SURGICAL INFECTIONS
Volume 22, Number 6, 2021
© Mary Ann Liebert, Inc.
DOI: 10.1089/sur.2020.430

Basic Introduction to Statistics in Medicine, Part 2:
Comparing Data
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Abstract

Background: Comparison of parameters between two or more groups forms the basis of hypothesis testing.
Statistical tests (and statistical significance) are designed to report the likelihood the observed results are caused
by chance alone, given that the null hypothesis is true.

Methods: To demonstrate the concepts described, we utilized the Nationwide Inpatient Sample for patients
admitted for emergency general surgery (EGS) and those admitted with non-EGS diagnoses. Depending on the
type and distribution of individual variables, appropriate statistical tests were applied.

Results: Comparison of numerical variables between two groups is begun with a simple correlation, depicted
graphically in a scatterplot, and assessed statistically with either a Pearson or Spearman correlation coefficient.
Normality of numerical variables is then assessed and in the case of normality, a t-test is applied when comparing
two groups, and an analysis of variance (ANOVA) when comparing three or more groups. For data that are not
distributed normally, a Wilcoxon rank sum (Mann-Whitney U) test may be used. For categorical variables, the x>
test is used, unless cell counts are less than five, in which case the Fisher exact test is used. Importantly, both the
ANOVA and y” test are used to assess for overall differences between two or more groups. Individual pair
comparison tests, as well as adjusting for multiple comparisons must be used to identify differences between two
specific groups when there are more than two groups.

Conclusion: A basic understanding of statistical significance, and the type and distribution of variables is
necessary to select the appropriate statistical test to compare data. Failure to understand these concepts may
result in spurious conclusions.
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models or other statistical techniques. The choice of which

q FTER A THOROUGH DATA DESCRIPTION and examina-
statistical test to use is dependent on the distribution and

tion of variables in a dataset, it is then possible to

begin to make formal statistical comparisons for the pur-
pose of testing a hypothesis. This is where the researchers
start to understand whether two groups are different from
each other, and whether those differences are large enough
that it would be unlikely that those differences could
have occurred by chance. The results of formal statistical
comparisons between groups typically form the basis of a
research study’s conclusions. These comparisons may be
related to the primary outcome, such as disparities in diagnosis
or procedure use, but more often provide a first look at potential
differences in groups and areas for adjustment in regression

structure of the data, and thus a clear description and presen-
tation of the initial results is critical, as detailed previously [1].

In this article we build upon this previous description by
making a number of formal statistical comparisons, including
comparisons of normally and non-normally distributed data as
well as the distribution of categorical variables and propor-
tions between groups. These comparisons can be made both
as the primary focus of an article or as a step along the
way toward additional analyses to identify variables for which
to adjust. We discuss in more detail a number of statistical
tests including Pearson and Spearman correlation, Student
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t-test, analysis of variance (ANOVA), Wilcoxon rank
sum test, Kruskal-Wallis test, Fisher exact test, and xz test, as
well as some important considerations when making these
comparisons.

Data Source and Analysis Methods

The Nationwide Inpatient Sample (NIS) inpatient hospitali-
zations for emergency general surgery (EGS) was used to il-
lustrate the various statistical tests [1]. This analysis is conducted
on the unweighted sample but weighting to produce national
estimates is possible following guidelines from the Agency for
Healthcare Research and Quality (AHRQ) using the given
weights, cluster, and strata. The data presented here expand on
the previous data by also reporting comorbidity prevalence es-
timates for the Elixhauser comorbidities. The Elixhauser co-
morbidities are a list of comorbidities that are used frequently in
health services research, and have previously been documented
to have associations with negative outcomes [2]. We made the
following comparisons: the correlation between length of stay
and cost among EGS hospitalizations, demonstrated using
Pearson and Spearman correlation coefficients; differences in
length of stay and age between non-EGS and EGS hospitaliza-
tions using Wilcoxon rank sum test; differences in length of stay
among racial groups for EGS hospitalizations using Kruskal-
Wallis with a post hoc Dunn test with Bonferroni correction to
examine pairwise comparisons; and differences in proportion of
hypertension, valvular disease, and coagulopathy between non-
EGS and EGS hospitalizations. Non-parametric tests were used
due to the clear non-normal distribution of continuous variables,
as discussed previously [1]. The level of significance for these
tests was 0.05, and p values that were <0.001 were reported as
p<0.001. Data cleaning, which is preparing the data for analysis
from its raw format, was done via SAS version 9 (SAS Institute,
Cary, NC), with visualizations made in R version 3.6.1 using
tidyverse and dunn.test [3,4].

There were a total of 7,159,694 hospitalizations in the
2017 Nationwide Inpatient Database, of which 111,034 or
1.6% were for EGS (Table 1) [1]. Although demographic
comparisons have been reported previously, in this article we
expand on that by further presenting comorbidities present in
each group (Table 1) using standard Elixhauser comorbidity
classifications [2]. The most common comorbidity, regard-
less of whether or not the hospitalization was for EGS, was
hypertension with 41.2% and 42.5% of non-EGS and EGS
hospitalizations, respectively (Table 1).

Statistical significance

The concept of statistical significance in the medical liter-
ature is often oversimplified. Specifically, a p value <0.05, in
and of itself, is thought to be sufficient to believe the validity of
a study’s conclusions. To understand the meaning of a p value,
one must begin with the concept of hypothesis testing. Most
studies test a null hypothesis, which states that there is no
difference between groups in an outcome of interest. For ex-
ample, our null hypothesis may be that there is no difference
in age between two groups of patients. The next point is that,
given enough attempts (repeated sampling), a difference be-
tween groups will be found by chance alone, even when a true
difference does not actually exist. For example, one could
imagine that with enough repetitions of tossing a coin, a string
of five consecutive ‘‘heads’” flips would arise by chance. Using
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TABLE 1. ELIXHAUSER COMORBIDITIES, IN DESCENDING
ORDER OF PREVALENCE FOR NON-EMERGENCY
GENERAL SURGERY

Comorbidity n (%)

Non-EGS
n="7,048,660

EGS
n=111,034

Hypertension

Fluid and electrolyte
disorders

Chronic pulmonary

2,901,879 (41.2)
1,641,744 (23.3)

1,213,890 (17.2)

47,224 (42.5)
24,755 (22.3)

15,879 (14.3)

disease
Deficiency anemias 1,085,535 (15.4) 10,731 ( 9.7)
Obesity 947,881 (13.5) 22,628 (20.4)
Diabetes with 892,591 (12.7) 7,954 ( 7.2)
complications
Renal failure 885,531 (12.6) 7,091 ( 6.4)
Depression 760,152 (10.8) 9,636 ( 8.7)
Hypothyroidism 751,633 (10.7) 10,851 ( 9.8)
Diabetes without 640,714 ( 9.1) 10,399 ( 9.4)
complications
Weight loss 368,451 ( 5.2) 6,286 ( 5.7)
Coagulopathy 364,868 ( 5.2) 3,341 ( 3.0)
Peripheral vascular disease 331,946 ( 4.7) 3,942 ( 3.6)
Drug abuse 284,829 ( 4.0) 1,843 ( 1.7)
Alcohol abuse 280,015 ( 4.0) 2,217 ( 2.0)
Liver disease 255,254 ( 3.6) 6,335 ( 5.7)
Psychoses 235,455 ( 3.3) 2,419 ( 2.2)
Valvular disease 232,061 ( 3.3) 3,198 ( 2.9)
Paralysis 206,274 ( 2.9) 1,338 ( 1.2)
Rheumatoid arthritis 178,571 ( 2.5) 2,348 ( 2.1)
Chronic blood loss anemia 174,036 ( 2.5) 784 ( 0.7)
Metastatic Cancer 139,246 ( 2.0) 1,832 ( 1.7)
Solid tumor without 132,561 ( 1.9) 1,446 ( 1.3)
metastasis
Peptic ulcer disease 46,575 ( 0.7) 1,141 ( 1.0)
Lymphoma 45,702 ( 0.7) 408 ( 0.4)
Other neurologic disorders 45,452 ( 0.6) 179 ( 0.2)
Pulmonary circulation 43,052 ( 0.6) 475 ( 0.4)
disease
AIDS 15,278 ( 0.2) 138 ( 0.1)

Prevalence of Elixhauser comorbidities between hospitalizations
not for emergency general surgery (EGS) and those for EGS in the
2017 Nationwide Inpatient Sample (NIS).

AIDS =acquired immune deficiency syndrome.

this framework, the p value is the probability of observing
results as or more extreme than what we observed, given that
the null hypothesis is true. In our prior example, consider the
mean ages of the two patient groups to be 42 and 44 years,
respectively, and the p value was 0.04. If our experiment were
repeated 100 times, and the null hypothesis were true, we
would observe age differences as or more extreme as in only
four of 100 cases.

A basic understanding of statistical significance results in
an appreciation of several additional concepts. The first is that
the threshold for statistical significance, although reasonable,
is ultimately arbitrary. However, once this threshold is set, it
must be honored. For example, if statistical significance is
defined as 0.05, a calculated p value of 0.06 must not be
considered statistically significant, even though based on our
prior discussion, it represents a relatively low likelihood that
the observed results are the result of chance alone. Next, p
values are not binary, and are continuous measures of evi-
dence. That s, a p value of 0.001 indicates a lower probability
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No Relationship
Pearsonr=0.17 ; Spearmanr = 0.16
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Positive Linear Relationship
Pearson r = 0.98 ; Spearmanr = 0.98
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FIG. 1.

Scatterplots showing various correlation strength and direction including no relationship, a positive and negative

linear relation, and an exponential relation. Included with each are the Pearson and Spearman correlation coefficients to
demonstrate their strength of association as well as direction (positive or negative), and how the Spearman correlation is

more appropriate for non-linear relations.

of the observed result being the result of chance compared
with a p value of 0.04. Finally, statistical significance, which
is determined solely by the p value, should not be confused
with clinical significance. Consider if in our previous ex-
ample because of a large sample size, a mean age difference
of 0.02 years between the two groups is found to be statistically
significant with a p value of 0.04. If the primary outcome is
mortality, it would be highly unlikely that such a miniscule age
difference contributed to mortality risk. Thus, statistical sig-
nificance must always be interpreted in the context of clinical
significance.

Correlation

When comparing two continuous numerical variables, the
first step undertaken is to apply a simple correlation test. The
first analysis conducted was to examine the relation between
total charges and length of stay (LOS) among those hospi-
talization for emergency general surgery (EGS). The relation
between two numerical variables can be assessed graphically
with a scatterplot (Figs. 1 and 2). In Figure 1 we demonstrate
four relations with their corresponding Pearson and Spear-
man correlation coefficients, to illustrate their assessment of
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FIG. 2. A scatterplot and the correlation, both Pearson and Spearman correlation coefficients, between length of stay, in
days, and total charges, in U.S. dollars, for hospitalizations for emergency general surgery (EGS) in the 2017 Nationwide

Inpatient Sample (NIS).
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strength and direction. In Figure 2, each dot represents a single
hospitalization that also aides in identifying potential outliers
that may have a strong influence on the relation. The dashed
line in the figure represents the result if we were to use a linear
model on these data. This comparison demonstrates a posi-
tive correlation, wherein as the LOS increases so do the total
charges. As we can see, this linear trend does not fit our data
well, largely because of the skew and variation in the data. The
correlation between total charges (in U.S. dollars) and LOS (in
days) was 0.73 using the Pearson correlation coefficient, and
0.59 using the Spearman correlation coefficient.

The Pearson’s correlation coefficient models the linear
correlation between the variables and ranges from —1 to 1; -1
represents a perfectly correlated (all observations on the line)
in the downward direction where 1 represents that the data are
perfectly correlated in the positive direction [5—7]. Mean-
while, a coefficient of 0 would represent no linear correlation
between the two variables of interest [5S—7]. These corre-
lation coefficients are often split into categories to qualify
the strength of the relation. You may find typical ranges for
the coefficient are: 0.7-1 (highly correlated); 0.4-0.7 (moder-
ately correlated), and <0.4 (weak/no correlation). Other ap-
proaches include more categories: 0-0.1 (negligible), 0.1-0.39
(weak), 0.40-0.69 (moderate), 0.70-0.89 (strong), 0.90-1 (very
strong) [6]. However, these cut points are still somewhat
arbitrary and should be approached with caution.

A few important notes about this measure. First, the size of
the correlation does not measure the slope of the line but rather
demonstrates how close the relation is to being linear. Second, a
weak Pearson correlation does not mean that the two variables
are not correlated; rather, if simply means that there is not a
linear correlation. Non-linear patterns, such as a bimodal rela-
tion, would result in a Pearson correlation coefficient being
close to zero, exemplifying the importance of visualizing the
data with a scatterplot to recognize non-linear patterns more
easily. Our coefficient of 0.73 means that there is a fairly strong
(closer to 1) positive (greater than 0) linear correlation between
LOS and total charges, as we would expect.

The second correlation coefficient presented, Spearman
correlation, does not require that the relation between the two
variables be a linear relation and is generally less sensitive to
outliers [8,9]. The Spearman coefficient will be more helpful
when it appears, via a scatterplot, that the relation is not linear
[8,9]. In our example presented here, the Pearson coefficient
is higher than the Spearman, which may be partially ex-
plained by the large number of observations relatively close
to the linear relation, as well as the skew, but overall, these
results suggest that LOS and total charges are positively
correlated, and we could model them using a linear relation.

Two-group (or more) comparisons
of categorical variables

Often, the key comparisons between groups aims to
perform two-group comparisons of a categorical variable.
For example, are patients with EGS more likely to have
hypertension than patients without EGS? Here what we are
trying to demonstrate is whether the proportion of individ-
uals in one group with a specific attribute is larger than the
proportion of individuals in a comparator group. Is that pro-
portion different than what would be expected by chance
alone? In our analysis, we wanted to compare three co-
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morbidities which we believe would be particularly im-
portant when considering a study on EGS: hypertension,
coagulopathy, and valvular disease.

These comparisons use one of the most common tests,
namely the y test, specifically Pearson ” test. Although this
test is commonly presented as comparing the proportion
between two groups, technically this compares the observed
and expected frequencies between groups, and also can be
used across more than two groups [10-12]. The main caveat
of using the y? test is that for any study with very small
sample sizes, a y test is inappropriate and may yield mis-
leading results. The general rule of thumb is if you have an
expected cell count less than five, a Fisher exact test should
be used instead [10,11].

In our example data, each of these comparisons were sig-
nificant: hypertension (x> [degrees of freedom: 1]=83.64;
p<0.001); coagulogathy (x> [11=1052.2; p<0.001); and
valvular disease (y~ [1]=58.28; p<0.001). If we were to
continue with further analysis or modeling, these results sug-
gest that these would be variables we should include, control,
or for which to adjust. One final point about the y? test is that
when more than two groups are being compared, a statistically
significant result implies that there are overall significant dif-
ferences between groups but cannot inform the question of
which specific groups are different from the others.

Two-group comparisons of numerical variables

Comparisons of numerical variables are also key for iden-
tifying key differences between groups. Here, we use the ex-
ample of examining differences in age or LOS between
hospitalizations that were not for EGS compared with those that
were for EGS. Here, the choice of test to use depends largely on
distribution of the variables. A rule of thumb here is that if your
data are normally distributed, then you can describe the data
with means (and standard deviations) and compare data using
parametric tests such as the Student t-test [13]. The Student
t-test tests a hypothesis that the two groups were drawn from
the same population with the same distribution by comparing
the means of the two groups. If the means are substantially
different, then it is unlikely that the two groups came from the
same distribution. Although there are a few approaches within
the framework of a t-test, the most prominent is independent
versus paired t-tests. Independent samples t-tests are used when
the two groups are independent of each other or not related. On
the other hand, a paired samples t-test would be used if you
were comparing two groups who had been matched or paired
to each other or if you were comparing the same individuals
across two time-points (which can be thought of as being
matched to themselves). This decision should be reliant upon
the design of your study.

For non-normally distributed data, or data that should not be
described with a mean, non-parametric tests should be used. Our
data were not normally distributed, and therefore we needed a
non-parametric test, which in this case was the Wilcoxon rank-
sum test which is also known as the Mann-Whitney-Wilcoxon,
or Mann-Whitney U test [8,14—17].7'3~'¢ The Wilcoxon rank
sum test does not truly compare the medians, as is sometimes
thought. Rather it compares the ‘‘ranks’ of the two samples.
What this means, practically, is that the data is ranked from
smallest to largest, and then split between the two samples
(non-EGS and EGS) and then the sum of the ranks calculated
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TABLE 2. LENGTH OF STAY (IN DAYS) BY RACE

Length of stay

Race/ethnicity Mean (SD) Median (IQR)
White 5.3 (6.2) 4 (2-6)
Black 6.7 (8.6) 4 (6)
Hispanic 3.9 (4.5) 3(3)
Asian Pacific Islander 4.9 (7.2) 3(4)
Native American 4.8 (5.7) 3(33)
Other 4.3 (5.0) 33)
Missing 5.0 (5.8) 34)

Length of stay (in days) stratified by race among those hospital-
izations for emergency general surgery (EGS) in the 2017 Nation-
wide Inpatient Sample (NIS).

SD =standard deviation; IQR =interquartile range.

and compared [8]. With this understanding, we can now
evaluate our results to see that both age and length of stay
were significantly different (p=0.02 and p<0.001, respec-
tively) between those hospitalizations for EGS and those
which were not for EGS. Non-EGS hospitalizations had a
mean LOS of 4.6 days (standard deviation [SD], 6.9) and a
median of 3 (interquartile range [IQR], 2-5), whereas EGS
hospitalizations had a mean LOS of 5.1 (SD, 6.2), and a
median of 3 (IQR, 2-6). These differences were statistically
significant using the Wilcoxon rank sum test (p <0.001). The
mean age of non-EGS hospitalizations was 49.5 (SD, 27.6)
years with a median of 56 (IQR, 29-72) years whereas EGS
hospitalizations had a mean of 51.4 (SD, 21.3) years and a
median of 54 (IQR, 36-68) years. Again, these differences
were statistically significant (p=0.02).

More than two-group comparisons
of numerical variables

Pushing these initial analyses further, sometimes we want
to compare differences in means within a sample that have
more than two groups, for example, race versus LOS. If our
outcome (LOS in this example) is normally distributed we
would consider an ANOVA that would yield one p value and
tell us, globally, if there were significant differences [18,19].
We could then follow this test with a post hoc test, such as
Tukey honestly significant differences (HSD) for example, that
then conducts pairwise comparisons to evaluate which are
significantly different [20]. A post hoc test is simply a way of
referring to a statistical analysis that would follow after ob-
taining a global p value. Another approach one could take in
lieu of Tukey HSD would be to simply do multiple pairwise-
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comparisons between each group using Student t-test. When
you conduct this type of post hoc analysis with multiple sta-
tistical testing you would need to consider a statistical cor-
rection, such as the Bonferroni correction [21]. Simply, this
increases our threshold for statistical significance by decreas-
ing our cutoff below 0.05 to minimize the risk of a false dis-
covery. For example, when three groups are compared to each
other, the corrected p value would be 0.05/3, or 0.017. Because
performing multiple comparisons increases the likelihood that
one of the comparisons will be significant simply by chance,
and by changing this threshold for significance we can reduce
the risk of a false-positive. Refer to the article by Gelbard and
Cripps [22] in this issue.

Because our data on LOS are non-normally distributed (as
they usually are for LOS), we can use the non-parametric al-
ternative: Kruskal-Wallis one-way ANOVA on ranks followed
by the Dunn test (with Bonferroni correction) for the post hoc
pairwise comparisons [23]. Similar to the Wilcoxon rank sum
test, this analysis is using ranks instead of the mean. In a study
on racial disparities or inequities, this first analysis is revealing
but it would also only be a first look, and we would want to
consider potential confounders and other techniques, such as
regression models, which would help account for this.

To demonstrate these principles, we show an analysis of
the relation between race and LOS that would demonstrate
racial disparities among EGS hospitalizations (Table 2). Here,
we used the Kruskal-Wallis test. This test was statistically
significant (p<0.001), suggesting that LOS differs between
racial groups. Interpreting these results, we now know that at
least one group significantly differs from the others but cannot
identify which group or groups are different. To investigate
further which comparisons were significant, we used a post
hoc Dunn test with Bonferroni correction, which identified
significant differences (p<0.001) in LOS between all com-
parisons except: Asian or Pacific Islanders and Native
Americans; Asian or Pacific Islanders and Other; Native
Americans and Other; and Native American and those with
missing race data (Table 3).

Discussion

In this article, we present a number of analyses and com-
parisons using data from the NIS, specifically looking at
those hospitalizations for EGS. The goal of this work is to
demonstrate a number of approaches in comparing data, that
may either be the focus of a manuscript or analysis or may
represent only one step along the way to identifying impor-
tant covariates, for example using a regression model. See
also the article by Rattan et al. [24] in this issue.

TABLE 3. DUNN PAIRWISE COMPARISONS

White Black Hispanic Asian Pacific Islander Native American Other
Black <0.001
Hispanic <0.001 <0.001
Asian Pacific Islander <0.001 <0.001 <0.001
Native American <0.001 <0.001 <0.001 1.0
Other <0.001 <0.001 <0.001 0.147 0.111
Missing <0.001 <0.001 <0.001 <0.001 0.462 <0.001

Results of the Dunn test pairwise comparisons, with Bonferroni correction, for length of stay. Displayed are the p values for each

comparison.
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The understanding of these results, and results from any
study that compare data, is not complete without a discussion
on spurious correlations, the role of confounders, and ac-
knowledgement of the substantial limitations of the p value.
In the first analysis we presented the correlation between
LOS and total charges. Conceptually, this makes sense and
our observed correlation coefficients are unsurprising given
this context. However, caution should be taken when in-
terpreting these correlations, and ensuring that conceptu-
ally the correlation makes sense. In fact, there are numerous
instances where unrelated things produce nearly perfect
correlations [25]. These spurious correlations underscore
the importance of having a clear conceptual model and
approach when conducting these analyses, or else findings
may be unfortunately spurious.

In our analysis we presented an example using Kruskal-
Wallis analysis on LOS by race to identify potential racial
disparities for EGS patients. This analysis can be considered
an unadjusted analysis in that it only demonstrates the rela-
tion between race and LOS, without adjusting for any other
factors. It is imperative to consider the role of confound-
ers, or variables that are associated with both the exposure
and outcome, and their role in this relation, particularly for
retrospective, non-randomized data, such as those avail-
able in administrative databases [26]. In fact, we would not
suggest that conclusions should be drawn based on these
analyses because no confounders were considered. Any
study that evaluates an outcome such as LOS would most
certainly want to include other variables that may explain
an increased LOS, such as comorbidities or complications.
This adjustment is most often done through regression
models that help to tease out the complex relations that
underplay these relations.

The final important note to contextualize these findings is
the role of the p value in these analyses. It is important to
note that, as a whole, the field is largely moving away from a
reliance on p values to determine what is considered to be
significant and what is not [27-29]. Indeed, in our previous
article we outlined how excluding p values in a Table 1 is
becoming more common practice [1]. However, we recog-
nize that many of the methods, their teaching, and inter-
pretation in clinical research center around a resulting p
value. However, the p value is an imperfect measure and is
fraught with limitations. In the results we present here, be-
cause of the large sample size, it is unsurprising that all of
our findings were statistically significant, such as our sig-
nificant difference in LOS even though the median was the
same. In fact, most comparisons we could or would make
using these data would yield statistically significant find-
ings, in some regard defeating the purpose of the p value.
Although we do not discuss alternatives to p values here,
investigators should be aware of this shift in the field and
understand that much like any other field, statistics contin-
ues to evolve and develop.

Conclusion

In conclusion, we have presented and illustrated the tests
used most commonly to compare data and demonstrated the
results of these comparisons using data on EGS from the
NIS. This article should help guide investigators in how to
plan and perform their own analyses as well as interpret the
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findings of statistical tests performed by others. Any analysis
and comparison should be strongly rooted in a conceptual
framework, wary of potentially spurious correlations and con-
founders, and consider not just the statistical significance of
the result, but the clinical and meaningful significance of
the findings. As the field continues to develop, these tests
may rise or fall in prominence, but nonetheless provide a
strong foundation.
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