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Driver drowsiness estimation 
using EEG signals with a dynamical 
encoder–decoder modeling 
framework
Sadegh Arefnezhad1*, James Hamet2,7, Arno Eichberger1, Matthias Frühwirth3, 
Anja Ischebeck4, Ioana Victoria Koglbauer5, Maximilian Moser3,8 & Ali Yousefi2,6

Drowsiness is a leading cause of accidents on the road as it negatively affects the driver’s ability to 
safely operate a vehicle. Neural activity recorded by EEG electrodes is a widely used physiological 
correlate of driver drowsiness. This paper presents a novel dynamical modeling solution to estimate 
the instantaneous level of the driver drowsiness using EEG signals, where the PERcentage of eyelid 
CLOSure (PERCLOS) is employed as the ground truth of driver drowsiness. Applying our proposed 
modeling framework, we find neural features present in EEG data that encode PERCLOS. In the 
decoding phase, we use a Bayesian filtering solution to estimate the PERCLOS level over time. A 
data set that comprises 18 driving tests, conducted by 13 drivers, has been used to investigate the 
performance of the proposed framework. The modeling performance in estimation of PERCLOS 
provides robust and repeatable results in tests with manual and automated driving modes by 
an average RMSE of 0.117 (at a PERCLOS range of 0 to 1) and average High Probability Density 
percentage of 62.5%. We further hypothesized that there are biomarkers that encode the PERCLOS 
across different driving tests and participants. Using this solution, we identified possible biomarkers 
such as Theta and Delta powers. Results show that about 73% and 66% of the Theta and Delta powers 
which are selected as biomarkers are increasing as PERCLOS grows during the driving test. We argue 
that the proposed method is a robust and reliable solution to estimate drowsiness in real-time which 
opens the door in utilizing EEG-based measures in driver drowsiness detection systems.

Recent studies have shown that drowsiness is one of the major factors of road accidents that causes a large number 
of fatalities and monetary losses1–4. National Highway Traffic Safety Administration (NHTSA) announces that 
about 1.9% of total driving fatalities in 2019 (697 fatalities) were caused by drowsy drivers5. In another report, 
NHTSA estimated that in 2017, 91,000 police-reported crashes involved drowsy drivers that led to approximately 
50,000 traffic injuries and 800 fatalities6. An assessment of the American Automobile Association (AAA) found 
that about 24% of drivers revealed been extremely drowsy while driving, at least once in the last month7. Fur-
thermore, 14.5% of the drivers in the USA have been involved in at least one drowsiness-related traffic collision, 
according to a study carried out in 20088. Some studies also showed that the level of drowsiness in automated 
driving is significantly higher than in manual driving10–12. Given all this evidence, the estimation of driver fatigue 
is essential for road safety and also future intelligent transportation systems require a vigilant driver for take-over 
requests from automated vehicles failing to perform safely.

Generally, three types of data have been used in the literature to design driver drowsiness detection systems: 
(1) vehicle-based13,14, (2) vision-based15,16, and (3) physiological data17,18. The literature suggests that physiologi-
cal data such as EEG may be more appropriate than other systems to detect the onset of driver drowsiness19,20 
specifically because vehicle-based and vision-based systems can be too late in warning the driver in the early 
stages of drowsiness, when there might still be time to prevent the accident. Critical signs of drowsiness such as 
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yawning and head-nodding often appear before lateral displacement of the car and other non-physiological signs. 
Vision-based systems, while convenient, also suffer from robustness limitations in different light conditions and 
their performance can be significantly degraded when the drivers wear glasses or sunglasses21,22. Furthermore, 
data privacy can also be another issue for vision-based drowsiness detection systems which should be more 
studied in future research works.

Neural activities collected using EEG electrodes are widely exploited to classify and predict the different levels 
of driver drowsiness. There are many methods to produce these classifications and predictions, including a range 
of useful EEG layouts and machine learning techniques. For example, in designing a driver drowsiness detection 
system, Ma et al.23 used the Principal Component Analysis (PCA) technique and a deep neural network to extract 
features and predict instances of drowsiness using EEG data. Another study used features such as Higuchi and 
Petrosian fractal dimensions, and the logarithm of energy extracted from EEG as inputs to a Neural Network 
(NN) which is trained to classify the driver drowsiness24. Chen et al. used a similar NN-based classifier with 
different non-linear neural features extracted from subbands of the EEG signals using wavelet transformation25. 
There is also research suggesting single EEG channel recordings from the T7 electrode in the temporal lobe have 
predictive power to detect driver drowsiness. Wavelet transform has been used to extract features from this 
channel and classical classifiers have obtained satisfying performance for drowsiness classification26. Bajaj et al.27 
proposed another EEG feature extraction methodology based on tunable Q-factor wavelet transformation. The 
extracted features were then interpreted by classifiers such as support vector machines and K-nearest neighbors 
to classify the driver’s vigilance as alert or drowsy. Yeo et al.28 also proposed a method based on a support vector 
machine classifier trained by several extracted frequency-domain features from EEG sub-bands. Independent 
Component Analysis (ICA) has been exploited in29 to extract the EEG sources where ICA models are designed 
for each alertness and drowsiness state. Results showed that ICA models are negatively and positively correlated 
with reaction speeds in the alertness and drowsiness states, respectively. The power spectrum of EEG sub-bands 
has been analyzed in30 and results showed Alpha and Theta band powers increase significantly during transition 
from alert to drowsy state. Budak et al.31 also proposed the ensemble majority voting of three deep networks that 
were trained using different EEG features to classify the vigilance state into two classes: awake and drowsy. On the 
contrary, a support vector machine-based posterior probabilistic model was proposed in32 that used the power of 
Theta, Alpha, and Beta sub-bands of EEG data and transformed the drowsiness level to any value between 0 and 1.

Aforementioned solutions show the promising classification of driver drowsiness using EEG-based neural 
features. For a system to be useful in predicting drowsiness before a subject is drowsy and accident prevention 
is possible, we can improve on this work by providing information on how the level of drowsiness changes as a 
function of neural activities. In other words, these existing methods are unable to detect the early stages of the 
drivers’ drowsiness, when drivers can be warned early enough to prevent impaired driving. We seek, with this 
paper, to solve this issue by developing a framework that characterizes the distribution of neural activities as a 
function of driver drowsiness. A scientifically established measure to assess driver drowsiness is the PERcentage 
of Eyelid CLOSure (PERCLOS)33,34. Therefore, we use this variable as the ground truth of the driver drowsi-
ness and our proposed modeling framework predicts PERCLOS as a function of neural features. To resolve the 
issue of previous methods, a generative model for drowsiness tracking is proposed in this paper that provides 
a moment-to-moment assessment of PERCLOS. This method provides a posterior distribution of PERCLOS. 
Therefore, we can build other metrics like drowsiness level at a specific time or over a period as a function of the 
PERCLOS posterior distribution estimate. In other words, this method makes it possible to predict the trajectory 
of PERCLOS in the next multiple seconds which is an important factor to prevent accidents or create a timely 
countermeasure.

Alongside developing a real-time modeling solution to estimate driver drowsiness, we are interested in iden-
tifying neural biomarkers of drowsiness which may be useful to others studying drowsiness and needing reliable 
biomarkers. In the development of our modeling solution, we expand on the dynamical neural encoder-decoder 
modeling framework which has been successfully utilized in other applications such as extracting multi-dimen-
sional auditory and visual stimulus-response correlations35, decoding neural recordings to predict speech36, 
reconstructing natural images using Bayesian decoder37, and decoding hidden cognitive states38.

In the extension of the dynamical encoder-decoder modeling framework in estimating PERCLOS, we provide 
a new model to characterize the temporal dynamics of PERCLOS. Using neural encoder models, we search for 
a subset of neural features encoding PERCLOS. We finally demonstrate how the state process for the PERCLOS 
and neural encoder models can be combined to estimate PERCLOS in real-time.

Data collection and study procedure
Apparatus.  This study was carried out in a fixed-base driving simulator called Automated Driving Simulator 
of Graz (ADSG) at the Graz University of Technology (TU Graz), which is based on a full production vehicle. 
Visual cues are simulated by eight large LCDs, placed around the windshield and the left and right side windows, 
and one in the rear section of the car. Acoustic cues are simulated by a stereo sound system and several shakers, 
providing engine sound, background noise, and vibrations. The vehicle has an automatic gearbox, and drivers 
can control the car using a force feedback steering wheel and pedals. The realism of the simulator was validated 
with driving tests in previous projects39. Automated driving functions are implemented for longitudinal (by 
employing the adaptive cruise control) and lateral vehicle control (by employing lane-keeping assist). The driver 
information was limited to speed and indicator information, using a tablet PC. The driver can operate adaptive 
cruise control and lane-keeping assist systems with a touch screen located on the right side of the dashboard. For 
the present study, EEG channels are collected using an g.Nautilus Research® EEG cap (https://​www.​gtec.​at/) and 
driver’s head position, eyelid movement, pupil diameter, and gaze direction are also measured with an infrared-

https://www.gtec.at/
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based eye-tracking system called SmartEye® (https://​smart​eye.​se/). Figure 1 shows four different views of a driver 
when he was performing the test.

Driving tests procedure.  In this study, drivers participated in two different driving modes: ‘manual’ and 
‘automated’. In the automated mode, lane-keeping and cruise control systems adjust the vehicle’s lateral position 
and longitudinal speed in the test track, respectively. Drivers conducted a 30-minute highway driving test in each 
of these modes in two states including ‘rested’ and ‘fatigued’. In the rested state test, drivers were asked to stick to 
a full night’s sleep routine before the test and not diverge from their usual circadian cycle. For carrying out the 
fatigued state test, there were two choices. One choice was to stay awake for at least 16 hours continuously before 
starting the test procedure (resulting in a drive after at least 17 to 18 hours of wakefulness) and to take the test 
at their usual bedtime. Another choice was a sleep restriction of at least 50% (max. 4 hours of sleep) the night 
before the test. Overall, 92 drivers, balanced in age and gender participated in the four different driving tests 
described above. More information about the testing procedure can be found in our previous work14.

In this study, a data subsample of 18 driving sessions from 13 drivers (5 females and 8 males; age 44.5∓ 18.8 
years) that have various levels of PERCLOS and acceptable eyelid data quality have been selected to estimate 
the level of drowsiness in drivers. The study was conducted according to the guidelines of the Declaration of 
Helsinki, and approved by the Ethics Committee of Medical University of Graz (Code 30-409 ex 17/18, approved 
on 03.08.2018). Informed consent was obtained from all participants before the experiments. EEG signals were 
collected using gel electrodes, with a sampling frequency of 500 Hz, and 24-bit resolution. Eight electrodes have 
been used to collect EEG signals including Cz, Fz, T7, T8, C3, C4, PO7, and PO8. To capture eye movements, 
two EOG electrodes were attached above and below the right eye. The EOG signal was calculated as the differ-
ence between the two EOG electrodes data. The positions of the EEG electrodes along with the ground electrode 
(GND) placed in the AFZ electrode are marked by red and yellow circles in Fig. 2, respectively.

Methodology
Calculation of the actual PERCLOS.  PERCLOS is a measure of drowsiness that is defined as the propor-
tion of time in a minute that eyes are at least 80 percent closed33. For higher PERCLOS values, where the eyes 
are mostly closed for longer periods of time than for lower PERCLOS values, subjects exhibit strong correlation 
with a common sign of drowsiness in driving which is lane deviation in the road33,40. To calculate this measure, a 
one-minute sliding window with a 30 seconds overlap between every two consecutive windows has been applied 
to the eyelid signal. The PERCLOS of four different driving modes of the same driver is shown in Figure 3. In 
this Figure, PERCLOS increases up to 0.9 in the Fatigued-Automated test and goes up to 1 (completely closed) 

Figure 1.   Four different views of the driver when he was conducting the test. The test road in a night drive and 
a dashboard instrument that shows the velocity of the vehicle in the simulated test track are shown in the left 
part. The output of the eye-tracking system that detects the eyelid movements and pupil diameter is presented 
in the right upper part (Reprinted from our previous study14; Copyright (2021), with permission from Elsevier, 
License No. 5058681457961. Informed consent was obtained from the driver to publish his image.

https://smarteye.se/
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in the Fatigued-Manual test. This range of PERCLOS suggests that the driver is extremely drowsy in the fatigued 
mode tests while PERCLOS is barely higher than 0.3 in the rested tests.

Preprocessing of the EEG channels.  EEG signals are contaminated by different noise sources including 
eye movements, eye blinks, and muscle activity. Different methods have been proposed by researchers to pre-
process the EEG signals. For example, Empirical Mode Decomposition (EMD) was used in41,42 that decomposes 
the EEG signals into a specified number of mode functions that can characterize both of neural activities and 
muscle artefacts. Cleaned signals were obtained by using the mode functions which present the neural activities. 
Wavelet-based denoising methods have also been applied in previous studies43–45. In those methods, Discrete 
Wavelet Transform (DWT) is applied to the EEG signals to decompose them to their wavelet coefficients. A 
threshold filter is applied then to remove the wavelet coefficients which represent the noise and artefacts. Finally, 
the cleaned EEG signals are reconstructed using the remaining coefficients. Independent Component Analysis 
(ICA) is also another method that has been widely used to preprocess the EEG channels46–48. ICA decomposes 

Figure 2.   The positions of the EEG electrodes are shown by red circles. These electrodes cover the frontal lobe 
(by Fz), central lobe (by C3, C4, and Cz), temporal lobe (by T7 and T8), and parietal lobe (by PO7 and PO8). 
Two EOG electrodes (not shown here) were also placed in the lower and upper areas of the right eye to record 
eye movements. The ground electrode was placed in the AFZ position, marked by a yellow circle.

Figure 3.   PERCLOS data of four tests in different driving modes: rested-manual, rested-automated, fatigued-
manual, and fatigued-automated. A sliding window with a 1-minute length and 30 s overlap between every two 
adjacent time windows has been used to compute PERCLOS from the eyelid signal.
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the raw EEG signals into independent components, where the source of each component can be identified using 
its scalp topography. The denoised signals are reconstructed by removing those components that are not origi-
nated from the brain lobes49,50. In this paper, we applied the ICA method via the EEGLAB toolbox51 to preproc-
ess the EEG data. This toolbox provides some visual information using scalp topography that makes it easier 
than other methods to remove noisy components when the clean data are retained in the reconstructed chan-
nels. Supplementary Information presents more details about using this toolbox for EEG preprocessing.

PERCLOS neural encoder model.  In this paper, driver drowsiness is considered as hidden cognitive state 
that cannot be measured or known directly. According to the literature33,52,53, we can assume that PERCLOS 
represents the levels of driver’s vigilance and therefore we might estimate driver vigilance by directly estimating 
the PERCLOS with an encoder-decoder model that uses EEG features. The flowchart of the proposed framework 
is presented in Fig. 4. In this subsection, the elements of our proposed encoder-decoder model are discussed. 
Before building the encoding model, the driving tests are randomly separated into two sets: training set, and test 
set. Three driving tests with the IDs of 6, 9, and 15 make the test set and the data of the other fifteen tests are used 
as the training set. The encoder model is designed by using only the training set. The encoder model consists of: 
(1) a dynamical model to characterize how PERCLOS evolves over time as a state variable independent of EEG 
data, and (2) an observation model which characterizes how PERCLOS is encoded in the neural features. Each 
of these models has a separate set of learnable parameters that are estimated using linear regression.

We assume that PERCLOS is a stochastic process characterized by a positive random variable, with a range 
of 0 to 1. PERCLOS temporal dynamic over-time is defined by the state transition process shown in Eq. (1). This 
Equation shows our prior knowledge of how PERCLOS changes over-time without knowing the neural activity. 
As this Equation shows, PERCLOS in every time index only depends on its value in the previous time index and 
it is independent of the EEG features. We assumed that this equation is valid for the calculated PERCLOS values 
for all drivers and the PERCLOS of training set tests are concatenated to each other to identify its unknown 
parameters.

In this Equation, X = [x1, x2, ..., xNtr] is the 1× K vector of PERCLOS made by horizontally concatenating of 
the PERCLOS values of the training tests ( x1 to xNtr ) and Ntr is the number of driving tests in the training set 
which here is 15. {a, b} ∈ R are free unknown parameters and ǫ is a zero-mean Gaussian noise with the unknown 
variance of σ 2

ǫ
 ; ǫi ∼ N (0, σ 2

ǫ
) . The identification of these unknown parameters is described in the subsection of 

”Estimation of state transition process’ parameters”.
We assume that Yd = [y1,d , y2,d , ..., yC,d] is the L× C matrix of EEG features extracted from the d-th driving 

test of the training set ( d = 1, 2, ..,Ntr ), where C is the number of EEG features and L is the length of extracted 
feature and length of PERCLOS vector in every driving test. We also assume that every EEG feature is independ-
ent of other features given PERCLOS. Therefore, the conditional distribution of each feature extracted from every 
driving test, yc,d , given the corresponding PERCLOS values of the driver, xd , is presented by Eq. (2).

 where f defines the conditional distribution and θ c,d is the set of parameters for the c-th EEG feature of d-th driv-
ing test. Equations (1) and (2) define our dynamical encoder model, characterizing how changes in EEG features 
over time encode PERCLOS progression in every driving test. In our modeling of the EEG features, we assumed 
that the conditional distribution of each feature given PERCLOS follows a normal distribution. The mean of 
the distribution is defined as a linear function of the PERCLOS and the standard deviation of the distribution is 
assumed to be constant for every EEG feature. This distribution is defined by Eq. (3).

(1)Xi = 0.5(1+ tanh(aXi−1 + b+ ǫi−1)) ; i = 1, 2, ...,K

(2)yc,dk |xdk ∼ f (xdk ; θ
c,d
) ; c = 1, 2, ...,C ; d = 1, 2, ..,Ntr ; k = 1, 2, ..., L

Figure 4.   Flowchart of the proposed neural encdoer-decoder modeling framework for PERCLOS. This 
framework has two main steps: encoder model, and decoder model. In the encoder model, state transition 
process of PERCLOS and the relationship between every EEG feature and PERCLOS are defined. Biomarkers 
are obtained using t-test and they are used in the decoder step to predict the PERCLOS in real-time using Bayes 
filtering.
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where αc,d , βc,d and σ 2
c,d are the unknown slope and intercept parameters and the unknown variance of observed 

noise for the c-th EEG feature of d-th driving test, respectively. Therefore, every EEG feature in every driving test 
has a specific set of parameters given the PERCLOS vector of the corresponding driving test. The Subsection of 
”Estimation of observation equation’s parameters” describes the identification of these unknown parameters.

PERCLOS decoder model.  The parameter learning of the method which is based on the training data is 
performed in the encoding step. The learning process is explained in the “Model Identification” section. How-
ever, in the decoder step, the learnt parameters are used in the structure of the Bayesian filtering to estimate the 
PERCLOS. In other words, the model parameters are not fixed or pre-known and they are estimated using the 
training data in the encoder step and the same estimated values are used for the decoding step.

Given the encoder model with estimated parameters, we can use Bayesian filtering to estimate PERCLOS 
from neural data. This filter provides the best estimation of the PERCLOS, which is our dynamic state, given 
current and previous values of EEG features through its posterior distribution. The Bayesian filter is a recursive 
technique that can be conducted by calculating two equations per each time index: one-step perdition and 
update54. Bayesian filter benefits from two processes: state-transition process and observation processes that we 
have defined these processes in Equations (1) and (3), respectively. Figure 5 demonstrates the general structure 
of the Bayesian filtering that has three main steps: (1) Chapman-Kolmogorov equation that calculates the one-
step prediction of the state, (2) Likelihood function that calculates the likelihood of possible values of PERCLOS 
given the observed neural feature, and (3) The Bayes’ rule to update the one-step prediction based on the current 
EEG features. This step updates the filter and provides a posterior distribution of the state (PERCLOS) given the 
measured observations (EEG features).

Model identification.  In the previous subsections, we described how the encoder model is defined. We 
also described the decoder or PERCLOS estimation using neural data. For the decoder step, we assumed that 
the encoder and the state transition model parameters are known; here, we describe how those parameters can 
be identified.

Estimation of state transition process’ parameters.  The state transition process defined in Equation (1) can be 
rewritten by Equation (4). Now, the equation becomes a linear function of a and b when PERCLOS values are 
known.

where a, b, and noise variance σ 2
ǫ

 are estimated using Least Square (LS) technique. In the LS, it is assumed that 
hi = tanh−1

(2Xi − 1) is the input for the regression problem:

(3)yc,dk |xdk ∼ N (α
c,dxdk + β

c,d , σ 2
c,d) ; c = 1, 2, ...,C ; d = 1, 2, ..,Ntr ; k = 1, 2, ..., L

(4)aXi−1 + b+ ǫi−1 = tanh−1
(2Xi − 1) ; i = 1, 2, ...,K

Figure 5.   PERCLOS Decoder Model. These three steps are called recursively over time as new neural features 
are becoming available.
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The Residual Sum of Square (RSS) error, as presented in Equation (6), is minimized to obtain the parameters 
of a and b:

In order to minimize RSSX , the derivatives of the RSSX w.r.t two parameters of a and b are set to be zero:

After applying the Eq. (7) and simplification of the results, the parameters of a and b are calculated as presented 
in Eq. (8)55.

where µX = 1
K

∑K
i=1 Xi and µh = 1

K

∑K
i=1 hi are the PERCLOS mean and input mean (see Equation 5), respec-

tively. The noise variance is also calculated as the variance of ǫi−1 = hi − aXi−1 − b (i = 1, 2, ...,K).

Estimation of observation equation’s parameters.  We use linear regression to identify the parameters of the 
observation equation per EEG feature in every driving test (αc,d , βc,d and σ 2

c,d) . Linear regression minimizes the 
root mean square error between estimated and actual EEG features given PERCLOS data. In order to estimate 
these parameters, Eq. (3) is rewritten as Eq. (9).

where vc,dk ∼ N (0, σ 2
c,d) is the Gaussian noise of linear regression of Eq. (9) which is calculated per EEG feature 

in every driving test. In order to estimate these parameters, the RSS error ( RSSc,dy  ) is calculated for each EEG 
feature in every driving test by using the Eq. (10).

After minimization of RSSc,dy  , the unknown parameters of αc,d and βc,d are determined using Equation (11)55.

where µd
x = 1

L

∑L
k=1 x

d
k  and µc,d

y = 1
L

∑L
k=1 y

c,d
k  and the variance of the error for every EEG feature in every 

driving test is calculated as the variance of vc,dk = yc,dk − α
c,dxdk − β

c,d.
We also applied some transformations such as logarithm and exponential functions to the EEG features to 

check if these transformations can improve the regression or not. The autocorrelation of residual errors and R2 
coefficient are also calculated to evaluate the goodness of fit for every EEG feature.

Observation model selection.  Though all the neural features can be used in the decoding step, a more 
practical approach would use only a subset of features that shows strong encoding properties. This process helps 
to build a more robust and generalizable decoder model by excluding those features which lack reliable and con-
sistent predictive power. With the independence assumption of the neural features, we can check the statistical 
significance of encoding power of each feature by examining the value of αc,d described in Eq. (3).

Our null hypothesis is that αc,d (the slope parameter in Eq. (4)) is zero. Therefore, a t-test per each neural 
feature has been applied to check whether the null hypothesis can be rejected or not. The p-value of 0.05 has 
been set as a threshold and only those neural features that their corresponding αc,d comes with strong evidence 
to fall in the alternate hypothesis, have been selected. This subset of features is then used in the decoding step. 
Therefore, in the decoding step, only a subset of neural features will be picked, whose statistical significance is 
in a favor of being included in the encoder model feature set.

Application of the methodology
In this section, we first discuss how neural features are extracted from EEG signals; we then use the encoder-
decoder pipeline to predict the PERCLOS. Preprocessed EEG data of each channel is first decomposed into 
four sub-bands using band-pass filtering: delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), and beta (12–30 
Hz)56,57. Then, statistical features of these sub-bands such as their spectral power have been employed in differ-
ent applications to reduce the dimensionality of the EEG data while significant information is retained during 
feature extraction58,59. These features help to investigate the changes in the EEG data in an interpretable way 
when the driver drowsiness level is fluctuating during the driving test. Here, fifty features are extracted from 

(5)aXi−1 + b+ ǫi−1 = hi ; i = 1, 2, ...,K

(6)RSSX =

K
∑

i=1

ǫ
2
i−1 =

K
∑

i=1

(hi − aXi−1 − b)2,

(7)
∂RSSX

∂a
= 0 ;

∂RSSX

∂b
= 0

(8)a =

∑K
i=1 (Xi−1 − µX)(hi − µh)
∑K

i=1 (Xi−1 − µX)
2

; b = µh − aµX ,

(9)yc,dk = α
c,dxdk + β

c,d + vc,dk ; c = 1, 2, ...,C ; d = 1, 2, ..,Ntr ; k = 1, 2, ..., L

(10)RSSc,dy =

L
∑

k=1

(

yc,dk − α
c,dxdk − β

c,d
)2

; c = 1, 2, ...,C ; d = 1, 2, ..,Ntr ; k = 1, 2, ..., L

(11)

α
c,d =

∑L
k=1

(

xdk−1
− µ

d
x

)

(

yc,dk − µ
c,d
y

)

∑L
k=1

(

xdk−1
− µ

d
x

)2
; β

c,d = µ
c,d
y − aµd

x ; c = 1, 2, ...,C ; d = 1, 2, ..,Ntr ; k = 1, 2, ..., L
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each one of the eight EEG channels and one EOG channel that results in 450 neural features for each driving 
test. The extracted features are listed in Supplementary, Table S1. The same sliding time window that is used 
to calculate the PERCLOS (1-minute length with a 30-second overlap between two adjacent time windows) 
has also been applied for EEG feature extraction. All parts of the proposed method have been programmed in 
MATLAB R2021a. Moreover, the EEGLAB toolbox (v14.1.2) was used in MATLAB to preprocess the EEG data 
using the ICA technique.

To find the state transition process parameters, we concatenated PERCLOS data across all users (resulted 
in approximately 540 minutes of driving) and use the LS approach to estimate a, b, and σ 2

ǫ
 parameters. In this 

work, it has been assumed that all users have a reasonably similar state transition process. Therefore, the same 
estimated parameters of the state transition process (Eq. 1) are used in the Bayesian filtering to estimate PER-
CLOS. Table 1 represents the estimated parameters for PERCLOS dynamical model defined by Eq. (1). The 
dynamics of the estimated PERCLOS are adjustable by changing these parameters. For instance, if each of the 
a and b parameters approaches the positive infinity, the limit of PERCLOS is one (its maximum value). On the 
other hand, the limit of the PERCLOS is zero (its minimum value) if each one of these parameters approaches 
negative infinity. Figure 6 shows the PERCLOS residual error of the outputted result from the LS method using 
the estimated parameters of the state transition equation. As Fig. 6 shows, the absolute value of the residual error 
in some parts is about two to three times larger than other parts. After checking the actual PERCLOS values, 
we realized that these parts are either associated with very high (approximately one) or very low (approximately 
zero) actual PERCLOS values that show the states of completely alert and extremely drowsy situations, respec-
tively. However, we are aimed to model the dynamic transition between these two states (completely alert and 
extremely drowsy). The root mean squares error (RMSE) between actual PERCLOS and modeled PERCLOS is 
0.061. This result suggests that the proposed state transition process (Equation 1) can reasonably capture the 
PERCLOS dynamics with acceptable performance.

In the encoder model, a subset of EEG features has been selected using the model selection approach. Note 
that the decoder model combines two sources of information at different temporal scales in the prediction 
of PERCLOS: (1) long-term information that is carried by the state process Eq. (1), and (2) instantaneous 

Table 1.   State transition process model parameters. These parameters are estimated using LS method and they 
are assumed to be constant for all of the driving tests. In other words, state transition process of PERCLOS 
(Equation 1) has the same parameters in different driving tests.

Parameter Meaning Value

σ
2
ǫ

Noise variance of state transition process model 0.03

a The slope of the linear regression in Equation (4) 3.93

b The intercept of the linear regression in Equation (4) −1.79

Figure 6.   The PERCLOS residual error of the LS method to identify the parameters of the state transition 
equation. The root mean squares error (RMSE) between actual PERCLOS and modeled PERCLOS by state 
transition equation is 0.061. This error is higher in some parts of the data which are corresponding to either 
extremely low (alert) or extremely high PERCLOS (very drowsy) which are not of interest of this method since 
we want to track the transition of driver’s vigilance from alertness to drowsiness.
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information carried by neural activity about PERCLOS (Eq. 3). These two sources of information are combined 
through Bayesian Filtering in the estimation of PERCLOS.

Using the proposed modeling framework, we build a user-specific encoder and decoder model of PERCLOS. 
we only assumed that PERCLOS temporal dynamics across users share the same characteristics. Given this model, 
it is possible that a neural feature might be positively correlated with PERCLOS in one participant and negatively 
correlated in another one. Whilst this might provide a more accurate prediction given the specificity of the model 
to a specific user, we can search for possible neural biomarkers which are showing consistent encoding properties 
across participants. We can benefit from the encoding step in the search for possible biomarkers, those that are 
representing PERCLOS changes consistently across users.

Results
Results of biomarker identification.  This subsection explains the results of searching the EEG features 
to find biomarkers of drowsiness. We searched across all EEG features to identify strong correlations to PERC-
LOS based on their slope ( αc,d in Equation 9). According to the results of the encoder model, 28 highly perfor-
mant EEG features have been identified that generalize for all 18 driving tests. This means that regardless of the 
user, these features are significantly realted to the PERCLOS values recorded during the driving test. Therefore, 
they have the potential to be biomarkers of drowsiness, with highest performance when considered together. 
These features are presented in Table 2 that include skewness of Alpha of all EEG channels and one EOG channel 
(9 features), Delta power of all EEG channels and one EOG channel (9 features), Theta power of all EEG channels 
except Cz and P08 (7 features), and Hjorth mobility of Delta of T8, P08, and EOG channels (3 features).

Figure 7 also shows the regression coefficient between every biomarker and PERCLOS in all driving tests. 
As this Figure shows, the average consistent Delta and Theta powers are positively correlated with PERCLOS in 
all EEG channels. This result is in accordance with established studies that report increases in Theta and Delta 
powers as indicators of drowsiness4,58,60. The skewness of Alpha in all EEG channels except T8 and P07 is also 
positively correlated with PERCLOS while Hjorth Mobility of Delta in T8 and P08 are negatively and in EOG 
channels positively correlated with PERCLOS. Therefore, the proposed framework establishes biomarkers that 
have consistent relationships with PERCLOS. These neural features could therefore be extracted from EEG 

Table 2.   EEG features that are consistently significant (p-value < 0.05 ) across all the 18 studied driving tests. 
Overall, 28 features are selected by the encoder regardless of driving tests to encode the PERCLOS dynamics. 
These features include skewness of Alpha (all EEG channels), Delta power (all EEG channels), Theta power (all 
EEG channels except Cz and P08), Hjorth mobility of Delta (T8, P08, and EOG channels).

Feature Channel Number

Skewness of Alpha Cz, Fz, T7, T8, C3, C4, P07, P08, EOG 9

Delta power Cz, Fz, T7, T8, C3, C4, P07, P08, EOG 9

Theta power Fz, T7, T8, C3, C4, P07, EOG 7

Hjorth Mobility of Delta T8, P08, EOG 3

— Sum 28

Figure 7.   Representation of the slope of the biomarkers in the driving tests. The average values of the Delta and 
Theta powers of EEG channels are positively correlated with PERCLOS in all of the driving tests.
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signals to estimate the drowsiness independently of the drivers and driving conditions. Figure 8 shows the sign 
of the correlation coefficient of biomarkers and PERCLOS in the driving tests. According to this Figure, about 
73% and 66% of the Theta and Delta powers which were selected as biomarkers are positively correlated with 
PERCLOS, respectively. On the other hand, only 48.8% and 44.4% of the skewness of Alpha and Hjorth mobility 
of Delta are positively correlated with PERCLOS, respectively. Therefore, discovered biomarkers make a “push-
pull mechanism” to estimate the driver drowsiness. In this mechanism, one group of biomarkers that includes 
Theta and Delta powers are increasing with increasing the level of drowsiness (pushing part of the mechanism), 
whereas another group of biomarkers that consists of skewness of Alpha and Hjorth mobility of Delta are decreas-
ing with increasing the drowsiness level (pulling part of the mechanism). This interaction between these two 
parts of the mechanism suggests that considering these biomarkers together provides the best performance for 
estimating PERCLOS and driver drowsiness and obtains a satisfying estimation of driver drowsiness associated 
with the PERCLOS data.

Results of the decoder model for PERCLOS estimation.  In this subsection, we discuss the modeling 
results of our proposed encoder-decoder framework in the estimation of PERCLOS. The data set has been ran-
domly separated into two data sets: train and test. The training set contains 15 tests where three driving tests with 
ID = 6, 9, and 15 have been selected to make a test dataset. The test dataset has not been involved for selecting 
the biomarkers. Neural biomarkers (see Table 2) are found using training dataset and are employed to estimate 
the PERCLOS in the test dataset. In Fig. 9, we show the decoding results of the test dataset. These results suggest 
that the proposed framework reasonably traces the drowsiness level presented by the actual PERCLOS data. 
Figure 9 also presents the upper and lower bounds of the 95% confidence interval of the Bayesian estimation. 
These bounds are utilized to calculate the High Probability Density (HPD) percentage61. The HPD presents the 
percentage of the data samples per driving test where the actual PERCLOS falls in the 95% confidence interval 
of the estimated one.

In order to investigate the PERCLOS estimation accuracy of the frameworks, the RMSE and HPD percentage 
metrics for PERCLOS estimation are provided in Fig. 10 for all driving tests. This Figure shows that the average 
RMSE and average HPD percentage are 0.117 and 62.5%, respectively. Moreover, to study the performance of 
the method in the different levels of drowsiness, PERCLOS is separated into four intervals: 0-0.25, 0.25-0.5, 0.5-
0.75, and 0.75-1. The average RMSE and HPD percentage of each one of these intervals during all of the driving 
tests are presented in Fig. 11. According to this Figure, this average HPD percentage and RMSE are increasing 
and decreasing as PERCLOS grows, respectively. Therefore, this model obtains better performance in the higher 
actual PERCLOS (moderate and extreme levels of driver drowsiness), which in practice is more important to 
detect the driver drowsiness than states with low PERCLOS values.

Discussion
Different biosignal-based methodologies have been proposed in the literature to estimate the drivers’ workload 
and their cognitive states62–64. For example, electrodermal activity was recorded in65 with simultaneous collec-
tion of subjective rating of mental workload during driving tests where drivers were asked to perform a time-
production task. Results showed that electrodermal activity increases together with subjective ratings in more 
complex driving scenarios that would indicate higher levels of driving workloads. Argyle et al.66 also investigated 
the relationship between fatigue as a cognitive state and heart rate, breathing rate, and hemodynamic response 
in the prefrontal cortex as physiological responses. According to the results, fatigue significantly influences 
physiological responses.

In Brain-Computer Interface (BCI) applications67,68 and clinical neuroscience69,70, researchers are interested 
to find neural biomarkers. To find biomarkers, the data of different subjects are usually combined while the 
individual differences between subjects are ignored. Because of the present individual differences, it can be 
challenging to find neural biomarkers which are scalable from one person to another one across the group. Most 
of the similar previous studies used EEG data as inputs to discriminative models to classify levels of drivers’ 
drowsiness. For example, Li et al.32 developed a method for drowsiness estimation using powers of Theta, Alpha, 
and Beta subbands of EEG data while the ground truth for drowsiness was derived by a combination of PERC-
LOS and Number of Adjustment (NOA) of the steering wheel71 during the test. Considering this ground truth, 
three classes were defined: (1) alert (PERCLOS< 8% and NOA> 26 ), (2) early warning (8%≤PERCLOS< 12% 
and 9 <NOA≤26), and (3) drowsy (PERCLOS≥12% and NOA≤9). Finally, a support vector machine was used 
as classifier and according to the results, this method provided classification accuracies of 91.25%, 83.78%, and 
91.92% for alert, early warning, and drowsy classes, respectively. A Convolutional Neural Network (CNN) was 
also applied to the EEG data for drowsiness detection in72. In that study, the Alpha-Theta waves (5–9 Hz) of two 
occipital (O1 and O2) electrodes and two temporal (T7 and T8) electrodes were used as inputs to a Convolu-
tional Neural Network (CNN) network while data augmentation was also used to reduce the risk of over-fitting. 
Results demonstrated that this method achieved the binary classification accuracy of 90% for driver drowsiness 
classification. Detection of more levels of drowsiness was also studied in some previous works. For example, 
the classification of driver drowsiness into five different classes was performed in73 using EEG channels and 
by applying a combination of CNN and Bidirectional Long-Short-Term-Memory (Bi-LSTM) network. In that 
study, the CNN extracted the features from EEG data and Bi-LSTM derived the long-term dependencies between 
extracted features. According to the results, this method achieved an average classification accuracy of 69% for 
five different levels of driver drowsiness.

The main advantage of our proposed method over the previous method is its capability for finding neural 
biomarkers that consistently encode the drowsiness dynamics in different drivers independent of their charac-
teristics (e.g. age and gender) and driving conditions (manual or automated). Moreover, our method estimates 
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Figure 8.   Slope signs of the biomarkers in different driving tests that are statistically significant. According to 
these results, discovered biomarkers make a ‘push-pull mechanism’ to estimate the driver drowsiness.
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Figure 9.   Decoding results in three driving tests with ID=6 (a), ID=9 (b), and ID=15 (c) for estimation of 
PERCLOS using selected EEG features. Light blue shaded areas show the 95% confidence interval of the 
estimated PERCLOS. The result suggests a strong correspondence between measured PERCLOS and estimated 
one.
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the real-time estimation of drowsiness by providing the estimation for the posterior distribution of PERCLOS. 
This posterior distribution can also be used to predict the drowsiness level in the next time indices.

In this paper, we proposed a new modeling framework using neural activities to provide an instantaneous 
estimation of the PERCLOS as a widely used estimation of driver drowsiness. The PERCLOS is being considered 
as a robust correlate of driver drowsiness which is widely studied to assess driver’s performance in the different 
vigilance states. Our proposed framework is derived from extensive work in the neuroscience domain where the 
question was finding the relationship between cognitive state and neural correlates36,74,75. The framework has two 
steps: encoder and decoder. When each of these steps is built through a sequential process, we come up with a 
dynamical estimation of PERCLOS as a function of the selected number of neural features. One of the advantages 
of this method compared to previously developed methods is that we are providing a posterior distribution of 
PERCLOS at every time point which is a fairly complete measure of PERCLOS. Through this measure, we can 
build other metrics which can be used to assess the trajectory of a driver’s drowsiness and anticipate the time 
that the driver can be in a dangerous level of driver drowsiness or even decide about whether the driver drowsi-
ness level is above a specific predefined level or not (a predefined threshold might be used to trigger appropriate 
action or warning). Another advantage of this model is the real-time estimation of driver drowsiness that can 
reduce the risk of accidents caused by drowsy driving.

Figure 10.   RMSE and HPD percentage metrics to evaluate the performance of the proposed encoding–
decoding framework. The average RMSE and average HPD percentage across different driving tests are 0.117 
and 62.5%, respectively.

Figure 11.   The average RMSE and HPD percentage in different PERCLOS intervals. This Figure shows that 
the proposed method is performing better in higher values of PERCLOS that are more important to detect the 
moderate and extreme levels of driver drowsiness. Tests with the IDs of 6, 9, and 15 are used as test dataset.
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Given the preprocessing and encoding strategy of our model, the decoding step for drowsiness estimation 
requires low computational effort and can be performed in real-time as data is collected. In the preprocessing 
step, artifacts that might have undesirable effects on the system’s performance are rejected from EEG data, and 
in the encoding step, the EEG features that can encode the PERCLOS (biomarkers) are discovered across partici-
pants. Consequently, only 28 features out of the initial 450 features are used in the decoding step. Therefore, the 
decoding step is computationally inexpensive and we can have a real-time estimation of PERCLOS. Compared 
to previously used deep learning methods76–78, our proposed method also needs a lower computational cost in 
the training phase to find out the neural biomarkers. This advantage is obtained by applying the prior knowledge 
of the real PERCLOS dynamics regardless of EEG features, and also the discovered relationship between EEG 
features and PERCLOS in the encoder step.

The most important element of our research is the principal approach to find neural biomarkers for driver 
drowsiness which has not yet been extensively studied in previous works as those works were classifying driver 
drowsiness as a black-box model79–81. In this study, we are providing more details about the relationship between 
neural activities and PERCLOS in an interpretable manner for the benefit of other researchers in our domain. For 
instance, we found that the Theta power of the C4 EEG channel is a biomarker of drowsiness which increased 
with higher PERCLOS values in 15 out of 18 driving tests. On the other hand, the Alpha power of the PO8 EEG 
channel is another example of obtained biomarkers that decreased in 13 out of 18 tests for higher PERCLOS 
values.

Although we added new utilities to this domain, more research should be conducted to enhance the perfor-
mance of this method. Some of the challenges that need to be addressed are as follows: 

1.	 Producing a personalized model is possible by including more EEG channels but there is a trade-off between 
the utility of the device and the number of EEG channels. We think that rather than increasing the number 
of EEG channels, more physiological information such as ECG and heart rate variability data17,82 can be 
utilized to enhance the model performance with greater feature independence and robustness.

2.	 Although the proposed method provides us a solution to find neural biomarkers, we have only studied the 
fluctuation of nodal frames while more advanced techniques are studying network global dynamics83,84. 
Employing other features that are presenting the network global dynamics of brain activities like coherence, 
correlation, and mutual information between different EEG channels85–87 might improve the performance 
of the framework. It should be noted that the proposed framework is flexible enough to incorporate those 
features into our model but the question is which one of them are informative to estimate the driver drowsi-
ness. The proposed framework can also be helpful to select the informative features.

3.	 This paper discussed the estimation or decoding capability of the proposed framework but another important 
application of this method is its prediction capability where we can predict what will be the level of drowsi-
ness based on the current and previous neural activities. This capability requires to use a more accurate state 
transition process that is tuned for every individual driver.

4.	 In this method, the same estimated parameters in the encoder step were used in the Bayesian filtering of 
the decoder step to estimate the drowsiness. However, these parameters can also be estimated online in a 
recursive way when new data are available in every time index. Reinforcement learning can also be used as 
the method for parameter updating when the driving performance (e.g. reaction time to a traffic event) is 
used a reference data to provide the award/punishment mechanism.

Conclusions
One of the requirements of upcoming automated cars is monitoring the driver’s states since he/she is responsible 
for controlling the car in case of system failure of automated cars. Drowsiness is one of the drivers’ mental states 
that can significantly degrade driving performance and increase reaction time in critical situations where an 
accident may be avoided. Therefore, we concentrated on driver drowsiness prediction using EEG signals which 
were used in previous studies to detect the early stages of drowsiness19,20. In order to accomplish this goal, an 
encoding-decoding framework based on EEG signals was presented to estimate PERCLOS which is a widely used 
indirect measure of driver drowsiness. This framework is composed of two main steps: encoder and decoder 
steps. In the encoder step, the relationship between every EEG feature and PERCLOS of the driving test was 
assumed to be linear with unknown parameters which were estimated using the least-square method. Moreover, 
the state transition process of PERCLOS regardless of EEG data was defined which has another set of unknown 
parameters. The least-square approach was also used to estimate this set of parameters.

The training set of EEG data was used to find out a set of EEG features that are significantly correlated with 
PERCLOS progression for every driving test. To select these features for every driving test, a t-test with a thresh-
old of 0.05 was used to check the magnitude of the slope parameter of every EEG feature in linear regression 
given the PERCLOS vector. In the decoder step, only EEG features that were selected in the encoder step were 
used as inputs to a Bayesian filtering to estimate PERCLOS values in real-time. Moreover, the selected feature set 
for different driving tests was searched to find EEG biomarkers that encode PERCLOS regardless of the driver 
and driving condition. Overall, 450 features were extracted from EEG data and according to the results, 28 EEG 
biomarkers were are discovered out of all features. These 28 biomarkers (instead of all 450 features) were used 
in the decoder step to estimate PERCLOS.

Results of the decoder step show that the proposed method estimates the PERCLOS values with an average 
RMSE of 0.117 and an average HPD percentage of 62.5% over all driving tests. Therefore, this method not only 
estimates the drowsiness in real-time but also provides some EEG biomarkers that encode drowsiness. These 
biomarkers alleviate the required computational power to estimate the onset of the driver’s drowsiness using 
EEG data independent of driver-specific factors.
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