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Abstract

Test fairness is critical to the validity of group comparisons involving gender, ethnici-
ties, culture, or treatment conditions. Detection of differential item functioning (DIF)
is one component of efforts to ensure test fairness. The current study compared
four treatments for items that have been identified as showing DIF: deleting, ignoring,
multiple-group modeling, and modeling DIF as a secondary dimension. Results of this
study provide indications about which approach could be applied for items showing
DIF for a wide range of testing environments requiring reliable treatment.
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Introduction

Test fairness is critical to the validity of group comparisons involving gender, ethnici-
ties, culture, or treatment conditions. Ensuring test fairness includes the detection and
prevention of unfairness in all aspects of the testing program (e.g., test design and
development, test administration, and test scoring; Camilli, 2006; Dorans & Cook,
2016). Differential item functioning (DIF) procedures are one component of these
efforts that are used to address test fairness in scoring across subgroups of interest. A
variety of procedures for detecting DIF have been proposed, and a large body of
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literature exists on the relative effectiveness of these methods. However, relatively
less attention has been given to the question of how to handle items that show DIF.

Cho et al. (2016) reviewed 27 articles that treated DIF items by various
approaches. Four DIF treatment methods were commonly reported in these studies:
ignoring DIF items, deleting DIF items, multiple-group calibration, and modeling
DIF items using a multidimensional model. Across the articles reviewed, only one
used the modeling approach.

Modeling DIF is a novel approach for treating DIF that arises from the notion that
multidimensionality of items is the general cause of DIF (e.g., Ackerman, 1992,
1994; Camilli, 1992; Roussos & Stout, 1996; Shealy & Stout, 1991, 1993).
Ackerman (1992) investigated DIF from the perspective of multidimensional item
response theory (IRT). From this point of view, items that are flagged as showing
DIF measure multiple dimensions—the intended measured construct, which is the
primary dimension, and the nuisance construct, which is the secondary dimension.
DIF occurs when there is a difference in the distributions on the secondary dimension
between reference and focal groups. For example, reading proficiency can be seen as
a nuisance dimension that would influence item scores on a mathematics test for cer-
tain items. Students with high levels of reading proficiency would have a higher
probability of a correct response on such math items. When groups differ in reading
proficiency distributions, DIF occurs. Camilli (1992) explored a mathematical model
for approximating parameters for items measuring multiple dimensions by one-
dimensional estimates. The results indicated a confounding effect of the secondary
dimension with the item parameters, which manifested as DIF. Shealy and Stout
(1993) presented a multidimensional model for DIF (MMD) to formalize the occur-
rence of DIF. Under this model, DIF occurs when two conditions are met:

(a) DIF items elicit at least one secondary dimension, m, in addition to the primary dimen-
sion the test is intended to measure, 6, and (b) a difference exists between the two groups of
interest in their conditional distributions on the secondary dimension m, given a fixed value
on the primary dimension, 6 (i.e., 1|0). (Gierl, 2005, p. 5)

Based on MMD, Shealy and Stout (1993) developed a multidimensional IRT-based
approach, which they called the simultaneous item bias test, for detecting DIF.
Roussos and Stout (1996) adopted Shealy and Stout’s (1993) simultaneous item bias
test method and proposed a multidimensionality-based DIF analysis paradigm that
integrated substantive content and statistical DIF analysis for test development.
Based on the root cause of DIF investigated by previous studies, Walker and Sahin
(2017) used Shealy and Stout’s (1993) framework to investigate the magnitude of
the difference in secondary ability distributions between reference and focal groups
that would influence the power of DIF detection procedures. The study found that
when the mean difference in the secondary dimension between the two groups was
at least 0.5, the DIF detection techniques had adequate power to identify DIF.
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Multigroup calibration within the IRT framework is one approach to modeling
DIF that does not explicitly rest on the conceptualization of DIF as undesired multidi-
mensionality. Under this approach, the parameters of non-DIF items are constrained
to be equal across groups and the parameters of DIF items are allowed to vary across
groups. In an alternative framework to that of IRT, several researchers have explored
the issue of DIF using multiple-group confirmatory factor analysis (MG-CFA), which
is more firmly rooted in a multidimensional framework. Although both frameworks
allow modeling of group differences, the focus of MG-CFA is typically on examining
the difference in factor structures between groups, whereas the goal of IRT multiple-
group methods is to recover the item and latent person parameters for test-takers.
Fleishman et al. (2002) used the MG-CFA approach to examine the performance of
two strategies—statistical adjustment of DIF items and deleting DIF—on group com-
parisons. Millsap and Kwok (2004) evaluated the impact of different levels of partial
invariance on the accuracy of test-taker comparisons and selection. Steinmetz (2013)
and Zumbo (2003) investigated the impact of partial invariance on other perspectives
of group comparisons, such as observed composite scores and the relation between
item- and test-level DIF. The current study uses the IRT approach and investigates
the multiple-group method under the IRT framework.

A recently proposed alternative to multigroup calibration for DIF items is to expli-
citly model the secondary dimension and allow group differences in loadings on that
dimension. Currently, there are only two studies that have investigated the treatment
of DIF using this approach (i.e., Cho et al., 2016; Liaw, 2015).

Cho et al. (2016) compared the performance of the DIF modeling approach with
other commonly used methods (deleting, ignoring, and multiple-group methods) in
calibrating and scoring simulated responses with items previously flagged as showing
DIF. Item responses for items with DIF were generated using a unidimensional IRT
model. They found that the multiple-group and DIF modeling approaches resulted in
the most accurate trait parameter estimates, with the multiple-group approach provid-
ing better results under most conditions. The deleting and ignoring DIF methods per-
formed worse than the multiple-group and modeling approaches.

Similarly, Liaw (2015) investigated the impact of the magnitudes of primary and
secondary item discrimination on the accuracy of calibration of the primary ability
for tests with DIF items by comparing the modeling DIF approach to deleting and
ignoring DIF item methods within the two-parameter IRT model. The multiple-group
approach was not incorporated in the comparison of methods for handling DIF. In
this study, item responses were generated differently than Cho et al. (2016). The item
responses were produced by a noncompensatory two-dimensional model for DIF
items, while non-DIF items were generated with a unidimensional model. The results
showed that ignoring DIF resulted in the least accurate primary trait estimates and
modeling DIF did not perform better than deleting DIF.

Although both of these studies investigated the performance of DIF treatments by
comparing the approach of modeling DIF as the secondary dimension to other
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commonly used methods within the two-parameter IRT model, there are several dis-
tinctions between them, and each of them has some limitations.

First, the fitted models and results differ. The two studies fitted different models
in the reference group when applying the modeling approach. Cho et al. (2016) con-
strained the loadings on the secondary dimension to be zero for the reference group
on DIF items, while Liaw (2015) freed the secondary dimension to be estimated for
the reference group on DIF items. In addition, Liaw (2015) did not incorporate the
multiple-group treatment into the comparison and did not compare the accuracy of
item parameter estimates among different DIF treatments. Moreover, Cho et al.
(2016) found that the multiple-group and modeling DIF approaches performed the
best among the four treatments, while Liaw (2015) concluded that deleting DIF was
the best for estimating person scores.

Second, the two studies employed different methods of data generation for items
with DIF. Liaw (2015) generated two-dimensional item responses for items with
DIF, while Cho et al. (2016) simulated responses with a unidimensional model. As
mentioned in Walker and Sahin (2017), data generated with a unidimensional IRT
model do not perfectly align with the multidimensional framework that is treated as
the cause of DIF. Therefore, whether the modeling DIF approach does perform the
best among the four methods under the two-dimensional item response framework is
not explored in Cho et al. (2016).

Third, the two studies employed different test lengths in the experimental design.
Liaw (2015) used a 40-item test, while Cho et al. (2016) adopted a 20-item test in the
study. Neither included test length as a factor into the DIF treatment comparison.

Based on the different models employed, conflicting results, and limitations of
the previous research, the current study investigated the accuracy of scoring and
item calibration for the four DIF treatments with DIF generated using a MMD.
Additionally, test length is included as a factor in the comparison for the four DIF
treatments. Furthermore, the current study extended the testing context from a
two-parameter model to a three-parameter IRT model. Therefore, the purpose of
the current study is to extend the studies of Cho et al. (2016) and Liaw (2015) by
comparing the four DIF treatment methods (deleting, ignoring, multiple-group,
and modeling DIF) within a two-dimensional framework, across a wider range of
test length conditions, and with data that fit a three-parameter IRT model. The out-
comes of interest are the accuracy, precision, and bias of trait and item parameter
estimates.

Differential ltem Functioning Treatment Approaches

We employed four DIF treatment approaches, which were used and compared in Cho
et al. (2016). The DIF treatment methods investigated in the current study include the
following.
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Deleting Differential Item Functioning Items

DIF items were deleted and only non-DIF items were used during item calibration
and scoring with the unidimensional three-parameter IRT model. This method is easy
to implement but it may lead to low reliability and content validity (Cho et al., 2016;
Fleishman et al., 2002).

Ignoring Differential Item Functioning ltems

DIF items were treated as non-DIF items and were used in item calibration and scor-
ing with the unidimensional three-parameter IRT model. Accuracy of estimates with
this method may be good when the magnitude of DIF is small and there are few DIF
items, but parameter estimates are likely biased when DIF is more substantial (Cho
et al., 2016). This method is generally not acceptable in practice but was included for
comparison purposes.

Multiple-Group Differential Item Functioning Method

Item parameters were constrained to be equal across groups for items not showing
DIF and allowed to differ across groups for items with DIF. Unidimensional three-
parameter IRT models were fitted. Reference and focal groups were calibrated simul-
taneously in the current study, in contrast to the two-step multiple-group method of
Cho et al. (2016). Cho et al. (2016) found that this method produced more accurate
parameter estimates.

Confirmatory Multiple-Group Multidimensional Item Response Theory Model

Multidimensional three-parameter IRT models were fitted. Both the primary dimen-
sion and the secondary dimension due to DIF were modeled. In both reference and
focal groups, discriminations on the secondary dimension were fixed at zero for non-
DIF items and estimated for DIF items. This method can be expected to provide more
accurate parameter estimates when DIF arises as a result of a common secondary
dimension. More details about the advantages and disadvantages for each method are
provided in Cho et al. (2016).

Method
Simulation Design

Data were generated using a two-dimensional IRT framework with a primary dimen-
sion measured by all items and a common secondary dimension measured by DIF
items with group differences on the secondary dimension. All DIF items were simu-
lated to favor the reference group.
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A fully crossed design was employed where the factors were the level of item dis-
crimination for the two dimensions, correlation between the dimensions, test length,
and percentage of DIF items. We chose factors that may have an impact on the per-
formance of the four DIF treatment methods based on the experimental design and
results of previous research. Given a two-dimensional IRT framework, the level of
item discrimination on each dimension and the correlation between dimensions are
important factors that should be included in the design to determine their impacts on
the treatment of DIF items. These factors are commonly manipulated in simulation
studies using multidimensional item response data (e.g., Finch, 2010; Gosz &
Walker, 2002; Liaw, 2015; Tate, 2003; Walker & Sahin, 2017). Percentage of DIF
items was varied since both Cho et al. (2016) and Liaw (2015) found that this factor
had an impact on the estimation of person and item parameters under different treat-
ments for DIF. Test length was manipulated because Cho et al. (2016) and Liaw
(2015) used different test lengths in their simulations and obtained conflicting results.
More details about the simulation conditions and their levels in previous research are
offered in the following paragraphs.

Item Discrimination. For DIF items, Liaw (2015) fixed the primary discrimination
parameter at either 0.5 or 0.8 and the secondary discrimination parameter at either 0.2
or 0.5. However, Walker and Sahin (2017) generated DIF by putting higher loadings,
in the range (0.997, 1.649), on the second dimension for items with DIF. In the cur-
rent study, we integrated the conditions in Liaw (2015) and Walker and Sahin (2017)
and selected 0.4, 0.8, and 1.2 to represent low, moderate, and high discrimination
parameters, respectively. Three conditions were generated: (1) low discrimination
parameter on the primary dimension (« = 0.4) with high discrimination parameter on
the secondary dimension (« = 1.2), (2) high discrimination parameter on the primary
dimension (a = 1.2) with low discrimination parameter on the secondary dimension
(a = 0.4), and (3) moderate discrimination parameter on both dimensions (a = 0.8).
The three combinations of discrimination parameters in our design reflect three dif-
ferent types of DIF items: items that mainly load on the primary dimension, items that
mainly load on the secondary dimension, and items with similar loadings on both
dimensions. Our design extends Liaw (2015) and Walker and Sahin (2017) by explor-
ing the effect of different combinations of item loadings on methods for treating DIF
items. The multidimensional discrimination (MDISC) parameter o; was defined as

n
> (ajk)z (Reckase, 2009), where aj; is discrimination parameter on each dimen-
\/ k=1

sion k for item j. MDISCs for the three conditions are 2.15, 2.15, and 1.92, respec-
tively. We fixed discrimination parameters to be the same across DIF items for each
test to avoid the confounding effect of varying values of discrimination parameters.

Correlation Between Dimensions. Three different correlations between dimensions
were used: 0, 0.3, and 0.7. Previous studies have used p=0 and 0.3 to represent no
and low correlations (Finch, 2010; Liaw, 2015). For high correlation, prior research
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used 0.6 (Tate, 2003), 0.75 (Walker & Sahin, 2017), 0.8 (Finch, 2010), or 0.9 (Gosz
& Walker, 2002). The current study used 0.7 as the strong correlation.

Test Length. Test length was 20 or 40 items. These test lengths are commonly used in
DIF research (Klockars & Lee, 2008) and reflect relatively short and moderate test
lengths in most testing contexts. Many tests have subscales of 20 items or fewer, and
numerous instruments have short forms (e.g., health-related quality of life instru-
ments, Advanced Progressive Matrices—Short Form; Chiesi et al., 2012; Scott et al.,
2010). Standardized achievement tests are often considerably longer. Based on previ-
ous DIF detection research (e.g., Fidalgo et al., 2000; Swaminathan & Rogers, 1990),
we did not expect that increasing the test length beyond 40 items would produce sub-
stantial changes in the results.

Percentage of Differential Item Functioning Items. Ten percent and 30% were selected
as low and high percentages of DIF items, respectively, similar to those of Finch and
French (2007) and Liaw (2015).

Sample sizes for the reference and focal group are 1,500 and 500, respectively.
Sample sizes of 2,000 in total are widely employed in simulating response patterns
for DIF studies (Cho et al., 2016; Liaw, 2015; Walker & Sahin, 2017). The current
study did not include balanced—unbalanced sample size as a manipulated factor since
the unbalanced condition was a more realistic one and balanced and unbalanced con-
ditions had similar patterns on the performance of DIF treatment methods in the ear-
lier results (Cho et al., 2016).

Four different DIF treatment procedures were used: (1) deleting DIF items, (2)
ignoring DIF items, (3) a multiple-group DIF method, and (4) a confirmatory
multiple-group multidimensional IRT model. For the fourth method, discriminations
on the secondary dimension were fixed at zero for non-DIF items and were estimated
for DIF items for both reference and focal groups. FlexMIRT3.5 was used for item
calibration and scoring (Cai, 2017).

Trait Distributions, Item Parameters, and Data Generation

For DIF items, person parameter values on the secondary dimension for the reference
group were drawn from a N(0, 1) distribution. The focal group values were drawn
from a N(—1, 1) distribution. Both reference and focal groups had N(0, 1) distribu-
tions for the primary dimension.

The current study employed Liaw’s (2015) method for generating responses on
DIF items and their method in fitting models since the same structures of latent con-
structs are tested for both reference and focal groups when examinees take the same
DIF items. Therefore, responses of DIF items were generated with the compensatory
multidimensional three-parameter model for both reference and focal groups
(Reckase, 2009). The probability of answering an item correctly is
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(1-v)

1+exp {—D(afﬂﬁdj)] ’

(I)(xij=l\0i, o, dj,'y/)=‘y]-+ (1)

where x;; is the response of student 7 on item j, 6; is a vector of the latent factor of
student i, a; is the vector of item slopes for multiple dimensions, d; and ; are the
intercept and lower asymptote parameter for item j, respectively. The multidimen-

n

sional difficulty (MDIFF) parameter was defined as d;/ <— > (ajk)2>, where o

k=1
is the item loading for item j dimension k& (Reckase, 2009). The intercepts of DIF
items were generated based on the definition of MDIFF. In the current study,
a;= (a1, ay) for two dimensions and values of @ and a, were manipulated with
the three conditions: low «; and high «;, high «; and low «;, and moderate «;
and «,. In addition, since the existence of the ability differences on the nuisance
dimension were assumed as one of the causes of DIF in the current study, two
components need to be considered in the generation of DIF item responses: differ-
ences of theta distributions on the secondary dimension between reference and
focal groups and the multidimensional item structure. Discrepancies between
groups in discrimination and difficulty parameters were not the components for
DIF response generation. Therefore, DIF items cannot be categorized as uniform
or nonuniform types of DIF.

DIF-free item responses were generated using a unidimensional three-parameter
item response model. Discrimination parameters were drawn from a N(1, 0.2) dis-
tribution and difficulty parameters were drawn from a standard normal distribu-
tion. Values for the lower asymptote parameters were drawn from a uniform
distribution of (0, 0.2) for both DIF and non-DIF items. Five hundred replications
were performed. We chose a normal distribution of discrimination parameters to
reflect the fact that most items are moderately discriminating with fewer that are
very low and very high. Responses were generated for both DIF and non-DIF
items using R 4.0.3.

Evaluation Criteria

Bias and root mean square error (RMSE) were used to measure the accuracy of latent
trait and item parameter estimates. Standard errors of estimates were examined to
assess estimate precision. Bias and RMSE were defined as

Bias(6,)=0; — 0;; RMSE(0) =

where 6; is the true value of the parameter and 6 is the estimated value for individual
or item j. Average bias and RMSE of # estimates were calculated across all students
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in each group. Average bias and RMSE of discrimination, difficulty, and lower
asymptote parameters were computed across non-DIF items. While there is no estab-
lished criterion for these indices, lower values of bias and RMSE represent more
accurate estimation of parameters and better performance of a DIF treatment method.

Results

Expectation of Four Differential Item Functioning Treatment Methods and
Simulation Conditions

Based on previous results of the comparison of the four methods, we expected that
ignoring DIF would produce the worst performance with respect to trait estimation
since it included contaminated information in the analysis. Modeling DIF was
expected to perform better than other methods with respect to trait estimation since it
was the same model that generated the data. The multiple-group method was
expected to outperform deleting items since there would be less information avail-
able for trait estimation under the deleting DIF items method. The two prior studies
investigating DIF treatment methods had conflicting results with respect to trait esti-
mates. Cho et al. (2016) found that deleting DIF items performed the worst among
the four methods. The multiple-group method and modeling DIF as the secondary
dimension outperformed the other two methods. However, Liaw (2015) found that
deleting DIF items and modeling DIF performed similarly. Both studies found that
ignoring DIF items results in lower average accuracy of trait estimates than the mod-
eling approach.

For item parameter estimation, ignoring DIF and modeling DIF were expected
to perform better than the multiple-group method and deleting DIF items for con-
ditions with fewer DIF items. Cho et al. (2016) pointed out that ignoring DIF may
work well when the magnitude of DIF is low and when there a small number of
DIF items. Again, we expected that modeling DIF would perform the best for con-
ditions with a larger percentage of DIF items since it was the same model that gen-
erated the data.

Both Cho et al. (2016) and Liaw (2015) expected that a larger percentage of DIF
items would decrease the estimation accuracy of trait parameters for the focal and
reference groups. Liaw (2015) also found that a higher correlation between the two
dimensions, lower primary discrimination and higher secondary discrimination,
would decrease the estimation accuracy of the trait parameter for the focal group as
well. Based on the earlier results, we expected that a higher percentage of DIF items,
the combination of higher loadings on the second dimension and lower loading on
the primary dimension of DIF items, and higher correlation between the two dimen-
sions would result in lower estimation accuracy. We also expected that a shorter test
length would produce higher values of bias and RMSEs since the shorter the test the
less the information available for the analysis.
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Trait Estimation

Average bias, RMSE, and standard error of the primary dimension trait estimates for
the focal group are presented in Tables 1 and 2. A positive value of bias means that
on average the trait parameter estimate is higher than the true value (i.e., overesti-
mated). A negative value of bias means that on average the trait parameter estimate
is lower than the true value (i.e., underestimated). Generally, all four DIF treatments
underestimated the primary dimension for both 20- and 40-item tests. The multiple-
group method and modeling DIF outperformed deleting and ignoring DIF methods
for the trait estimates as expected. Ignoring DIF items resulted in the highest absolute
values of average bias for the focal group. Deleting DIF items yielded the lowest
average negative bias of all the conditions. The multiple-group approach had slightly
higher bias values than those of the deleting DIF method. However, unexpectedly,
the modeling approach performed worse with respect to average bias than deleting
DIF items and the multiple-group method, but better than ignoring DIF. Figure la
shows the graph of average bias of the four DIF treatment methods.

The average RMSE of primary trait parameter estimates for the focal group under
the multiple-group approach was the lowest among methods across all the conditions.
As expected, the modeling approach outperformed both the deleting and ignoring
DIF methods. Ignoring DIF resulted in the highest values for RMSE of the primary
trait estimate. The average standard error of the trait estimates was the lowest under
the ignoring DIF and multiple-group methods. Deleting DIF items resulted in the
largest average standard error among the four methods, presumably because exclud-
ing DIF items resulted in a shorter test length with less information. Figures 1b and
1c show the graph of average RMSE and standard error of the four DIF treatment
methods.

Average bias, RMSE, and standard error of trait estimates for the reference group
are presented in the appendix (Tables Al and A2). The four methods show very sim-
ilar values with respect to average bias. Average RMSE and standard error show
some discrepancies. For 20-item tests, ignoring DIF and the multiple-group method
performed similarly and better than deleting DIF. The modeling approach also had
good performance with respect to bias and RMSE, but it had slightly higher average
standard errors than ignoring DIF and the multiple-group procedure. For 40-item
tests, the multiple-group and modeling approaches outperformed the other methods
with respect to the accuracy of trait estimates and average standard errors in the ref-
erence group. In sum, the multiple-group method always performed well for both
short and moderate test length conditions. Deleting DIF items performed the worst in
the reference group, likely because deleting items lost information for scoring.
Figure Al shows the graphs of average bias, RMSE, and standard error for the refer-
ence group. It is interesting to see that ignoring DIF, multiple-group and modeling
approaches behaved similarly for scoring the reference group, while the multiple-
group approach outperformed other methods for the focal group. This may be a result
of the misfit between the ability distribution of the focal group and the item difficulty
distribution of the test. In this situation, different scoring approaches showed
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different performances in scoring. However, when the ability distribution and item
difficulty distribution were matched (i.e., in the reference group), all three scoring
methods performed well.

As expected, conditions of more DIF items in the test and shorter test length pro-
duced higher RMSEs of the trait estimates. For shorter tests, estimation accuracy was
similar across different correlations between the two dimensions, while for longer
tests, a higher correlation between dimensions produced higher estimation accuracy,
an unexpected result. Higher loadings on the second dimension resulted in lower esti-
mation accuracy as expected. This is in line with Camilli’s (1992) finding that there
is a confounding effect of the secondary dimension on item parameters that causes
DIF.

Item Parameter Estimation

Average bias, RMSE, and standard error of item discrimination and difficulty esti-
mates for non-DIF items for 20- and 40-item tests are presented in Tables 3, 4, 5,
and 6. A positive value of bias means that on average the item parameter estimate is
higher than the true value (i.e., overestimated). In contrast, a negative value of bias
means that on average the item parameter estimate is lower than the true value (i.e.,
underestimated). As expected, modeling DIF and multiple-group methods performed
better than deleting for item parameter estimation. However, ignoring DIF worked
well in shorter test length conditions. Ignoring DIF did not outperform other methods
for the few DIF items conditions, which was found in the previous studies.

Item Discrimination. Generally, the four DIF treatment approaches overestimated item
discrimination parameters except in the conditions of 30% DIF items with high load-
ings on the secondary dimension for ignoring DIF and multiple-group approaches.
The four DIF treatment approaches performed differently with respect to accuracy of
item parameter estimates for shorter and longer test length conditions.

For 20-item tests, ignoring DIF items during calibration resulted in the lowest
average positive bias in discrimination parameter estimates and deleting DIF items
produced the highest average positive bias. Average bias values of the multiple-
group method were slightly higher than those of the ignoring DIF method. The mod-
eling approach did not outperform ignoring DIF and the multiple-group method. The
multiple-group and ignoring DIF methods showed the best performance with respect
to average RMSE and standard error of discrimination parameter estimates. Deleting
DIF items produced the highest values of average RMSE and standard error of dis-
crimination parameter estimates and the modeling method did not outperform ignor-
ing DIF and the multiple-group method.

For 40-item tests, however, the modeling approach outperformed other methods
with respect to average RMSEs and standard errors, but had higher values of average
positive bias. Ignoring DIF resulted in the lowest values of average positive bias but
relatively high values of average RMSEs and standard errors. The multiple-group
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a. Average Bias b. Average RMSE
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Figure 1. (a) Bias, (b) RMSE, and (c) standard error of trait estimates of focal group.
Note. RMSE = root mean square error.

method outperformed other methods for both average positive bias and RMSE, but
had higher standard errors. As in the 20-item condition, deleting DIF items performed
the worst.

Lower correlation between the two dimensions and higher loadings on the second-
ary dimension led to lower estimation accuracy for item discrimination parameters.
However, the condition of a short test length (20-item) showed slightly lower values
of average bias and RMSE than other conditions. This pattern is different from that
for trait estimation. The percentage of DIF items did not have a substantial influence
on the results.

Item Difficulty. Generally, the four DIF treatment approaches overestimated non-DIF
item difficulty parameters, except in the conditions of 30% DIF items with higher
loadings on the secondary dimension for the ignoring DIF approach in the 20-item
test. Again, the four DIF treatment approaches performed differently with respect to
accuracy of item difficulty parameter estimates for shorter and longer test length
conditions.

For 20-item tests, ignoring DIF produced the most accurate item difficulty esti-
mates. However, the modeling approach performed better than deleting DIF and the
multiple-group method with respect to average bias, RMSE, and standard error.
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For 40-item tests, the modeling method performed the best among the four
approaches with respect to average RMSE and standard error. Deleting DIF and the
multiple-group method performed worse than ignoring DIF and the modeling
approach.

In addition, a higher number of DIF items and longer test length led to lower esti-
mation accuracy for item difficulty. The magnitude of the loadings on the secondary
dimension and the correlation between the two dimensions did not have a consistent
effect on the accuracy of difficulty estimates.

Figure 2 shows graphs of average bias, RMSE, and standard error of the four DIF
treatment methods for both discrimination and difficulty parameters. All four
approaches performed well with respect to lower asymptote parameter estimation.
Average bias, RMSE, and standard error of estimation for the lower asymptote para-
meters are shown in the Tables A3 and A4.

Discussion

Proper treatment of DIF is essential to test fairness. This study compared four DIF
treatment methods (deleting, ignoring, multiple-group calibration, and modeling
DIF) within a two-dimensional framework for items with DIF. Based on the mixed
results, none of the DIF treatments has a dominant advantage over other treatments.
Table 7 shows a summary of the performance of the four DIF treatment approaches
under different conditions. The criterion for the best and worst methods was based
on overall accuracy (i.e., RMSE) and precision (i.e., average standard error) across
all conditions.

Overall, the multiple-group approach performed the best in estimating trait values
for both the focal and the reference groups. This result agrees with the conclusion of
Cho et al. (2016). The modeling approach worked well in estimating trait values for
the reference group with respect to overall accuracy but had lower precision than
other methods. However, the modeling method in the current study did not show as
good performance as in Cho et al. (2016). Ignoring DIF performed the worst for esti-
mating trait values in the focal group and deleting DIF yielded the least accurate esti-
mates for trait values in the reference group.

The modeling approach has the best overall estimation accuracy and precision for
longer test length conditions for non-DIF item parameter estimates, while ignoring
DIF always performed the best for short test length conditions. Deleting DIF also
performed the worst for estimating item parameters. These results are not consistent
with those of Cho et al. (2016), who found that the multiple-group method worked
the best in item parameter estimation for short test length conditions. This difference
may be due to different calibration methods for the multiple-group approach. Cho
et al. (2016) used the reference group only for calibrating, whereas the current study
used both reference and focal groups and allowed the DIF item parameters to vary
for the two groups.
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a. Average Bias of Discrimination d. Average Bias of Difficulty
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Figure 2. Bias, RMSE, and standard error of item parameters
Note. RMSE = root mean square error

Deleting DIF method performed the worst for most conditions with respect to trait
and item parameters. This may be due to the loss of information after removing DIF
items, especially when many DIF items are detected. Furthermore, deleting DIF leads
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Table 7. Summary of Performance of DIF Treatment Approaches Under Different
Conditions.

Parameters Conditions Best Worst
Trait Focal group Multiple-group Ignoring
Reference group Multiple-group Deleting
Discrimination 20-ltem Ignoring and multiple-group Deleting
40-Item Modeling Deleting
Difficulty 20-Item Ignoring Deleting
40-Item Modeling Deleting and multiple-group

to lower reliability and content validity, and would shorten the number of items with
a certain level of difficulty (Fleishman et al., 2002). Therefore, this method is not
recommended.

The conclusions of the current study mostly agree with the suggestions offered by
Cho et al. (2016) that the multiple-group and modeling methods outperform deleting
and ignoring DIF items for trait estimation. Importantly, the current study extended
the previous studies by investigating the impact of test length, which does have an
impact on the estimation of trait and item parameters. Surprisingly, ignoring DIF pro-
duced the best results with respect to non-DIF item parameter estimation for shorter
test length conditions, while the modeling approach performed best for longer test
length conditions.

Practical Recommendations

Based on the present results, different treatments should be selected for different
assessment purposes. If trait estimation is of greatest interest, the multiple-group
approach should be chosen. If item parameter calibration is of greatest interest for a
short test, ignoring DIF would not hurt for this purpose. If the test is longer, however,
the modeling approach is the best choice. Deleting DIF items is not recommended
since it always performed the worst in scoring and item calibration.

One point of note for choice of DIF treatment is the computational load. Deleting
DIF, ignoring DIF, and the multiple-group method used only a few seconds when
running the analysis with flexMIRT 3.5. However, the modeling approach used
approximately 2 minutes for the current study with samples of 1,500 for the refer-
ence group and 500 for the focal group, and it would be more time-consuming when
a larger data set is analyzed.

Limitations and Future Directions

The current study presumes DIF items were known rather than identified using a pre-
liminary DIF detection procedure. In reality, DIF detection is not perfect and failure
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to correctly identify the DIF/non-DIF items may affect the relative efficacy of the
DIF treatments. The impact of imperfect DIF detection should be taken into account
in comparing different DIF treatment approaches for future studies. In addition, all
DIF items were assumed to measure the same secondary dimension, which may not
be the case in a real test, and which may give a spurious advantage to the DIF model-
ing approach. Different secondary dimensions that cause DIF should be studied as a
factor affecting the efficiency of DIF treatments. Furthermore, the current study used
a multidimensional item response model to generate DIF items and applied the same
MMD in the modeling treatment, which may also advantage this method.
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Figure Al. Average Bias, RMSE, and standard error of reference group.
Note. RMSE = root mean square error.
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