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A new study on two different vaccinated fractional-order COVID-19

models via numerical algorithms

Abstract

The main purpose of this paper is to provide new vaccinated models of COVID-19 in the sense
of Caputo-Fabrizio and new generalized Caputo-type fractional derivatives. The formulation
of the given models is presented including an exhaustive study of the model dynamics such as
positivity, boundedness of the solutions and local stability analysis. Furthermore, the unique
solution existence for the proposed fractional order models is discussed via fixed point theory.
Numerical solutions are also derived by using two-steps Adams-Bashforth algorithm for
Caputo-Fabrizio operator, and modified Predictor-Corrector method for generalised Caputo
fractional derivative. Our analysis allow to show that the given fractional-order models
exemplify the dynamics of COVID-19 much better than the classical ones. Also, the analysis
on the convergence and stability for the proposed methods are performed. By this study,
we see that how the vaccine availability plays an important role in the control of COVID-19
infection.

Keywords: Fractional mathematical model, Numerical methods, Caputo-Fabrizio and new
generalized Caputo fractional-derivatives
2010 MSC: 26A33, 37N25, 92C60, 92D30

(Version of September 27, 2021)

1. Introduction

Throughout this pandemic known as COVID-19, we have experimented a great expansion
of cases throughout the world. This situation converts into solid actions that affect the popu-
lation: social isolation, use of masks, etc. Mathematical models play a key role for describing
infectious diseases such as COVID-19 expansion. The development and investigation of this
type of models provide us tools for describing and characterizing its transmission, and thus,
we are able to propose successful techniques to foresee, prevent, and control infections, also
to ensure that population is well-being. Till present time, numerous mathematical models
see [1, 2, 3, 4, 5] have been considered and analyzed to ponder the spreading of infections.
COVID-19, has affected nearly 90% countries across the globe with the infection rate rising
rapidly at almost 5% per day. However, the COVID-19 infection behavior is different from
nation-to-nation, and is depended on numerous factors. In South Africa, with no excep-
tion, almost half a million positive cases have been reported already and is currently one of
the five most affected countries globally. To date, various mathematical models have been
applied to predict infection rates based on only time-series modes [6, 7]. Very few studies
attempted to include other related factors to enhancing the modeling process such as the
influence of climatic factors for the disease rapid spread. In the last year, numerical models
for COVID-19 plague have been taken into consideration by many scientists with respect to
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the different nature and its behavior by applying different controls to avoid the spread of
this pandemic see [8, 9, 10, 11] and references therein.

Nowadays, number of mathematicians are giving priority to the fractional derivatives
[25, 26, 27, 28] in the study of mathematical models. Recently, thousands of epidemic
models like tuberculosis [12], malaria [13], COVID-19 [14, 15, 16] have been analyzed by
applying non-classical derivative operators. Authors in [17] solved a nonlinear system of
COVID-19 by using a recent modification in Caputo derivative. They used fixed point
theory techniques to demonstrate solution existence and they also analyzed the stability of
the aforementioned model. Dynamics of COVID-19 in Brazil were studied in [18], and in
Cameron in [19]. A new model of COVID-19 disease in integer and non-integer sense was
provided in ref. [20]. Analysis on the fractional-order mathematical model to simulate the
COVID-19 disease outbreaks in Pakistan are proposed in [30]. Authors in [31] have proposed
a new non-linear model for deriving the nature of 2019-nCoV. In [32], chaotic dynamics of
a mathematical model of HIV-1 in the sense of fractional-order operators is given. In ref.
[33], authors have simulated a fractional-order chaotic system. Study proposed in [34] is
dedicated to the solution of a fractional-order predator-prey model. In [35], researchers have
justified the clear role of prostitutes in the HIV disease. Authors in [36] have analyzed an
epidemic model with exponential decay law. In [37], some novel analysis on the listeriosis
epidemic are performed. In [38], a modified version of Predictor-Corrector technique for the
delay-type fractional differential equations has been proposed. Authors in [39] have analyzed
the predictions of COVID-19 cases in Argentina by using a real-data. In [40], researchers
have introduced a mathematical model to simulate a biological phenomena. Recently, some
authors have also tried fractional derivatives in ecological problems. One of the most recent
application is given in [21].

Our objective in this paper is to continue this research line by introducing a new fractional
COVID-19 model that takes into account the existence of vaccines. Our paper is organized
as follows: Section 2, is related to provide some well-known results that will be later needed.
Section 3 is devoted to the description of fractional order models using Caputo-Fabrizio and
generalized Caputo non-classical derivatives. Section 4 contains the basic analysis of the
model, involving the positivity, boundness, and reproductive number with stability along
disease free-equilibrium points. Next, in section 5 and section 6 the existence of solutions for
the models via Adams-Bashforth in CF sense and modified Predictor-Corrector in generalized
Caputo derivative sense are provided, respectively. These sections also contain the numerical
simulations and graphical results for both models. Finally, in section 7, we present the
concluding remarks.

2. Preliminaries

Here we mention some definitions and results for further uses.

Definition 1. [22] The CF (Caputo-Fabrizio) fractional-derivative of κ order for a function
G ∈ H1(c, d) and 0 < κ < 1, is given by:

CF
c Dκ

t G(t) =
1

1− κ

∫ t

c

dG(λ)

dλ
exp[−̟(t− λ)]dλ

where ̟ = κ

1−κ
.

The respective CF fractional integral is defined by

CF
c Iκt G(t) = (1− κ)G(t) + κ

∫ t

c

G(λ)dλ.
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Theorem 1. [23] Let M be a compact metric space and C(M,R) denotes the space of
continuous functions when endowed with the supremum norm metric. A set E ⊂ C(M) is
compact if and only if E is bounded, closed and equicontinous.

Definition 2. [29] The modified Caputo fractional derivative operator, Dκ,σ
d+
, of order κ > 0

is given by:

(Dκ,σ
d+

Ψ)(ξ) =
σκ−n+1

Γ(n− κ)

∫ ξ

d

sσ−1(ξσ − sσ)n−κ−1

(

s1−σ d

ds

)n

Ψ(s)ds, ξ > d, (1)

where σ > 0, d ≥ 0, and n− 1 < κ ≤ n.

Theorem 2. [29] Let n− 1 < κ ≤ n, σ > 0, a ≥ 0 and g ∈ Cn[a, b]. Then, for a < t ≤ b,

Iκ,σa+ Dκ,σ
a+ g(t) = g(t)−

n−1
∑

m=0

1

σmm!
(tσ − aσ)m

[(

x1−σ d

dx

)m

g(x)

]

x=a

. (2)

3. Formulation of fractional-order Covid-19 models

In order to formulate our COVID-19 model with influence of quarantine class and vac-
cination, we split the whole population into four different compartments. The first of them
is the class of susceptible to disease which is represented as St, second one is infective or
infectious It, third one is quarantined Qt (in which the infectious peoples are putting for
isolation), and last one is the recovered class Rt with temporary immunity. The flow of the
population is described in the following system of differential equations:

dSt

dt
= (1− q)b− β St It − dSt + δRt,

dIt

dt
= β St It − (η + γ + d+ σ1) It,

dQt

dt
= η It − (ρ+ d+ σ2)Qt, (3)

dRt

dt
= γ It + ρQt − (d+ δ)Rt + qb,

where b describes the enroll rate of the population that directly joins the susceptible class St,
β stands for the contact rate mainly incidence rate at which susceptible class joins infectious
class It, d denotes the out going rate of each class in the form of natural death or migration
rate from each class, γ is the recovered rate of infected class to join recovered class Rt and
ρ is the recovered rate of quarantine class people. Moreover, σ1 and σ2 are the disease
related deaths rates for infected class and quarantined class, δ shows the relapse rate at
which the recovered class Rt moves to susceptible class and q represents the vaccine rate,
that is, the proportion of the susceptible class that becomes vaccinated with 0 ≤ q ≤ 1. To
simulate the past history or hereditary characteristics in the given model (3), we utilized the
Caputo-Fabrizio (CF) fractional derivatives instead of classical derivatives. In this matter,
we propose the following model of fractional order type

CF
c Dκ

t St = (1− q)b− β St It − dSt + δRt,
CF
c Dκ

t It = β St It − (η + γ + d+ σ1) It,
CF
c Dκ

t Qt = η It − (ρ+ d+ σ2)Qt,
CF
c Dκ

t Rt = γ It + ρQt − (d+ δ)Rt + qb,

(4)
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where 0 < κ < 1 and CF
c Dκ

t presents the fractional derivative in the Caputo-Fabrizio sense.
For generating more diversity in the fractional-order simulations, we propose another frac-
tional order model in the sense of generalized version of Caputo-type fractional derivative as
follows:

CD
κ,σ
t St = (1− q)b− β St It − dSt + δRt,

CD
κ,σ
t It = β St It − (η + γ + d+ σ1) It,

CD
κ,σ
t Qt = η It − (ρ+ d+ σ2)Qt,

CD
κ,σ
t Rt = γ It + ρQt − (d+ δ)Rt + qb,

(5)

where 0 < κ < 1, σ > 0, and CD
κ,σ
t prsents the fractional derivative in the generalized (or

modified) Caputo sense.

4. Basic analysis of the model

4.1. Positivity and boundedness

Suppose that
R
4
+ =

{

(S, I,Q,R)|S, I,Q,R ≥ 0
}

.

From [24] and utilizing a generalized mean value theorem and a fractional comparison prin-
ciple, the proof of the following theorem is achieved. We state the analysis for the Caputo-
Fabrizio fractional model (4) and it is straightforward to obtain the corresponding analysis
for the generalised Caputo one(5).

Theorem 3 (Positivity and boundedness). Let (S0, I0,Q0,R0) be any initial data belonging
to R4

+ and
(

St, It,Qt,Rt,
)

the corresponding solution of model (4) to the given initial data.
The set R4

+ is positively invariant. Furthermore, we have

lim sup
t→∞

St ≤ S∞ :=
(1− q)b+ δR∞

d
,

lim sup
t→∞

It ≤ I∞ :=
(1− q)b+ δR∞

η + γ + d+ σ1
,

lim sup
t→∞

Qt ≤ Q∞ :=
η I∞

ρ+ d+ σ2
,

lim sup
t→∞

Rt ≤ R∞ :=
γ I∞ + ρQ∞ + qb

d+ δ
.

(6)

Proof. From model (4), we have

CF
c Dκ

t S
∣

∣

∣

S=0
= (1− q)b+ δRt > 0,

CF
c Dκ

t I
∣

∣

∣

I=0
= 0,

CF
c Dκ

t Q
∣

∣

∣

Q=0
= η It ≥ 0,

CF
c Dκ

t R
∣

∣

∣

R=0
= γ It + ρQt + qb ≥ 0.

(7)
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For all t ≥ 0, with the help of generalized mean value theorem [24] and system (7), we can
conclude that St, It,Qt,Rt ≥ 0. First equation of system (4) implies that

CF
c Dκ

t S ≤ (1− q)b− dSt + δRt.

By utilizing the fractional comparison principle, it follows that

lim sup
t→∞

St ≤ S∞ :=
(1− q)b+ δR∞

d
.

Second equation of the system (4) implies that

CF
c Dκ

t (S + I) ≤ (1− q)b− dSt + δRt − (η + γ + d+ σ1) It,

which implies that
lim sup
t→∞

It ≤ I∞.

In a result, the second estimate of (6) is obtained. While third equation of the system (4)
gives us

CF
c Dκ

t Q ≤ η I∞ − (ρ+ d+ σ2)Qt,

for enough large value of t. This follows the third estimate of (6).
Finally, the fourth equation of system (4), implies that

CF
c Dκ

t R ≤ γ I∞ + ρQ∞ − (d+ δ)Rt + qb,

for enough large value of t and the fourth estimate of (6) holds.

4.2. Free virus equilibrium point and reproduction number

Diseases Free Equilibrium (DFE) point of system (3) is given by

E0 =

(

S0, I0,Q0,R0

)

=

(

b((1− q)d+ δ)

d(δ + d)
, 0, 0,

qb

δ + d

)

. (8)

For the reproductive number of model (3), suppose that y = (It,St) and using next genera-
tion matrix approach [3], we have

dy

dt
= F(y)− V(y), (9)

where Jacobian of F and V are

F(y) =

(

β St It

0

)

V(y) =

(

(η + γ + d+ σ1) It

−(1− q)b+ β St It + dSt − δRt

)

. (10)

At E0, we have

F(E0) =

(

βb((1−q)d+δ)
d(δ+d)

0

0 0

)

, V(E0) =

(

η + γ + d+ σ1 o
βb((1−q)d+δ)

d(δ+d)
d

)

.

Hence, reproductive number for model (3) is

ψ0 = ρ(FV−1) =
βb((1− q)d+ δ)

d(δ + d)(η + γ + d+ σ1)
. (11)
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ψ0 = ρ(FV−1) =
βb((1− q)d+ δ)

d(δ + d)(η + γ + d+ σ1)
. (12)

The results about the positive endemic equilibrium point are contained in the next theorem.

Theorem 4. There exists a unique positive endemic equilibrium point E∗ for system (3) if
ψ0 > 1.

Proof. Endemic equilibrium point (EEP) is obtained from system (3), by putting right hand
side of each equation equal to zero, we have

S∗
t =

η + γ + d+ σ1

β
,

Q∗
t =

η

ρ+ d+ σ2
It, (13)

R∗
t =

qb

d+ δ
+
γ(ρ+ d+ σ2) + ρη

(d+ δ)(ρ+ d+ σ2)
It,

(1− q)b− (η + γ + d+ σ1) I
∗
t − dS∗

t + δR∗
t = 0,

Now, from last equation of system (13), we have

Φ(I∗
t) =

b((1− q)d+ ρ)

d+ δ
+

(

γ(ρ+ d+ σ2) + ρη

(d+ δ)(ρ+ d+ σ2)
− (η+γ+d+σ1)

)

I∗
t−

d(η + γ + d+ σ1)

β
.

(14)
By the values of S∗, I∗, Q∗ and R∗, it is clear that a unique EEP E∗ exists, if ψ0 > 1.

Theorem 5. The model (3) is locally stable at E0 for ψ0 < 1 and unstable for ψ0 > 1.

Proof. The Jacobian of model (3) is

J =









−βIt − d −βSt 0 δ

βIt βSt − (η + γ + d+ σ1) 0 0
0 η −(ρ+ d+ σ2) 0
0 γ ρ −(d+ δ)









. (15)

Along E0, it implies that

J(E0) =











−d −βb((1−q)d+δ)
d(δ+d)

0 δ

0 βb((1−q)d+δ)
d(δ+d)

− (η + γ + d+ σ1) 0 0

0 η −(ρ+ d+ σ2) 0
0 γ ρ −(d+ δ)











, (16)

which follows that all the eignvalues are negative if ψ0 < 1 and eigenvalue λ2 is positive for
ψ0 > 1. Hence, we conclude that the system (3) is locally stable under the condition ψ0 < 1
and unstable for ψ0 > 1.

Theorem 6. The model (3) is globally stable, if ψ0 > 1 at E0.

6



Proof. First, we define the Lyapunov function V(t), for the system as:

V(t) = 1 + It − ln
It

I0

. (17)

Then differentiating the equation (17) with respect to time, we have

d

dt
(V(t)) =

(

1−
1

It

)

dIt

d(t)

=
dIt

dt
− β St + (η + γ + d+ σ1).

By manipulating along the point E0, we get

d

dt
(V(t)) = −

(

β St − (η + γ + d+ σ1)

)

= −

(

β
b((1− q)d+ δ)

d(δ + d)
− (η + γ + d+ σ1)

)

= −(η + γ + d+ σ1)

(

βb((1− q)d+ δ)

d(δ + d)(η + γ + d+ σ1)
− 1

)

≤ 0 for ψ0 > 1.

Therefore, if ψ0 > 1, then d
dt
(V(t) < 0, which implies that the system (3) is globally stable

for ψ0 > 1 at E0.

Remark 1. The simulations of stability of E∗ is an important mathematical term, but in
this paper, we particularly focus on the case ψ0 < 1 to find effective manners to prevent the
epidemic.

5. Solution of the variable Caputo-Fabrizio fractional order model (4)

5.1. Existence and uniqueness analysis

Since last few years, a lot of work has been done in the field of existence of solution
for different types of fractional differential equations by using techniques from fixed point
theory. In order to fulfill this requirement for the proposed model, we use the procedure
which has been recently proposed by Verma et al. in [23]. For this purpose, we rewrite our
model in a compact form given by:



















CFDκ

t St = G1(t,St),
CFDκ

t It = G2(t, It),
CFDκ

t Qt = G3(t,Qt)
CFDκ

t Rt = G4(t,Rt).

(18)
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Now the above system (18) converts to the following fractional Volterra integral form when
we apply CF integral operator on it of order 0 < κ < 1,

St(t)− St(0) = (1− κ)G1(t,St) + κ

∫ t

0

G1(χ,St)dχ,

It(t)− It(0) = (1− κ)G2(t, It) + κ

∫ t

0

G2(χ, It)dχ,

Qt(t)−Qt(0) = (1− κ)G3(t,Qt) + κ

∫ t

0

G3(χ,Qt)dχ,

Rt(t)−Rt(0) = (1− κ)G4(t,Rt) + κ

∫ t

0

G4(χ,Rt)dχ.

(19)

Now we derive the analysis for St(t) and it is straightforward to mention that the given
analysis will exist in a similar way for the other model equations of (18).
Consider the Banach space B = C([0, T ]) with the associated norm ‖ St ‖= maxt∈[0,T ]{|St|, ∀St ∈
B} and κ

∗ = mint∈[0,T ]{κ} and κ
∗∗ = maxt∈[0,T ]{κ} be the minimum and maximum weight

of the variable non-integer order κ on [0, T ]. Now, we recall the following hypothesis to ex-
plore our main observations:
[X1] : There exist constants Gc, Hc > 0, and k ∈ [0, 1) such that |G1(t,St)| ≤ Gc|St|

k +Hc.

[X2] : There exists a constant Nc > 0, such that |G1(t,St1)−G1(t,St2)| ≤ Nc|St1(t)−St2(t)|.
Now, we define the operator O : B → B as

O(St(t)) = St(0) + (1− κ)G1(t,St) + κ

∫ t

0

G1(χ,St)dχ. (20)

It is clear that operator O(St(t)) = O1(St(t)) +O2(St(t)), where

O1(St(t)) = St(0) + (1− κ)G1(t,St). (21)

O2(St(t)) = κ

∫ t

0

G1(χ,St)dχ. (22)

Theorem 7. Assume that hypothesis [X2] holds and there exists C > 0 (constant) such that
C = [(1− κ

∗)Nc + κ
∗NcT ] < 1. Then O has a unique fixed point for the model (18) on B.

Proof. Let consider St1 ,St2 ∈ B. Then

‖ OSt1 −OSt2 ‖≤‖ O1St1 −O1St2 ‖ + ‖ O2St1 −O2St2 ‖

≤ (1− κ) max
t∈[0,T ]

|G1(t,St1)−G1(t,St2)|

+ κ max
t∈[0,T ]

|

∫ t

0

G1(ξ,St1)dξ −

∫ t

0

G1(ξ,St1)dξ|

≤ [(1− κ)Nc + κNcT ] max
t∈[0,T ]

|St1 − St2 |

≤ [(1− κ
∗)Nc + κ

∗NcT ] ‖ St1 − St2 ‖

≤ C ‖ St1 − St2 ‖ .

(23)

Since C = [(1 − κ
∗)Nc + κ

∗NcT ] < 1, using Banach fixed point theorem, we conclude that
the operator O has a unique fixed point. Then, the model (18) has a unique solution.
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Theorem 8. Assume that statements [X1] − [X2] hold and 0 < (1 − κ
∗)Nc < 1. Then the

system (18) has at least one solution.

Proof. First, we show the operator O1 is a contraction. Indeed, it is given St ∈ T where
T = {St ∈ B :‖ St ‖≤ w,w > 0} is a closed convex set it follows that

‖ O1St1 −O1St2 ‖= (1− κ) max
t∈[0,T ]

|G1(t,St1)− G1(t,St2)| ≤ [(1− κ
∗)Nc ‖ St1 − St2 ‖ . (24)

Hence O1 is a contraction. Now to demonstrate that the second operator O2 is compact we
can see that O2 is continuous and compact for any St ∈ T , then O2 is contraction as G1 is
continuous, then

‖ O2St(t) ‖= max
t∈[0,T ]

|κ

∫ t

0

G1(ξ,St)dξ| ≤ |κ|

∫ t

0

|G1(ξ,St)|dξ ≤ κ
∗T [Gc|St|

k +Hc]. (25)

So, O2 is bounded. Now, assume t1 > t2 ∈ [0.T ], such that

‖ O2St(t1)−O2St(t2) ‖= κ
∗ max
t∈[0,T ]

|

∫ t1

0

G1(ξ,St)dξ −

∫ t2

0

G1(ξ,St)dξ| ≤ κ
∗[Gc|St|

k +Hc]|t1 − t2|.

(26)

This yields ‖ O2(St(t1)) − O2(St(t2)) ‖→ 0 as t1 → t2. Hence, the operator O2 is equicon-
tinuous. As a consequence of Theorem 1, O2 is compact. Now by referring to the analysis
given in section 5 of Verma et al. [23], we concludes that the given system has at least one
solution.

5.2. Numerical solution of CF system

Now we write the solution of the proposed system in CF sense applying two-step Adams-
Bashforth algorithm. Our time interval is [a, T ] with the step width h = T−a

N
, where N is

the sample size.
Let Stj be the numerical approximation of St(t) at t = tj, where tj = 0+jh and j = 0, 1, ..., N .
Writing the equations of St(t) at the uniform grid points (t0, t1, t2, ..., tj−1, tj, tj+1), we get
the estimations at distinct grid point values. For doing it, first we consider the equivalent
Volterra CF integral equation for St(t) which is,

St(t) = St(0) + (1− κ)G1(t,St(t)) + κ

∫ t

0

G1(s,St(s))ds. (27)

So the estimations at tj are

St(tj) = St0 + (1− κ)G1(tj−1,St(tj−1)) + κ

∫ tj

0

G1(t,St(t))dt, (28)

and at tj+1

St(tj+1) = St0 + (1− κ)G1(tj,St(tj)) + κ

∫ tj+1

0

G1(t,St(t))dt. (29)

Subtracting equation (29) from (28), we get

St(tj+1)− St(tj) = (1− κ) (G1(tj,St(tj))− G1(tj−1,St(tj−1))) + κ

∫ tj+1

tj

G1(t,St(t))dt. (30)

9



Now, by applying linear interpolation to G1(t,St(t)) and employing trapezoid rule on the
integral part, we obtain

∫ tj+1

tj

G1(t,St(t))dt ≅
3∆t

2
G1(tj,St(tj))−

∆t

2
G1(tj,St(tj)), (31)

where ∆t = tj − tj−1. Hence, we have established the numerical approximation for St(t) as

St(tj+1) = St(tj)+

(

1− κ +
3κ∆t

2

)

G1(tj,St(tj))−

(

1− κ +
κ∆t

2

)

G1(tj−1,St(tj−1)). (32)

As a consequence, the solution of the proposed CF model (18) states as follows:

St(tj+1) = St(tj) +

(

1− κ +
3κ∆t

2

)

G1(tj,St(tj))−

(

1− κ +
κ∆t

2

)

G1(tj−1,St(tj−1)),

It(tj+1) = It(tj) +

(

1− κ +
3κ∆t

2

)

G2(tj, It(tj))−

(

1− κ +
κ∆t

2

)

G2(tj−1, It(tj−1)),

Qt(tj+1) = Qt(tj) +

(

1− κ +
3κ∆t

2

)

G3(tj,Qt(tj))−

(

1− κ +
κ∆t

2

)

G3(tj−1,Qt(tj−1)),

Rt(tj+1) = Rt(tj) +

(

1− κ +
3κ∆t

2

)

G4(tj,Rt(tj))−

(

1− κ +
κ∆t

2

)

G4(tj−1,Rt(tj−1)).

(33)

Theorem 9. The proposed numerical scheme (32) is unconditionally stable if (particularly
for first model equation)

‖G1(tj+1,St(tj+1))− G1(tj,St(tj))‖ → 0.

Proof. Given St(t) the solution of (27), we have that:

‖St(tj+1)− St(tj)‖ =

∥

∥

∥

∥

∥

(1− κ) (G1(tj,St(tj))− G1(tj−1,St(tj−1))) + κ

∫ tj+1

tj

G1(η,St(η))dη

∥

∥

∥

∥

∥

≤ (1− κ) ‖(G1(tj,St(tj))− G1(tj−1,St(tj−1)))‖+ κ

∥

∥

∥

∥

∥

∫ tj+1

tj

G1(η,St(η))dη

∥

∥

∥

∥

∥

.

(34)

Making j → ∞, we get

‖St(tj+1)− St(tj)‖∞ ≤ lim
j→∞

(1− κ) ‖(G1(tj,St(tj))− G1(tj−1,St(tj−1)))‖+ lim
j→∞

̟

∥

∥

∥

∥

∥

∫ tj+1

tj

G1(η,St(η))dη

∥

∥

∥

∥

∥

< lim
j→∞

(1− κ) ‖(G1(tj, P (tj))− G1(tj−1,St(tj−1)))‖

+ lim
j→∞

κ

∫ tj+1

tj

∣

∣

∣

∣

∣

j
∑

j=0

j
∏

j=0

η − tj

∆t
G1(tj,St(tj))

∣

∣

∣

∣

∣

dη

Clearly, the second part of the above inequality goes to zero when j → ∞. Now, if
||G1(tj+1,St(tj+1)) − G1(tj,St(tj))|| → 0 as j → ∞, we conclude that the given scheme
is stable.
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Theorem 10 (Convergence). Let the solution of CFDκ

t St(t) be St(t). Then there exist Γ,
such that

∥

∥Ok
κ

∥

∥ ≤ Γ.

Proof. Starting from equation (30) and performing linear interpolation, we have

St(tj+1)− St(tj) = (1− κ) (G1(tj, St(tj))−G1(tj−1, St(tj−1))) + κ

∫ tj+1

tj

G1(η, St(η))dη

= (1− κ) (G1(tj, St(tj))−G1(tj−1, St(tj−1)))

+κ

∫ tj+1

tj

{

G1(tj, St(tj))

(

η − tj−1

∆t

)

−G1(tj−1, St(tj−1))

(

η − tj

∆t

)}

dη

+κ

∫ tj+1

tj

{

j−2
∑

a=0

j−2
∏

a=0

G1(ta, St(ta))

(

η − ta

(−1)a∆a

)

}

dη (35)

Simplifying further, we arrive at the numerical solution with the truncation term

St(tj+1) = St(tj) +

(

1− κ +
3κ∆t

2

)

G1(tj, St(tj)) +

(

1− κ +
κ∆t

2

)

G1(tj−1, St(tj−1)) + O
j
κ

(36)

where the truncation term is written as

O
j
κ
= κ

∫ tj+1

tj

{

j−2
∑

a=0

j−2
∏

a=0

G1(ta, St(ta))

(

η − ta

(−1)a∆ta

)

}

dη (37)

Then taking the norm, we have

∥

∥O
j
κ

∥

∥ =

∥

∥

∥

∥

∥

κ

∫ tj+1

tj

{

j−2
∑

a=0

j−2
∏

a=0

G1(ta, St(ta))

(

η − ta

(−1)a∆ta

)

}

dη

∥

∥

∥

∥

∥

≤ κ

∫ tj+1

tj

∥

∥

∥

∥

∥

{

j−2
∑

a=0

j−2
∏

a=0

G1(ta, St(ta))

(

η − ta

(−1)a∆ta

)

}

dη

∥

∥

∥

∥

∥

< κ

∫ tj+1

tj

j−2
∑

a=0

j−2
∏

a=0

∣

∣

∣

∣

η − ta

∆ta

∣

∣

∣

∣

sup
a

(

max
a

|G1(ta, St(ta))|
)

dη

< κ(j − 1)!∆tj−1Γ (38)

Hence, the solution has a convergence result.

5.3. Graphical simulations

In this section, we derive the all necessary plots by using the above given scheme. We use
the initial populations St(0) = 100, It(0) = 10, Qt(0) = 5, Rt(0) = 0, and parameter values
d = 0.001, β = 0.003, δ = 0.003, γ = 0.002, b = 10, η = 0.05, ρ = 0.003, σ1 = 0.003, σ2 =
0.002, q = 1(this value is just an assumption) which are taken from the literature of COVID-
19 cases in China [14, 17]. In the collection of Figure 1, the subfigures 1a, 1b, 1c, 1d are
devoted to show the variations in St, It,Qt, and Rt against the time variable t. Here, the
variations in the dynamics of the model can be clearly explored at different derivative order
values. We can observe that when the fractional order values changes then the differences
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between phases of the plot lines increases. Figure 2 reflects the relations between the given
classes. Subfigure 2a plots the variations of St versus It, subfigure 2b plots the corresponding
ones for St versusQt and 2c plots the variations of St versusRt. Finally, subfigure 2d plotsRt

against It. The fractional order values which have been considered are κ = 0.75, 0.85, 0.95, 1.

20 40 60 80 100
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80

100

St (t)

___ =0.75,___ =0.85,___ =0.95,___ =1

(a) Variations in class St against the time t
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(b) Variations in class It against the time t
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(c) Variations in class Qt against the time t
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Rt (t)
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(d) Variations in class Rt against the time t

Figure 1: Structure of the model classes in CF sense at various values of order κ, when vaccination fraction
q = 1.
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(a) Plot of St versus It
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(b) Plot of St versus Qt
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(c) Plot of St versus Rt
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(d) Plot of Rt versus It

Figure 2: Variations in the model classes compare to each other, when vaccination fraction q = 1.

Now we intend to explore the role of vaccine on the given model classes. For this purpose,
we change the value of the vaccination fraction q to simulate the model structure. Here, in
the family of Figure 3, the subfigures 3a, 3b, 3c, 3d demonstrate the variations in St, It,Qt,

andRt against the time variable t at the vaccination fraction q = 0, where all other values are
same as used above. Similarly, Figure 4 shows the corresponding ones when the vaccination
fraction q = 0.5. By the comparison of these figures, we can easily observe that when the
value of vaccination fraction q increases then the population of infectious humans decreases.
So, vaccine availability is one of the most important control measure to reduce the infection
of COVID-19.
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(a) Variations in class St against the time t
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(b) Variations in class It against the time t
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(c) Variations in class Qt against the time t
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(d) Variations in class Rt against the time t

Figure 3: Structure of the model classes in CF sense at various values of order κ, when vaccination fraction
q = 0.
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(a) Variations in class St against the time t
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(b) Variations in class It against the time t
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(d) Variations in class Rt against the time t

Figure 4: Structure of the model classes in CF sense at various values of order κ, when vaccination fraction
q = 0.5.

6. Solution of the generalised Caputo fractional model (5)

6.1. Existence and uniqueness analysis

In this concern, to prove the existence of unique solution of the proposed modified Caputo
type fractional order model, we again write the given model into compact form as



















CD
κ,σ
t St = G1(t,St),

CD
κ,σ
t It = G2(t, It),

CD
κ,σ
t Qt = G3(t,Qt)

CD
κ,σ
t Rt = G4(t,Rt).

(39)

Now we just adopt the first equation of the above system to derive the necessary results.

CD
κ,σ
t St(t) = G1(t,St), (40a)

St(0) = St0 . (40b)
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The equivalent Volterra integral equation of the proposed IVP is

St(t) = St(0) +
σ1−κ

Γ(κ)

∫ t

0

ξσ−1(tσ − ξσ)κ−1G1(ξ,St)dξ. (41)

Theorem 11. [17] (Existence). Let 0 < κ ≤ 1, N0 ∈ R, K > 0 and T ∗ > 0. Let G :=
{(t,St) : t ∈ [0, T ∗], |St − St0 | ≤ K} and take the function G1 : G → R be continuous.
Further, describe M := sup(t,St)∈G |G1(t,St)| and

T =















T ∗, if M = 0,

min

{

T ∗,

(

KΓ(κ + 1)σκ

M

)

1

κ

}

otherwise.
(42)

Then, there exists a function St ∈ C[0, T ] that satisfies the IVP (40a) and (40b).

Lemma 1. [17] If the assumptions of the statement of Theorem 1 hold, the function St ∈
C[0, T ] satisfies the IVP (40a) and (40b) if and only if it satisfies the non-linear Volterra
integral equation (41).

Theorem 12. [17] (Uniqueness). Consider St(0) ∈ R, K > 0 and T ∗ > 0. Also, let
0 < κ ≤ 1 and m = ⌈κ⌉. For the set G as given in Theorem 9 and assume G1 : G → R

be continuous. Assume that G1 agrees to the Lipschitz condition with respect to the second
variable, i.e.

|G1(t,St1)− G1(t,St2)| ≤ V |St1 − St2 |,

for some constant V > 0 which does not dependent to t,St1 , and St2 . Then, a unique solution
St ∈ C[0, T ] exists for the IVP (40a) and (40b).

6.2. Derivation of the solution via modified Predictor-Corrector algorithm

Now we construct the numerical solution of the proposed Caputo fractional model using
a modified form of the PC algorithm as mentioned in [29] with some appropriate changes.
Here we start with Volterra integral equation (41), which provides

St(t) = St(0) +
σ1−κ

Γ(κ)

∫ t

0

ξσ−1(tσ − ξσ)κ−1G1(ξ,St)dξ, (43)

Here, first we recall that a unique solution of the proposed model exists under suitable
conditions on the function G1 on some interval [0, T ]. We divide the interval [0, T ] into N
non-uniform subintervals {[tk, tk+1], k = 0, 1, ..., N − 1} taking the mesh points

{

t0 = 0,

tk+1 = (tσk + h)1/σ, k = 0, 1, ...,N− 1,
(44)

here h =
T σ

N
. We now analyse the approximations Stk , k = 0, 1, ...,N, to solve numerically

the proposed IVP. First of all, assuming the approximation Stj ≈ St(tj)(j = 1, 2, ..., k), we
estimate Stk+1

≈ St(tk+1) by means of the integral equation

St(tk+1) = St(0) +
σ1−κ

Γ(κ)

∫ tk+1

0

ξσ−1(tσk+1 − ξσ)κ−1G1(ξ,St)dξ. (45)
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Substituing z = ξσ, we get

St(tk+1) = St(0) +
σ−κ

Γ(κ)

∫ tσ
k+1

0

(tσk+1 − z)κ−1G1(z
1/σ,St(z

1/σ))dz, (46)

equivalently

St(tk+1) = St(0) +
σ−κ

Γ(κ)

k
∑

j=0

∫ tσ
k+1

tσj

(tσk+1 − z)κ−1G1(z
1/σ,St(z

1/σ))dz. (47)

Here, to simulate the integrals from the right-side of equation (47), we apply the trapezoidal
quadrature rule for the weight function (tσk+1 − z)κ−1. We shift the function G1(z

1/σ,St(z
1/σ))

by its piecewise linear interpolants with choosing nodes at the tσj (j = 0, 1, ..., k + 1), and
then we get

∫ tσ
k+1

tσj

(tσk+1 − z)κ−1G1(z
1/σ,St(z

1/σ))dz ≈
hκ

κ(κ + 1)

[(

(k − j)κ+1 − (k − j − κ)(k − j + 1)κ
)

× G1(tj,St(tj)) +

(

(k − j + 1)κ+1 − (k − j + κ + 1)(k − j)κ
)

G1(tj+1,St(tj+1))

]

.

(48)

Substituing the above approximation into equation (47), we get the corrector formula for
St(tk+1), k = 0, 1, ...,N− 1,

St(tk+1) ≈ St(0) +
σ−κhκ

Γ(κ + 2)

k
∑

j=0

aj,k+1G1(tj,St(tj)) +
σ−κhκ

Γ(κ + 2)
G1(tk+1,St(tk+1)), (49)

where

aj,k+1 =

{

kκ+1 − (k − κ)(k + 1)κ if j = 0,

(k − j + 2)κ+1 + (k − j)κ+1 − 2(k − j + 1)κ+1
if 1 ≤ j ≤ k.

(50)

At the end we aim to change the quantity St(tk+1) from the right-side of equation (49)
with the predictor term SP

t (tk+1) that can be calculated by applying the one-step Adams-
Bashforth rule to the integral Eqn. (46). We then susbtitute G1(z

1/σ,St(z
1/σ)) by G1(tj,St(tj))

at each integral in equation (47), obtaining

SP
t (tk+1) ≈ St(0) +

σ−κ

Γ(κ)

k
∑

j=0

∫ tσj+1

tσj

(tσk+1 − z)κ−1G1(tj,St(tj))dz

= St(0) +
σ−κhκ

Γ(κ + 1)

k
∑

j=0

[(k + 1− j)κ − (k − j)κ]G1(tj,St(tj)).

(51)

Therefore, our P-C scheme, for approximating Stk+1
≈ St(tk+1), is given by

Stk+1
≈ St(0) +

σ−κhκ

Γ(κ + 2)

k
∑

j=0

aj,k+1G1(tj,Stj) +
σ−κhκ

Γ(κ + 2)
G1(tk+1,S

P
tk+1

), (52)
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where Stj ≈ St(tj), j = 0, 1, ..., k, and the predicted value SP
tk+1

≈ SP
t (tk+1) can be simulated

as shown in equation (51) with the quantities aj,k+1 given in (50). We can repeat this
procedure to approximate all equations of system (39). So, the numerical solution formulae
for the adopted model (39) can be written as:

Stk+1
≈ St(0) +

σ−κhκ

Γ(κ + 2)

k
∑

j=0

aj,k+1G1(tj,Stj) +
σ−κhκ

Γ(κ + 2)
G1(tk+1,S

P
tk+1

),

Itk+1
≈ It(0) +

σ−κhκ

Γ(κ + 2)

k
∑

j=0

aj,k+1G2(tj, Itj) +
σ−κhκ

Γ(κ + 2)
G2(tk+1, I

P
tk+1

),

Qtk+1
≈ Qt(0) +

σ−κhκ

Γ(κ + 2)

k
∑

j=0

aj,k+1G3(tj,Qtj) +
σ−κhκ

Γ(κ + 2)
G3(tk+1,Q

P
tk+1

),

Rtk+1
≈ Rt(0) +

σ−κhκ

Γ(κ + 2)

k
∑

j=0

aj,k+1G4(tj,Rtj) +
σ−κhκ

Γ(κ + 2)
G4(tk+1,R

P
tk+1

),

(53)

where

SP
t (tk+1) ≈ St(0) +

σ−κhκ

Γ(κ + 1)

k
∑

j=0

[(k + 1− j)κ − (k − j)κ]G1(tj,St(tj)),

IP
t (tk+1) ≈ It(0) +

σ−κhκ

Γ(κ + 1)

k
∑

j=0

[(k + 1− j)κ − (k − j)κ]G2(tj, It(tj)),

QP
t (tk+1) ≈ Qt(0) +

σ−κhκ

Γ(κ + 1)

k
∑

j=0

[(k + 1− j)κ − (k − j)κ]G3(tj,Qt(tj)),

RP
t (tk+1) ≈ Rt(0) +

σ−κhκ

Γ(κ + 1)

k
∑

j=0

[(k + 1− j)κ − (k − j)κ]G4(tj,Rt(tj)).

(54)

6.2.1. Stability analysis

Theorem 13. If G1(t,St) satisfies a Lipschitz condition on the second variable and Stj (j =
1, ..., k+1) are the solutions of the above approximations (53) and (54). Then, the proposed
scheme (53) and (54) are conditionally stable.

Proof. Let S̃t0 , S̃tj (j = 0, ..., r+1) and ˜SP
tr+1

(r = 0, ..., N−1) be perturbations of St0 , Stj and
SP
tr+1

, respectively. Then, the proposed approximation equations are received by analysing
Eqs. (53) and (54)

˜SP
tr+1

= S̃t0 +
θ−κhκ

Γ(κ + 1)

r
∑

j=0

bj,r+1(G1(tj, Stj + S̃tj)− G1(tj, Stj)), (55)

here bj,r+1 = [(r + 1− j)κ − (r − j)κ]

˜Str+1
= S̃t0 +

θ−κhκ

Γ(κ + 2)
(G1(tr+1, S

P
tr+1

+ ˜SP
tr+1

)− G1(tr+1, S
P
tr+1

))+

θ−κhκ

Γ(κ + 2)

r
∑

j=0

aj,r+1(G1(tj, Stj + S̃tj)− G1(tj, Stj)),
(56)

18



Using the Lipschitz condition, we simulate

| ˜Str+1
| ≤ ζ0 +

θ−κhκm1

Γ(κ + 2)

(

| ˜MP
rr+1

|+
r
∑

j=1

aj,r+1|S̃tj |

)

, (57)

where ζ0 = max0≤k≤N{|S̃t0 |+
θ−κhκm1ar,0

Γ(κ + 2)
|S̃t0 |}. Also, as used in [17], we derive

| ˜SP
tr+1

| ≤ η0 +
θ−κhκm1

Γ(κ + 1)

r
∑

j=1

bj,r+1|S̃tj |, (58)

where η0 = max0≤r≤N{|S̃t0 |+
θ−κhβm1br,0

Γ(κ + 1)
|S̃t0 |}. Substituting | ˜SP

tr+1
| from Eq. (58) into Eq.

(57) results

| ˜Str+1
| ≤ γ0 +

θ−κhκm1

Γ(κ + 2)

(

θ−κhκm1

Γ(κ + 1)

r
∑

j=1

bj,r+1|S̃tj |+
r
∑

j=1

aj,r+1|S̃tj |

)

, (59)

≤ γ0 +
θ−κhκm1

Γ(κ + 2)

r
∑

j=1

(

θ−κhκm1

Γ(κ + 1)
bj,r+1 + aj,r+1

)

|S̃tj |, (60)

≤ γ0 +
θ−κhκm1Cκ,2
Γ(κ + 2)

r
∑

j=1

(r + 1− j)κ−1|S̃tj |, (61)

where γ0 = max{ζ0+
θ−κhκm1ar+1,r+1

Γ(κ + 2)
η0}. Cκ,2 is a +ve constant only depends on κ (Lemma

1 used in [17]) and h is supposed to be small enough. Lemma 2 as mentioned in [17] gives
| ˜Str+1

| ≤ Cγ0. which finishes the proof.

6.3. Graphical results

In this section, we check the correctness of our numerical algorithm by simulating number
of graphs at different fractional order values κ. Here, we have considered the same initial pop-
ulations St(0) = 100, It(0) = 10,Qt(0) = 5,Rt(0) = 0, and parameter values d = 0.001, β =
0.003, δ = 0.003, γ = 0.002, b = 10, η = 0.05, ρ = 0.003, σ1 = 0.003, σ2 = 0.002, q = 1 as
in the CF sense simulations. In the subfigures 5a, 5b, 5c, 5d, we show the variations in
St, It,Qt, and Rt against the time variable t. Here the variations in the dynamics of the
model can be clearly explored at the various derivative order values. We observe that when
the fractional order value changes then the differences between phases of the plot lines in-
crease. Also, figure 6 shows the relations between the given classes at various values of κ.
More concretely, in subfigure 6a we plot the variations St versus It, and in 6b we graph the
variations St versus Qt. Meanwhile, in subfigure 6c we plot the variations St versus Rt, and
in 6d we plot the variations Rt versus It. The fractional order values which we used here are
κ = 0.75, 0.85, 0.95, 1 as in the case of CF.
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(d) Variations in class Rt against the time t

Figure 5: Structure of the model classes in modified Caputo sense at various values of order κ, when
vaccination fraction q = 1.

20



20 40 60 80 100
St (t)0

10

20

30

40

50

60

It (t)

___ =0.75,___ =0.85,___ =0.95,___ =1

(a) Plot of St versus It

20 40 60 80 100
St (t)0

20

40

60

80

100

t (t)

___ =0.75,___ =0.85,___ =0.95,___ =1
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(c) Plot of St versus Rt
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(d) Plot of Rt versus It

Figure 6: Variations in the model classes compare to each other, when vaccination fraction q = 1.

Now, to simulate the role of vaccine on the proposed modified Caputo model classes,
we change the value of the vaccination fraction q. Here, in the family of Figure 7, the
subfigures 7a, 7b, 7c, 7d demonstrate the variations in St, It,Qt, and Rt against the time
variable t at the vaccination fraction q = 0, where all other values are same as used above.
Similarly, Figure 8 demonstrates the changes in the model classes when the vaccination rate
q = 0.5. By the comparison of Figure 7 and 8, we can easily observe that when the value
of vaccination fraction q increases then the population of infectious humans decreases. This
clearly means that high vaccine rate gives much safety and become the only way to control
the COVID-19. Now, as many countries like India, USA, UK, Spain, and Brazil have a
good rate of vaccination which is a strong answer against COVID-19 infection. Vaccine
availability alongwith quarantine and other optimal control facilities makes these countries
much stronger to fight against this virus.
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Figure 7: Structure of the model classes in CF sense at various values of order κ, when vaccination fraction
q = 0.
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Figure 8: Structure of the model classes in CF sense at various values of order κ, when vaccination fraction
q = 0.5.

From the given graphical observations, we can observe that the both kernel properties
(exponential decay kernel in CF sense and singular kernel in modified Caputo sense) work
well to study the given COVID-19 epidemic dynamics. All graphs are performed by using
Mathematica software. The variations in the separate classes for both derivatives which are
given in Figures 1 and 5 are probably same but the dynamics of the given classes slightly
change. This fact can be observed comparing the group of Figures 2 and 6. It is clearly
observed that vaccination fraction q plays a very important role in the given dynamics and
increment in the vaccine rate can decrease the Covid-19 infection.

7. Conclusion

In this study, two new non-classical COVID-19 epidemic models have been proposed. As
a novelty, we include vaccine rate. First we have proposed a classical order model and then
we have justified the fractional-order models by analysing the positivity and boundedness
of solutions. The disease-free and endemic equilibrium points are calculated along with
basic reproductive number. We have satisfied the existence of unique solution for both
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variable order Caputo-Fabrizio and generalised Caputo-type fractional models. We used
two different fractional numerical algorithms along with their stability analysis to solve the
proposed models. A deep and long discussion on graphical simulations is given making use
of Mathematica software. The current study provides a description of the propagation of
COVID-19 disease and supporting analysis proves the correctness of our results. In future,
the current model can be validated by using real data from different countries. Also, some
other fractional derivatives can be used to solve the current dynamical model.
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