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1  |  INTRODUC TION

Persistent forms of atrial fibrillation (AF) represent more advanced 
atrial disease than paroxysmal AF.1 However, the mechanisms for 
persistence are still debated and may involve multiple wavelets, 
endo-epicardial dissociation, or drivers.2–5 Clinical studies using 
dominant frequency analysis of roving contact catheter data to 

locate driver regions have had mixed success.6,7 Subsequently, en-
docardial basket contact mapping catheters were used to demon-
strate rotors and showed promising responses to treatment,8 but the 
results of more recent meta-analyses have been equivocal.9,10 Atrial 
substrate changes detectable during clinical electrophysiology stud-
ies include low voltage areas (LVA) or fractionated signals.1 Although 
LVA is advocated as a target for ablation,11,12 more recent studies 
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Abstract
Background: Despite studies using localized high density contact mapping and lower 
resolution panoramic approaches, the mechanisms that sustain human persistent 
atrial fibrillation (AF) remain unresolved. Voltage mapping is commonly employed as a 
surrogate of atrial substrate to guide ablation procedures.
Objective: To study the distribution and temporal stability of activation during persis-
tent AF using a global non-contact charge density approach and compare the findings 
with bipolar contact mapping.
Methods: Patients undergoing either redo or de novo ablation for persistent AF un-
derwent charge density and voltage mapping to guide the ablation procedure. Offline 
analysis was performed to measure the temporal stability of three specific charge 
density activation (CDA) patterns, and the degree of spatial overlap between CDA 
patterns and low voltage regions.
Results: CDA was observed in patient-specific locations that partially overlapped, 
comprising local rotational activity (18% of LA), local irregular activity (41% of LA), 
and focal activity (39% of LA). Local irregular activity had the highest temporal stabil-
ity. LA voltage was similar in regions with and without CDA.
Conclusion: In persistent AF, CDA patterns appear unrelated to low voltage areas but 
occur in varying locations with high temporal stability.
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have described marked variation in the extent of LVA observed 
depending on cycle length and direction of wave front activation, 
and also in sinus rhythm versus AF.13,14 Complex, fractionated sig-
nals themselves could represent either active drivers or wavefront 
collision or fusion and the initial success of targeting complex atrial 
electrograms reported by Nademanee15 was not replicated in the 
randomized Substrate and Trigger Ablation for Reduction of Atrial 
Fibrillation (STAR-AF) II trial.16

Combined charge density and ultrasound mapping (AcQMap, 
Acutus Medical) is possible with a novel system employing a spherical 
catheter with six splines, each of which has eight ultrasound trans-
ducers and electrodes. Rapid ultrasound cardiac chamber geome-
try combined with the ability to collect up to 150 000 non-contact 
charge density samples per second allows acquisition of full cham-
ber, high resolution electrical activity.17 Several stereotyped charge 
density activation (CDA) patterns were described during mapping of 
AF with this system, namely focal activity (FA), local rotational ac-
tivity (LRA), and local irregular activity (LIA). LRA shows a regionally 
organized pattern of conduction that rotates in one direction around 
a confined zone (clockwise or counter-clockwise) and subtends a 
path of ≥270°, FA indicates radial wavefronts propagating from a 
single location, while LIA is a disorganized pattern of conduction 
with repetitive, multidirectional, isthmus-like conduction through a 
confined zone that may enter, exit, and pivot within and around the 
zone (Figure 1). Initial clinical results using this technology to guide 
ablation have been reported in a single arm study with 73% freedom 
from AF at 12 months after a single ablation procedure for persistent 
AF.18  More recently, non-contact data from the AcQMap system 
have been validated against standard contact electrograms demon-
strating a high degree of correlation for morphology and timing.19

The purpose of this study was to describe the spatial distribution 
and temporal stability of CDA identified using this novel mapping 
system in a cohort of patients with persistent AF, and to determine if 
there was any relationship between LVA (using conventional bipolar 
voltage mapping techniques) and CDA.

2  |  METHODS

Following granting of European CE mark and US FDA approval, we 
obtained local institutional approval to use the novel AcQMap sys-
tem to treat AF, and all patients in the study gave informed written 

consent. Between September 2018 and November 2019, sixteen 
consecutive patients underwent an electrophysiology study and ab-
lation for persistent AF using both AcQMap (Acutus Medical) and 
Ensite Precision (Abbott Medical) systems.

2.1  |  Electrophysiology study and ablation

All procedures were performed under general anesthetic with tran-
soesophageal echocardiography. Patients were routinely anticoagu-
lated with direct oral anticoagulants (DOAC). Femoral venous access 
was used for double trans-septal puncture, followed by hepariniza-
tion to ACT >350 s. The baseline charge density map (pre-PVI) was 
acquired for 30 s during AF with AcQMap, followed by a high density 
(>3000 points) contact map of the left atrium (LA) during AF using 
a multipolar catheter, either Advisor FL SE or Advisor HD Grid SE 
(Abbott Medical). A threshold of 0.2 mV (in AF) was used to define 
LVA as this has been shown to correlate with the conventional defi-
nition of 0.5 mV in sinus rhythm and with the presence of a scar on 
MRI.14,20 Pulmonary vein isolation (PVI) was then performed either 
by de novo wide area circumferential ablation (n  =  6), or for redo 
procedures (n  =  10) at regions of vein reconnection with contact 
force guidance (TactiCath SE; Abbott Medical). Power settings were 
by operator preference either 30  W anteriorly/25  W posteriorly, 
guided by Lesion Index (LSI; Abbott Medical), or 45 W up to 15 s 
“high power, short duration”. Following PVI a further 30 s map (post-
PVI) of AF was acquired using AcQMap. AcQTrack software (Acutus 
Medical) was used to identify CDA (LIA, LRA, FA) targets and thresh-
olds of 5, 7 and 1 for LRA, LIA, and FA, respectively, gave clinically 
usable maps with similar numbers of CDA in the majority of our pa-
tients. These were ablated at operator discretion. Two patients were 
ablated directly to sinus rhythm, while the remainder completed 
the procedure with external cardioversion. Clinical follow-up was 
undertaken using a combination of patient symptoms, 12 lead EKG, 
and continuous EKG recordings.

2.2  |  Image registration

Comparing left atrial (LA) maps across multiple patients is challeng-
ing due to variation in LA size and geometry. In order to accurately 
compare maps from the two systems and across patients, in-house 

F I G U R E  1  Example charge density 
activation patterns
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methods were developed within Matlab (Version 2020a; www.
mathw​orks.com) and Cloud Compare software (Version 2.6.1; www.
cloud​compa​re.org) to merge maps. Fiducial markers were used to 
tag structures common to both geometries, typically the LA append-
age and the carina between pulmonary veins, in order to generate a 
transformation matrix which is then used to align, resize, and rotate 
maps. Next, a “nearest neighbor” matching algorithm was used to 
apply bipolar voltage values from the Ensite Precision map onto the 
AcQMap geometry. This allows direct comparison of CDA and volt-
age for each vertex in the map.

For the composite images, an average LA geometry was gen-
erated. Again, fiducial points were marked and used to transform 
each patient's geometry to the common LA geometry, before the 
nearest-neighbor matching applied the thresholded CDA and volt-
age values to the common geometry. The number of occurrences of 
above-threshold CDA, and the mean of the voltage at each vertex, 
were used to create LA heatmaps.

2.3  |  Image comparison and statistical methods

The detection of LVA and CDA in the LA is threshold dependent. 
A commonly used metric for medical image comparison, Sørenson 
Dice coefficient, is sensitive to changes in the thresholds used, 
so we compared maps using a novel area under the curve (AUC) 
metric. Our AUC metric calculates the AUC of a sensitivity/
(1-specificity) plot using a continually-varying threshold for each 
of the two maps being compared. This is analogous to the area 
under a receiver-operating characteristic (ROC) curve except that 
both the ‘test’ and ‘reference’ maps are from the same dataset and 
are both are subject to varying thresholds. This differs from the 
binary outcome of a gold-standard reference test used when com-
paring diagnostic test accuracy—the typical application of ROC. 
Therefore, in this application, AUC values of <0.5 are possible for 
inversely matched maps (where CDAs have less intersection be-
tween maps than would be expected by chance), whereas a per-
fect match scores 1.0. This method has the substantial advantage 
that, by analyzing every possible CDA threshold, it removes the 
requirement for a threshold to be chosen.

Due to constraints of clinical workflow, of 16 patients treated, 
11 had the full set of data comprising bipolar voltage map, pre-PVI 
CDA map, and post-PVI CDA map. The primary analysis of tempo-
ral stability was performed on these 11 patients, but we also used 
all available datasets across all 16 patients for a secondary analysis 
(provided as a supplement). To assess single map temporal stabil-
ity, a 30 s CDA acquisition was divided into three consecutive 10 s 
sections. Within each 10 s section, the locations of each CDA were 
annotated to create binary maps of the LA with FA/LRA/LIA present 
or absent. Each 10 s section (1, 2, 3) was compared against the other 
sections within the same 30 s window using AUC i.e. 1 vs. 2, 2 vs. 3, 
and 1 vs. 3. To compare longer term (intraprocedural) temporal sta-
bility, we compared the 30 s pre-PVI recordings with 30 s recordings 
post-PVI. Figure 2 gives an overview of all comparisons performed.

Baseline demographic data are presented as mean  ±  SD or 
median (range) as appropriate. All pairwise comparisons were 
performed with Wilcoxon signed-rank test (R, The R Project for 
Statistical Computing).

3  |  RESULTS

Patient characteristics are shown in Table 1.

3.1  |  Spatial distribution and co-localization of 
CDA and relationship to voltage

The spatial distribution of LRA, LIA, and FA regions for all pa-
tients during the baseline 30 s AF recording is shown on a common 
geometry—Figure 3. There was some preferential location in ante-
rior/septal wall, but CDA could be observed throughout the LA. The 
LIA and FA patterns were more frequently observed than LRA. At 
the clinically used thresholds, 55% of the atrial endocardial surface 
was involved in activation across one or more LRA, LIA, or FA. The 
Venn diagrams for complete cases and for all available data (Figure 4 
and Figure S1 respectively) show the overlap for CDA types—LRA 
was rarely observed in isolation and mainly occurred in association 
with LIA or FA, while LIA and FA occurred more often in isolation. 
Across all patients studied, the median LA voltage was 0.39  mV 
(IQR 0.16–0.83). Comparing LA voltage in areas where CDA were 
present or absent, nominally significant differences were observed, 
with lower voltage in areas with LIA. However, there was a large 
range of data and no clinically meaningful differences were identi-
fied (Figure 5, Figure S2).

3.2  |  Temporal stability of observed CDA

Within the 30 s pre-PVI recordings of AF, when 10 s segments were 
compared in individual patients to examine short-term CDA stability, 
we observed a high degree of CDA overlap, indicating stable pat-
terns of CDA (Figure 6, Figure S3). At both timepoints, LIA was the 
most spatially stable form of CDA.

Comparing the pre- and post-PVI maps (with a mean ± SD inter-
vening time period of 100 ± 50 min) to assess longer term CDA sta-
bility, the observation of stable CDA patterns was again seen over 
this much longer time period (Figure 7, Figure S4).

4  |  DISCUSSION

In this study using a novel mapping system in persistent AF patients, 
the main findings were:

1.	 Temporally stable, regions of activation during persistent AF 
the location of which varied between patients.

http://www.mathworks.com
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2.	 Localized irregular activity was frequently observed and showed 
high temporal stability, while rotational activity was less frequent.

3.	 CDA did not correlate well with low voltage regions mapped dur-
ing AF.

The observation of directional organization or “linking” during AF 
has been recognized previously, suggested to represent underlying 
anatomic structures or refractoriness from previous wavefronts.21,22 
Our data using high resolution global non-contact mapping confirms 
that repetitive patterns of activity can be observed over timescales 
of <1 min, and greater than 1 h, which may be more consistent with 
a “driver” mechanism than “multiple wavelets”. This extends previ-
ous observations during epicardial perioperative maps acquired over 
the course of 10  min of AF.23 Our long-term stability assessment 
was performed by comparing pre-PVI and post-PVI data. We accept 
interim ablation may affect the AF substrate, although one might ex-
pect this to reduce temporal stability. Mapping with unipolar signals 
mitigates against some of the downsides of bipolar electrograms, 

including sensitivity to wavefront direction and loss of fine detail of 
complex activation patterns or “bipolar blindness”.

With regard to specific CDA events, our data indicate that ro-
tational activity, particularly occurring in isolation, was infrequent. 
This is consistent with previous reports using biatrial epicardial 
contact mapping studies24,25 and also by mapping the epicardium 
non-invasively using CardioInsight (Medtronic).26 Studies that report 
more consistent findings of rotors, tend to depend on phase analysis 
methods.8,27 The appearance of rotational activity can be a passive 
phenomenon based on phase analysis of electrograms at lines of 
conduction block.28 We observed frequent and consistent endocar-
dial FA which could represent either focal or micro re-entrant drivers 
or epicardial to endocardial breakthrough. In a previous high density 
epicardial mapping study predominantly focal activations were ob-
served with collision and merging of wavefronts.25

Atrial bipolar voltage is commonly used clinically as a surro-
gate for atrial substrate, despite potential limitations including 
wavefront direction and regional variation in LA wall thickness. 

F I G U R E  2  Summary of workflow undertaken to compare bipolar voltage and charge density, and to assess short- and long-term temporal 
stability of charge density activation
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Age (years) 63 ± 11

AF history (years) 4.2 ± 3.0

Gender (M:F) 15:1

Body mass index (kg/m2) 29 ± 4

CHA2DS2-VaSC score–median (range) 1 (0–4)

LV ejection fraction (%) 52 ± 5

LA dimension (mm) 46 ± 5

Previous AF ablation procedures–median (range)

Antiarrhythmic drugs at time of procedure

Betablockers 14/16

Digoxin 3/16

Amiodarone 1/16

Patients with previous AF ablation procedure 10/16, median 1 (0–3) procedures

TA B L E  1  Patient characteristics. 
Continuous variables are described using 
mean ± SD unless otherwise stated

F I G U R E  3  Composite images demonstrating spatial distribution and frequency (normalized to scale 0–1) of CDA, for all patients displayed 
on a common geometry; (A) AP and (B) PA views. CDA, charge density activation; FA, focal activity; LIA, local irregular activity; LRA, local 
rotational activity
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F I G U R E  4  Venn diagram 
demonstrating the involvement of left 
atrium (percentage of LA area) and 
degree of spatial overlap between charge 
density activity, complete datasets only. 
CDA, charge density activation pattern 
comprising LRA (local rotational activity); 
LIA, local irregular activity and FA, focal 
activity

F I G U R E  5  Bipolar tissue voltage, in 
areas with and without CDA present, 
complete datasets only. Pairwise 
comparisons with Wilcoxon signed-rank 
(****, p < .0001. ns, not significant). 
CDA, charge density activation pattern 
comprising LRA (local rotational activity); 
FA, focal activity; LIA, local irregular 
activity

F I G U R E  6  Short-term temporal 
stability expressed as AUC (comparing 
10 s sections within the same 30 s 
window), complete datasets only. Pairwise 
comparisons with Wilcoxon signed-rank 
(****, p < .0001. ns, not significant). 
CDA, charge density activation pattern 
comprising LRA (local rotational activity); 
FA, focal activity; LIA, local irregular 
activity; PVI, pulmonary vein isolation; 
UAC, area under the curve metric
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Although voltage values were nominally statistically different in 
areas of CDA versus non-CDA, this was likely due to the sheer 
number of points compared. More importantly, the significant 
overlap made it impossible to identify any clinically useful voltage 
threshold to identify CDA locations. This has also been recently re-
ported by Chierchia et al.29—LVA identified during paced and sinus 
rhythm (but not during AF) did not overlap with CDA locations. Yet 
the consistent observation of temporally stable activity in patient-
specific locations, LIA in particular, strongly suggests this reflects 
an underlying fixed atrial substrate. Our observations regarding 
the frequent occurrence of LIA confirm those of others using this 
approach.18,30,31 Using optical mapping ex vivo, fibrotic regions 
have been shown to harbor microscopic intramural re-entrant cir-
cuits that can act as AF drivers.32 However, current human in vivo 
electrophysiological and imaging methods are limited to either the 
endocardial or epicardial surface and lack the resolution to resolve 
this microscopic level of detail. Prior endocardial non-contact 
mapping studies using the Ensite array failed to show stable dom-
inant frequency sites, or stable focal or rotor sites.33,34 However, 
this earlier generation system was of lower spatial resolution and 
does not utilize accurate patient-specific ultrasound chamber ge-
ometry. Using the current system, LIA locations detected during 
AF co-localize to areas of slow conduction during non-AF paced 
rhythm, providing further evidence that these represent localized 
areas of abnormal substrate.31

Acute AF termination during ablation was a relatively infrequent 
occurrence in this study, but freedom from AF observed after ab-
lation in this and other studies using this mapping system suggests 
that areas of CDA identified for ablation were involved in mainte-
nance of AF.18,35 The findings in this study of temporally stable CDA 
locations during AF that vary from patient to patient would not sup-
port an approach of either empiric linear ablation or voltage based 
ablation for persistent AF. The AcQMap system allows a bespoke 
approach and provides the ability to rapidly map, ablate and remap. 
The clinical effectiveness of non-contact charge density guided 
mapping for treatment of AF is being evaluated in ongoing larger tri-
als (e.g. RECOVER, NCT03368781 and DISCOVER, NCT0389333).

5  |  LIMITATIONS

The population studied had mostly longstanding persistent AF, and 
observations here may not apply to all forms of AF. Mapping in this 
study was confined to the endocardial LA, and we did not perform 
right atrial mapping.

6  |  CONCLUSIONS

This study of persistent AF has demonstrated temporally stable ac-
tivation patterns over both short and relatively long periods of time, 
that appear unrelated to bipolar voltage. These may represent novel 
targets for AF ablation but this requires further investigation with 
larger clinical trials.
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