: ln, dpl; D. Buxtehude: dpl, ln

J. Pachelbel: ln; F. Couperin: dpl; D. Zipoli: ln, dpl; A. Vivaldi: dpl, ln

J.-F. Dandrieu: dpl; T. Albinoni: dpl, ln; J. S. Bach: –; D. Scarlatti: dpl, ln

G. F. Händel: dpl; J.-P. Rameau: dpl, ln; G. P. Telemann: dpl, ln; J. Haydn: dpl

J. G. Albrechtsberger: ln, pl; W. A. Mozart: dpl; M. Clementi: dpl, ln; L. van Beethoven: dpl

N. Paganini: pl, ln; F. Schubert: ln; J. B. Cramer: ln, pl; F. Mendelssohn: ln, dpl

F. Chopin: dpl, ln; R. Schumann: dpl, ln; H. Berlioz: ln, pl; F. Liszt: ln, dpl

L. M. Gottschalk: ln, pl; C.-V. Alkan: dpl; C. Franck: ln; G. Bizet: ln, pl

A. Bruckner: ln; M. Mússorgsky: dpl, ln; J. Brahms: ln; P. I. Tchaikovsky: ln, dpl

A. Dvorák: ln, dpl; A. Guilmant: pl, ln; E. Grieg: ln, dpl; C. Saint-Saëns: dpl, ln

I. Albéniz: ln, dpl; G. U. Fauré: ln; G. Mahler: dpl, ln; C. Debussy: ln, dpl

L. Janácek: ln, pl; S. Joplin: pl, ln; A. Scriabin: ln, dpl; M. Reger: dpl, ln

F. Busoni: dpl, ln; E. Satie: ln, pl; L. Godowsky: dpl, ln; S. Karg-Elert: pl, ln

M. Ravel: dpl, ln; O. Respighi: ln, pl; S. Rajmáninov: ln, pl; A. Schoenberg: pl, ln

B. Bartók: pl, ln; N. Médtner: ln, pl; G. Gershwin: ln, pl; S. Prokófiev: ln, pl

Í. Stravinsky: pl, ln; P. Hindemith: ln, dpl; D. Shostakóvich: dpl; O. Messiaen: dpl, ln
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This aggregation of pieces of the same composer is done in order to get significant statistics. Although under the 
framework of some models explaining Zipf ’s law54, aggregation makes little sense, for other models there are no 
such restrictions55. In any case our approach is model free. Notice that aggregation can be done in several ways. 
Ours is equivalent to aggregate the frequencies n of each type, but one could also aggregate the counts f(n) of 
each frequency n, and this could be done also for relative frequencies. The latter two options would change the 
results, as they lead to mixtures of the distributions corresponding to each piece.

The obtained codewords contain information about the melody and, mostly, the harmony of the pieces. 
The most common codewords in the studied corpus are listed in Table 6 of Ref.53 and they are consistent with 
characteristic harmonic features, i.e., they correspond to harmonic sets of pitches. Therefore, the results arising 
from the analysis of the codewords can be associated with the harmonic characteristics of the compositions, 
especially in the range of high type frequencies.

Elementary statistics.  For each dataset (corresponding to a composer), we count the repetitions or abso-
lute frequency n of each type (discretized chromas, see Fig. 1). This absolute frequency is our random variable, 
and the number of appearances of each value of the frequency (frequencies of frequencies, then) constitutes an 
empirical estimation of the probability mass function of the frequency, which we may denote as f(n). However, 
due to the broad range of the distributions (with n ranging from one to hundreds of thousands), it is more 
convenient to treat n as a continuous random variable and estimate its empirical probability density using loga-
rithmic binning (for visualization purposes only)20; so f(n) denotes in fact a probability density, as well as its 
empirical estimation.

The number of different types present in a dataset (the types with n ≥ 1 ) is what we call the vocabulary of 
the dataset, denoted by V (this is bounded by 212 = 4096 ). The sum of all the frequencies of all types yields the 
total number of tokens, which corresponds, by construction, to the dataset length L measured in terms of the 
elementary time unit (number of beats, by default). In a formula, 

∑V
i=1 ni = L , where i labels the types.

Power‑law, double power‑law and lognormal fits
Probability densities and rescaling.  As a summary of the empirical probability densities of type fre-
quency, Fig. 2a shows all of them (77 in total, one for each composer plus the global one in which all composers 
are aggregated). All distributions present many types that only occur once ( n = 1 , the so-called hapax legomena 
in linguistics9), as well as types with very high frequencies ( n > 105 in the global dataset), with a rather smooth 
decaying curve linking both extremes.

When rescaled, a roughly similar shape is unveiled, as seen in Fig. 2b. Rescaling is done in the following way: 
n → n�n�/�n2� and f (n) → f (n)�n2�2/�n�3 , with 〈n〉 and 〈n2〉 denoting the first (mean) and second empirical 
moments of the distribution. The reason behind such rescaling is the assumption of a hypothetical scaling form 
for f(n),

defined for n ≥ a , with a a (fixed) lower cutoff, θ a scale parameter, and G a scaling function behaving as a decreas-
ing power law with exponent β1 for small arguments ( 1 < β1 < 2 ) and decaying fast enough for large arguments 
(in order that 〈n〉 and 〈n2〉 exist). Then, �n� ∝ a(θ/a)2−β1 and �n2� ∝ a2(θ/a)3−β1 , and isolating, θ ∝ �n2�/�n� 

fsca(n) =
1

a

( a

θ

)β1
G
(n

θ

)

,

Figure 1.   Scheme showing the correspondence between a score (represented by two parallel staves) and its 
representation in terms of discretized chromas. Counts for each type (number of tokens) are also shown.
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and θβ1 ∝ aβ1−1
�n2�2/�n�3 , which justifies the rescaling and allows its verification without knowledge of the 

values of θ and β1 , see Ref.56. When a literary piece is broken into different parts, this rescaling is equivalent 
to n → n/L and f (n) → f (n)LV  (see Ref.57); however, this is not the case here, and the latter scaling form (in 
contrast to the former one) does not work well (not shown). Visual inspection of the rescaled plot based on the 
ratio of moments (Fig. 2b) suggests that the lognormal and the double power law seem appropriate candidate 
distributions to fit the data.

In this work, we consider three different fitting distributions, all of them continuous; thus, the frequency n 
is assumed to be a continuous random variable. The explanation of the three fitting distributions follows, with 
special emphasis in the double power law.

Simple power‑law distribution.  The simple power-law distribution, referred to as untruncated power 
law or simply as power-law (pl) distribution, has a probability density

and zero otherwise. The exponent β fulfils β > 1 and a is the lower cut-off, fulfilling a > 0 . Considering a as 
fixed, there is only one free parameter, which is β . In the particular case in which β is in the range 1.8 ≤ β ≤ 2.2 
we will talk about the fulfillment of Zipf ’s law.

Double power‑law distribution.  The second fitting distribution is the one we call the double power-law 
(dpl) distribution22, whose probability density is given by

fpl(n) =
β − 1

a

( a

n

)β

for n ≥ a,

Figure 2.   (a) Empirical probability densities of codeword frequency for the 76 composers, individually 
(orange-brown lines), and with all of them aggregated (black line). (b) Same distributions under rescaling of the 
axes, where a roughly similar shape emerges for every composer and the global corpus. Dashed straight lines are 
power laws with exponents 1.33 and 2.4, derived from the fit of the global dataset.
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and zero for n < a . Naturally, the lower cut-off a may take a different value than for the simple power law, 
although at this point we use the same symbol for simplicity. The two exponents β1 and β2 fulfill −∞ < β1 < ∞ 
with β1  = 1 and β2 > 1 ; θ is a scale parameter fulfilling θ ≥ a ; and the lower cut-off a fulfills a ≥ 0 if β1 < 1 and 
a > 0 if β1 > 1 . The auxiliary parameter c is defined as c = a/θ and the parameter q is not free either but ensures 
continuity at n = θ between the two regimes, leading to

which gives 0 < q ≤ 1 . As the expressions that multiply 1− q and q in fdpl(n) are normalized in their respective 
ranges, q turns out to be the fraction of probability contained in the range n ≥ θ . If a is fixed, the free param-
eters are β1 , β2 , and θ . The usual (untruncated) power-law distribution is recovered either in the limits θ = a 
(equivalent to q = 1 ) or β1 = β2 > 1.

Note that the double power-law distribution has two contributions: on the left ( n ≤ θ ) we have a truncated 
(from above) power-law distribution, with weight 1− q ; on the right ( n ≥ θ ) we have an untruncated power law, 
with weight q. We will take advantage of this fact to fit the double power law to the empirical data, fitting, sepa-
rately, a truncated power law in the range a ≤ n ≤ b (where we have redefined θ as b), and fitting an untruncated 
power law in n ≥ a2 , (redefining θ as a2)58. In each fit, a2 and b are fixed and considered different, in general.

The method used for the fit is, in both cases, the one explained in Refs.20,22 (see the Supplementary Informa-
tion). If both fits are accepted in some range (in the sense that they cannot be rejected, with p−value greater 
than 0.20) and their ranges overlap (in the sense that the upper cut-off b of the truncated power law is above the 
lower cut-off a2 of the untruncated power law, and both power laws cross each other), the double power-law fit 
is not rejected (provided a ≤ 32 , see below). The resulting value of θ is given by the value of n at which both fits 
cross, which turns out to be

In the case in which the double power-law fit works well, we expect a2 ≃ θ ≃ b (but with a2 ≤ θ ≤ b ). The 
replacements b → θ and a2 → θ can lead to small changes in the fitted values of β1 and β2 ; nevertheless, the good 
visual performance of the fits allows us to disregard such changes.

Although we could have fitted the power laws in the discrete case13,30, we have considered the continuous case 
instead, in order to compare on equal footing with the (truncated) lognormal distribution defined below, which 
is continuous. For high enough values of n, the distinction between continuous and discrete random variables 
becomes irrelevant, but not for small values of n.

The sudden change of exponent of the double power law at n = θ may seem “unphysical”, but the distribution 
works quite well for the number of data we are dealing with (in the last section we discuss an extension of the 
double power law that avoids this “unphysicality”). The case of interest for us is when 0 < β1 < β2 ; specifically, 
when β2 is between 1.8 and 2.2, the resulting power-law tail is in correspondence with Zipf ’s law; then, we will 
refer to this particular case of a double power-law distribution as “double Zipf ”32.

Truncated lognormal distribution.  The third fitting distribution that we deal with is the (lower) trun-
cated lognormal (ln), whose probability density is

and zero otherwise, with a ≥ 0 and µ and σ the two free parameters (being the mean and the standard deviation 
of the associated untruncated normal distribution); erfc (y) = 2

√
π

∫

∞

y e−x2dx is the complementary error func-
tion. The fitting procedure22 proceeds in exactly the same way as for the untruncated power law (with the only 
difference that the lognormal involves two free parameters, µ and σ , when a is considered fixed).

Fitting method and model selection.  The random variable to fit is the absolute frequency n of the code-
words (types); this choice is not obvious in Zipfian systems, see Ref.30. The fitting method is the one in Refs.20,22, 
consisting in maximum-likelihood estimation and the Kolmogorov-Smirnov goodness-of-fit test for different 
values of the lower cut-off a (and the upper cutoff b for the first regime of the double power law). The selected 
value of a (and b) is the one that yields the largest number of types in the fitting range (i.e., the one comprising 
more realizations of the random variable) among all the fits that lead to a p−value larger than 0.20. If the result-
ing value of a is larger than 103/2 ≃ 32 (corresponding to more than 1.5 orders of magnitude from n = 1 to a), 
the fit is rejected, otherwise it is “accepted” and considered a “good fit”.

For the comparison of the fits provided by the different distributions, we have to deal with different subsets 
of the data (as the values of the lower cut-off a will be different in each case, in general). We take the simple 

fdpl(n) = (1− q)
β1 − 1

θ

1

c1−β1 − 1

(

θ

n

)β1

for a ≤ n ≤ θ ,

fdpl(n) = q
β2 − 1

θ

(

θ

n

)β2

for n ≥ θ ,

q =
β1 − 1

(β2 − 1)c1−β1 − (β2 − β1)
,

θ =

[

q

1− q

β2 − 1

β1 − 1

(

(a

b

)1−β1
− 1

)

a
β2−1
2

bβ1−1

]
1

β2−β1

.

fln(n) =

√

2

π

[

erfc

(

ln a− µ
√
2σ

)]−1 1

σn
exp

(

−
(ln n− µ)2

2σ 2

)

for n ≥ a
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criterion of selecting the fitting distribution that yields the smaller value of a, i.e., the model that explains the 
larger portion of the data. The result is what we refer to as the “best fit”. This is explained in detail in the Sup-
plementary Information.

Results
Simple power‑law and double power‑law fits.  We start by comparing the results of fitting a simple 
power law and a double power law. We find that for the majority of the composers (48 of them, 63%) the double 
power law provides a good fit, which is obviously preferable to the simple power law (due to the fact that the 
double power law covers a larger range of data than the simple power law, as the latter is a part of the former). In 
fact, when the double power law fits the data, the simple power law is rejected, as this only fits the tail, which is a 
too small fraction of the data (with apl ≫ 32 ). A couple of particularly good double power-law fits are shown as 
an illustration in Fig. 3, where empirical probability densities and their fits are plotted together; there, it is also 
clear how the simple power law fits a rather small part of the data ( n > apl ≃ 103).

Figure 4 shows, for each composer for which the double power-law fit is not rejected, the corresponding fit-
ting ranges and exponents. We see that when the cut-offs are expressed in terms of the relative frequency, these 
are much more stable between different composers than when expressed in absolute frequencies (except for the 
relative minimum cut-off, adpl/L ). As a rough summary of the figure, the relative scale parameter of the dpl is 
θ/L ≈ 0.005 , and the maximum relative frequency is nmax/L ≈ 0.05 (both with considerable dispersion). Curi-
ously, 0.05 is also, approximately, the relative frequency of the most common word in English, which is “the”59.

We also see in the figure that the exponent β1 ranges between 1 and 2, for most of the composers. This 
power-law regime coincides qualitatively with what has been found in linguistics, using large corpora (where 
the exponent β1 seems to be between 1.433,34 and 1.632,60,61), but we are not aware that it was reported before in 
music. In addition, we observe that β2 ranges mostly between 2 and 3, (remember that in order to consider that 
we have a Zipfian tail, β2 should be between 1.8 and 2.2, roughly). As the composers are ranked by decreasing L, 
we also observe that the smaller L, the larger the dispersion in the values of β2 and β.

However, there are a number of cases (28, 37%) in which the double power-law fit is not appropriate, and this 
can be due to two main reasons: either the two power-law regimes do not overlap (6 composers) and thus the 
fit is rejected, or the first power-law regime is meaningless and thus the fit is also rejected. The latter can arise 
from two subcases: from a too short fitting range (2 composers), or from the fact that both exponents are nearly 
the same, i.e., β1 ≃ β2 , and then the existence of two power-law regimes cannot be established (20 composers).

Figure 3.   Empirical probability density of codeword frequency for (a) de Victoria and (b) Mozart, together 
with double power-law and lognormal fits. Among all the composers, de Victoria and Mozart yield the largest 
logarithmic span of the fitting range, nmax/a , for the double power law. Note that de Victoria also yields the 
lognormal fit with the largest nmax/a (comparable to the value for the double power law).
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Figure 4.   Results of the double power-law fit for each composer for which this is not rejected. (a) Fitting ranges 
sorted by decreasing L. Relative fitting ranges, in terms of cut-off frequencies divided by L, are also shown below. 
The dashed line marks the 101.5 ≃ 32 limit. The middle region not in the legend corresponds to the overlap 
between both regimes. (b) Double power-law exponents β1 and β2 . The value of the exponent β for the simple 
power law (when this is not rejected) is also included. Horizontal dashed lines delimit the Zipf ’s range for the 
exponents β2 and β.

Table 2.   Results of the double power-law fit when this fit is rejected, either because the truncated power-law 
regime has a too short range or because there are not two different power-law regimes (case of non-overlapping 
fitting ranges is not included, except for the global dataset)58. The simple power law fit is accepted (with 
β = β2 ) for all composers but one (Bruckner, for which apl = a2 = 35 ). The number of orders of magnitude 
of this fit is given by ℓ = log10(nmax/a2) . The number of types included in the fit is v2 . The uncertainties in 
β1 and β2 are given by the standard deviation of the maximum likelihood estimation. The rest of variables are 
explained in the main text. The Zipfian subcases ( 1.8 ≤ β ≤ 2.2 ) are marked in bold.

Composer V a b β1 a2 nmax ℓ v2 β2

Monteverdi 247 8 319 1.895 ± 0.126 10 319 1.50 68 2.048 ± 0.142

Scheidt 233 11 475 2.105 ± 0.155 11 475 1.63 76 2.184 ± 0.139

Albrechtsberger 511 16 282 2.634 ± 0.205 16 282 1.25 84 2.632 ± 0.172

Paganini 713 10 351 1.638 ± 0.097 8 351 1.65 166 1.919 ± 0.072

Cramer 657 11 56 1.786 ± 0.249 20 218 1.04 50 3.098 ± 0.330

Berlioz 805 11 398 1.844 ± 0.097 18 602 1.53 109 2.146 ± 0.104

Gottschalk 1035 18 794 1.908 ± 0.086 20 2410 2.08 174 2.072 ± 0.084

Bizet 782 11 751 1.709 ± 0.080 13 751 1.78 155 1.864 ± 0.075

Bruckner 1602 40 891 2.338 ± 0.157 35 895 1.40 132 2.436 ± 0.119

Guilmant 522 9 276 2.349 ± 0.159 9 276 1.49 92 2.410 ± 0.149

Janáček 874 16 251 2.323 ± 0.148 18 251 1.15 125 2.556 ± 0.147

Joplin 634 8 325 2.154 ± 0.116 8 325 1.61 119 2.220 ± 0.099

Satie 912 11 781 1.728 ± 0.073 13 781 1.79 180 1.894 ± 0.073

Karg-Elert 752 9 101 2.594 ± 0.225 9 101 1.05 75 2.720 ± 0.210

Respighi 891 16 348 2.304 ± 0.139 16 348 1.34 122 2.404 ± 0.116

Rajmáninov 2231 13 380 2.375 ± 0.099 18 380 1.33 146 2.512 ± 0.117

Schoenberg 997 10 335 2.261 ± 0.212 9 335 1.58 68 2.474 ± 0.200

Bartók 1766 13 226 2.503 ± 0.136 13 226 1.25 153 2.584 ± 0.119

Médtner 1233 13 74 2.825 ± 0.295 16 74 0.67 49 3.504 ± 0.418

Gershwin 1827 16 50 2.398 ± 0.291 22 154 0.84 81 3.100 ± 0.241

Prokófiev 1171 13 291 2.345 ± 0.164 13 291 1.36 93 2.426 ± 0.149

Stravinsky 2442 28 296 2.574 ± 0.159 28 296 1.02 154 2.723 ± 0.141

All 76 4085 40 3980 1.334 ± 0.017 10,000 254,000 1.40 118 2.369 ± 0.120
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Table 2 displays the results for these two subcases, clearly showing the failure of the double power law ( b/adpl 
small or β1 ≃ β2 ; the table makes these statements quantitative). The table also shows that, when the first power-
law regime (the truncated one) is meaningless, the simple power law provides a good fit for all composers but one 
(21 composers; Bruckner, with apl = 35 , is excluded). In most of the cases, the fitted power-law exponent ranges 
from β ≃ 1.9 to 2.7 (also displayed at Fig. 4). Figure 5a shows one case of the failure of the double power-law fit 
and the validity of the simple power law.

Coming back to the case when the double power law is rejected because no overlap between the two regimes 
exists (6 composers only, as Schubert in Fig. 5b), the simple power law is rejected as well, as the value of apl 
turns out to be too high ( apl ≫ 32 ) and the power-law fit only includes the tail of the empirical distribution. 
Nevertheless, we will see that in 5 of these cases the lognormal provides a good fit (see Fig. 5b); the lognormal 
becomes the best fit then, as represented in Fig. 6. The exception to this is given by Bach, who turns out to be the 
only composer for which none of the three distributions is able to fit the data with a ≤ 32.

We show Bach’s empirical distribution of frequencies together with its different (failed) fits in Fig. 7a; there 
one can see that the two power-law regimes are far from overlapping, and that the tail exponent is rather large 
( β ≃ 3.7 ) and limited to a narrow range in frequency. Note that Bach’s distribution could be fitted by a power-
law body followed (with overlap) by a lognormal tail, but such a distribution is not considered in this paper (of 
course, other distributions with a supercritical bump could be considered as well62).

As another example of a failed double power-law fit, due to the non-overlapping of the two regimes, we 
consider in Fig. 7b the global dataset of the 76 composers, although it is remarkable that in this case the double 
power-law fit is not far from being “accepted” (the region of no overlap has a rather short range). The two power 
law exponents would be β1 = 1.33 and β2 = 2.4 (this case has also been included in Table 2).

Lognormal fit.  Regarding the lognormal fit, it is rejected for only 9 composers (12%), due to a value of aln 
too large (greater than 32). These are Couperin, Dandrieu, Bach, Händel, Haydn, Mozart, Beethoven, Alkan, and 
Shostakóvich, for which the double-power law provides a good fit, except for Bach. The values of the cut-offs for 
the remaining 67 are shown in Fig. 6 (this includes all cases that were not fitted by the double power law, except 
Bach). When comparing the double power law with the lognormal, we find that in many cases the two distribu-
tions provide roughly similar fits (see for instance Fig. 3a; in Fig. 3b, despite some similarity, the fitting ranges are 
clearly different). Out of the 40 composers that are fitted by both distributions, for 25 of them the double power 

Figure 5.   Empirical probability density of codeword frequency for (a) Gottschalk and (b) Schubert, together 
with their fits. Gottschalk is the composer with the largest logarithmic fitting range for the simple power law, 
nevertheless, the (logarithmic) fitting range for the lognormal is larger. Schubert has the largest number of types 
in the lognormal fitting range (1102). Failed double-power law fits are also shown.
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Figure 6.   Results for each composer of the lower cut-off for each fit, when this is not rejected. Shadowed 
regions group the results for each fit. A lower value of a implies a larger fitting range; the distribution with the 
lowest value of a is the preferred best fit for each composer.

Figure 7.   Empirical probability density of codeword frequency for (a) Bach, and for (b) the global dataset with 
all the 76 composers, together with power-law fits and lognormal fit. In both cases the double-power law fit is 
rejected, as the two fitted regimes do not overlap, and also the lognormal fit is unsatisfactory, as it excludes a 
significant part of the types (i.e., the value of a turns out to be too large).
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law provides the best fit (in the sense that it fits a larger fraction of the data), and for 15 of them the situation is 
reversed (Fig. 6).

All composers fitted by the simple power law (21) are also fitted by the lognormal, and the fit provided by the 
lognormal is better for 14 of these 21 composers (for the remaining 7 composers the simple power law is able to 
fit a larger range than the lognormal; this can be seen in Fig. 6). Figure 5a is a good illustration of the case when 
the lognormal outperforms the simple power law. Figure 5b shows another case, in which both the simple and 
the double power-law fail but not the lognormal.

Discussion and conclusions
Table 3 summarizes our results. Recapitulating, the lognormal is the distribution that gives a good fit for more 
composers (67 out of 76, 88%), followed by the double power law (48, 63%), and by the simple power law (21, 
28%). If one considers the simple power law as a special case of the double power law, one would obtain a larger 
number for the latter distribution (69, 91%), thus accounting for roughly the same percentage of fits as the log-
normal. Note that good simple power-law fits arise for composers with low representativity in the corpus (low 
value of L and smaller absolute frequencies); so, we conjecture that increasing the number of pieces by these 
composers would unveil a range of smaller relative frequencies which could be well fitted by another power-law 
regime and thus a double power law would emerge in these cases (in other words, for the number of pieces in 
the corpus of these composers, the value of θ would be too small to be detectable).

Among the double power-law fits, there are only 15 cases that can be considered good “double Zipf ” fits (with 
1.8 ≤ β2 ≤ 2.2 ), and among the simple power-law fits, there are 7 with an exponent in the Zipf range. So, out of 76 
composers only 22 (29%) can be considered to follow Zipf ’s law in the sense of a good fit (although a lognormal 
can provide a better fit for some of them). Considering best fits only, Zipf ’s law only arises for 9 composers (12%).

If we ask instead, not which distributions fit well the data but for the distribution that yields the best fit (in 
the sense of fitting more data, remember), Table 3 shows that the lognormal does it for 35 composers, the double 
power law for 33, and the simple power law for 7; one case (Bach) is not fitted well by any of the three distribu-
tions. Figure 8 quantifies these differences in chronological order. Except for the fifteenth century, the double 
power law slightly dominates about the first half of the data, but after Beethoven, the lognormal takes over. Inter-
estingly, we observe that the simple power law only starts to appear as a best fit in the second part of the corpus, 
around the eighteenth century, and corresponds to composers with little representation in the corpus (low L). 
Nevertheless, composers with low L can also be found in the first part of the corpus, but the simple power law 
does not provide the best fit in any of such cases.

For a small number of composers (six, as well as for the global aggregated dataset), the double power law is 
rejected because the two power-law regimes do not overlap. This is an unfortunate situation, as the two power-law 
regimes exist, but the double power law turns out to be too sharp in its transition from one power-law regime to 
the other at n = θ . A smoother version of the double power law (sdpl) could be used instead,

where B refers to the incomplete beta function

and the extra parameter γ > 0 controls the sharpness of the transition63. The limit γ → ∞ recovers the (infinitely 
sharp) double power law and the limit a = β1 = 0 with γ = 1 leads to the Pareto distribution. In general, one 
could fix γ = 1 to reduce the number of free parameters, but this seems a rather arbitrary decision. An even 
more convenient option would be to consider the discrete version of this distribution (as the data are discrete). 
These extensions are left for future research.
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Table 3.   Summary of the fits for the 76 composers. First row counts distributions yielding the best fits (in 
terms of fitting more data); Second row counts the Zipf subcases among the best fits (exponents β and β2 
between 1.8 and 2.2); third counts distributions yielding good fits (fit not rejected but not necessarily the best); 
and fourth counts the Zipf subcases among the good fits. The statistics for the reason of rejection (bad fits) are 
also included (in brackets).

Simple pl Double pl Lognormal

Best fits 7 33 35

Best Zipf 1 8 –

Good fits 21 48 67

Good Zipf 7 15 –

Reason for rejection apl > 32 (55)

No overlap (6)

aln > 32 (9)b ≈ adpl (2)

β1 ≈ β2 (20)
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A relevant issue in our analysis is the construction of the harmonic codewords from the scores. The discretiza-
tion procedure looks for the presence (1) or absence (0) of each pitch class in every beat of the score. This involves 
two somewhat arbitrary decisions: first, presence and absence are decided in terms of an arbitrary threshold 
applied to the (nonbinary, continuous) chromas; second, it is taken for granted that the fundamental time unit 
is the beat. We have tested the robustness of our results against the change in these arbitrary parameters, repeat-
ing the process for different discretization thresholds and different selections of the elementary time unit. It is 
clear that the increase of the time unit (e.g., from one beat to two beats) leads to a reduction in the number of 
tokens L and subsequently in the values of the frequencies n. Obviously, scale parameters (such as θ and eµ ) are 
strongly affected under such a change; however, a rescaled plot such as the one in Fig. 2b shows that the shape 
of the distributions is robust and remains nearly the same, also when the threshold is changed. As the distinc-
tion between lognormals and power laws depends on the shape and not on the scale of the distributions, our 
conclusions regarding the lack of universality and the poor fulfilment of Zipf ’s law in music do not change (in a 
previous study utilizing the same discretization method, we also found the definition of the codeword threshold 
and the temporal unit rather irrelevant given a reasonable range53).

In summary, we find that the usage of harmonic vocabulary in classical composers may seem universal-like 
at a qualitative level (see Fig. 2b), but this paradigm fails when one approaches the issue in a quantitative sta-
tistical way. Not only universal parameters to describe the distributions do not exist, but different distributions 
(lognormal and power laws) fit better different composers. In particular, the Zipf picture (a power-law tail with 
exponent in the approximate range 1.8–2.2) only applies to a reduced subset of composers (9 best fits, out of 76 
composers, and 22 good fits, out of 69 power law and double power-law good fits and 76 composers, see Table 3). 
Although some degree of universality has been claimed in complex systems in analogy to statistical physics64, 
detailed analyses in some particular systems have shown a diversity of parameters and distributions for some 
particular systems22,65.

Our work can be put into the wider context of quantifying the universality of scaling laws. This is directly 
related to the use of proper statistical methodologies in complex-systems science, where some controversies 
have arisen in recent years. For example, the application of the ideas of allometric scaling to urban science66 has 
raised important concerns67,68 (see also Ref.69 for a revision of the original problem). Methods of fitting power-law 
distributions have been criticized19 and re-criticized25,26,70,71. The important role played by statistical depend-
ence when fitting has been pointed out in Ref.21. In general, one important lesson that emerges from the study 
of complex systems is that these have to be characterized in probabilistic terms, so a precise description of their 
stochastic or probabilistic properties, together with adequate statistical tools, becomes mandatory.
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