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Abstract

Dendritic spines are membranous protrusions that receive essentially all excitatory inputs in most 

mammalian neurons. Spines, with a bulbous head connected to the dendrite by a thin neck, 

have a variety of morphologies that likely impact their functional properties. Nevertheless, the 

question of whether spines belong to distinct morphological subtypes is still open. Addressing 

this quantitatively requires clear identification and measurements of spine necks. Recent advances 

in electron microscopy enable large-scale systematic reconstructions of spines with nanometer 

precision in 3D. Analyzing ultrastructural reconstructions from mouse neocortical neurons with 

computer vision algorithms, we demonstrate that the vast majority of spine structures can be 

rigorously separated into heads and necks, enabling morphological measurements of spine necks. 

We then used a database of spine morphological parameters to explore the potential existence 

of different spine classes. Without exception, our analysis revealed unimodal distributions of 

individual morphological parameters of spine heads and necks, without evidence for subtypes of 

spines. The postsynaptic density size was strongly correlated with the spine head volume. The 

spine neck diameter, but not the neck length, was also correlated with the head volume. Spines 

with larger head volumes often had a spine apparatus and pairs of spines in a post-synaptic cell 

contacted by the same axon had similar head volumes. Our data reveal a lack of morphological 

subtypes of spines and indicate that the spine neck length and head volume must be independently 

regulated. These results have repercussions for our understanding of the function of dendritic 

spines in neuronal circuits.
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1 | INTRODUCTION

Dendritic spines, small neuronal appendages that mediate essentially all excitatory 

transmission in the brain, were discovered by Cajal more than a century ago (Cajal, 1904), 

who first described them as composed of a “ball-like” spine head and a “lightly stained” 

spine neck (reviewed in Yuste, 2010). However, due to the limited resolution of the light 

microscope, these findings were controversial and not confirmed until the development 

of electron microscopy (EM), which allowed imaging of dendritic spines with nanoscale 

resolution (Gray, 1959). Recent advances in EM have enabled systematic reconstructions of 

brain tissues, providing large numbers of high-resolution 3D spine structures (Dorkenwald et 

al., 2019; Kasthuri et al., 2015; Lee et al., 2019; Motta et al., 2019). Given the small size of 

spines, 3D ultrastructural reconstructions are particularly important since the border between 

the head and neck can appear very differently when viewed from different angles (Arellano 

et al., 2007).

The question of whether spines belong to different morphological subtypes or represent 

a continuum is still controversial (Pchitskaya & Bezprozvanny, 2020), and part of the 

problem lies on the lack of a clear definition of what constitutes the spine neck. Peters and 

Kaiserman-Abramof examined spines of rat neocortex, proposing the distinction between 

three types of spines: stubby, mushroom, and thin spines (Peters & Kaiserman-Abramof, 

1970). They defined stubby spines as short, thick spines without a clear neck, mushroom 

spines as spines with thick necks that expand into a large end-bulb, and thin spines as spines 

with slender necks that expand into a small oval or rounded end-bulb. This classification has 

been widely adopted and used by almost every study on spines at the optical microscope 

level (Arellano et al., 2007). However, no clear borderline was noted between these three 

types and a continuum and unimodal distribution of the spine’s morphological parameters 

has been reported in many quantitative studies since then (Arellano et al., 2007; Loewenstein 

et al., 2015; Peters & Kaiserman-Abramof, 1970; Tønnesen et al., 2014). A more precise 

way to distinguish between stubby, mushroom, or thin spines is the analysis of the joint 

distributions of neck versus head morphological parameters. While some studies find 

multimodal distributions when plotting neck versus head morphological parameters (Harris 

et al., 1992), others have found unimodal distributions (Arellano et al., 2007), so the 

conundrum of whether spines belong to different subtypes or not still remains.

Recently, analyses of large-scale connectomics datasets of mouse cortex have enabled 

systematic measurements of synaptic size (Motta et al., 2019) and spine head volume 

(Dorkenwald et al., 2019) and differentiated two subtypes of spines: small and large. 

However, the data showed significant overlap in sizes between these two groups. Thus, 

the question of whether dendritic spines are divided into distinct types or constitutes a 

continuum is still undecided (Berry & Nedivi, 2017; Rochefort & Konnerth, 2012). This 

controversy is essentially confounded by the lack of methods to define and measure spine 

necks objectively, since the proposed distinction between different spine subtypes depends 

critically on the dimensions of the neck.

To address this issue head-on, in this study we focus on the morphological analysis 

of the spine necks and develop an objective method to measure them. We analyze an 
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ultrastructural dataset from mouse neocortex and introduce computer vision algorithms to 

show that the vast majority of spines present a clear morphological separation between 

head and neck. Then, we analyze morphological parameters of the neck and head to 

examine whether distinct types of spines can be detected, finding instead unimodal and 

continuous distribution of spine parameters. We also find a lack of correlation between 

the spine neck length and the spine head volume, indicating that the two compartments 

are independently regulated. Finally, we describe correlations between spine morphological 

properties, including the post-synaptic densities (PSD) and spine apparatus (SA), and spine 

head volumes. Our results confirm a lack of distinct morphological classes of spines and 

have implications for the spine development and function.

2 | METHODS

2.1 | Ultrastructural dataset

In this paper, we analyzed a set of 4,223 dendritic spines of layer 6 pyramidal cells (at 

the apical dendrite level in layer 5) from the somatosensory cortex of a young adult 

mouse, published in Kasthuri et al. (2015). The EM data was acquired using automated 

ultrastructural technology with nanometer resolution (Figure 1). The detailed methodology 

to reconstruct spines in three dimensions is described in Kasthuri et al. (2015). Neuronal 

processes in this image dataset were segmented using VAST, a computer-assisted manual 

space-filling segmentation and annotation program (Berger et al., 2018). VAST allows 

coloring images at multiple scales of resolution, to organize the results in a flexible 

annotation framework, and to export results for 3D visualization and analysis. Each spine 

was represented by a triangle mesh in an “OBJ” format which includes a list of 3D vertices 

followed by a list of faces formed by the vertices (Figure 2a). A detailed spreadsheet for 

1,700 synapses, that describes synapse position, axon ID, dendrite ID, and biological details, 

such as if the spine consists an SA and PSD size, is provided by Kasthuri et al. (2015). The 

IDs of the pre- and post-synaptic partners enabled us to find pairs of spines that create dual 

connection between the same pre- and post-synaptic neurons.

2.2 | Spine selection

The full dataset included 4,223 spines, of which 3,138 spines that had two clear segments—

head and neck—were processed for future analysis. The discarded cases included two spines 

that were connected to each other and cases of additional segments caused by a bulge or 

swelling on the spine head or neck. We discarded an additional 140 spines, in cases where 

it was impossible to draw a clear centerline skeleton over the neck and head, mainly as a 

result of complex geometry. Overall, the total number of morphologically analyzed spines 

was 2,998.

For the PSD size analysis, we used a subset of 1,700 synapses from the dataset where the 

PSD size was known. From these synapses: 273 were on dendritic shafts and 229 were 

labeled as “Unknown,” resulting in 1,198 confirmed synapses on spines. The intersection 

between the 2,998 spines that we morphologically analyzed and the 1,198 spines where the 

PSD size was measured led us to a dataset of 888 spines.
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Finally, for the spine apparatus (SA) analysis, spines were manually scored as having an SA 

or not. From the 1,700 synapses of the datasheet, there were 530 spines with SA, 307 spines 

without SA, 315 spines indicated as “uncertain,” and 548 spines indicated as “N/A.” The 

intersection between the 2,998 spines that were morphologically analyzed and this SA data 

subset led to 401 spines with SA, and 220 spines without SA.

2.3 | Morphological analysis

In our first analysis stage, Laplacian smoothing, each vertex in a mesh covering each 

spine was replaced by the average of its neighbors (that share an edge). This was applied 

to compensate for the quantization effect caused by the EM sectioning process. Next, 

small isolated components that contain less than 17 faces were removed. Shape Diameter 

Function (SDF) and Mesh Skeletons were then calculated using the “Triangulated Surface 

Mesh Segmentation” and “Triangulated Surface Mesh Skeletonization” packages from the 

Computational Geometry Algorithms Library (CGAL) 5.0.2, https://www.cgal.org (Shapira 

et al., 2008; Tagliasacchi et al., 2012). To this end, data were converted from “OBJ” to 

“OFF” format. SDF measurement were done by averaging 25 rays beams in a cone of 

60° projecting to the opposite spine surface (purple rays in Figure 2b). The SDF is a 

pose-independent method that matters for this dataset because of the tortuous nature of 

spines. The “skeleton radius” is the distance from each face to the closest point along the 

mesh skeleton (orange line in Figure 2b). These algorithms, normalized between 0 and 1, 

were then used for the segmentation between the head and neck, and later, for measurements 

of the spine morphological parameters.

For the segmentation of spines into head and neck, we used two local parameters for each 

face, the SDF and the “skeleton radius” values, as well as a spatial parameter, the dihedral 

angle between neighboring faces. The energy-function algorithm applied a graph-cut-based 

algorithm that combines fast changes on SDF and “skeleton radius” values as natural 

candidates for segment boundaries and geometric criterion in adjacent facets, sharing a 

sharp and concave edge (CGAL “Triangulated Surface Mesh Segmentation” package). The 

parameters used in this algorithm were the number of clusters of 2 and smoothing-lambda of 

0.1.

Branched spines, in which the spine neck splits into two different heads, were severed into 

main and side branches. The neck of the main branch included the mutual trunk, from 

the dendritic shaft to the branching point, while the neck of the side branch started at the 

branching point. In the dataset, branched spines were defined as two separated objects, and 

were analyzed separately. Branched spines (10.06% of spines in the dataset), which had 

shorter neck length of the side branches (13.93% on average) were included in the analysis.

2.4 | Morphological parameter measurements

The volume of spines was calculated using the signed tetrahedral volumes summarizing 

algorithm (Zhang & Chen, 2001):
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Volume = ∑
i

1
6 −xi3yi2zi1 + xi2yi3zi1 + xi3yi1zi2 − xi1yi3zi2 − xi2yi1zi3

+ xi1yi2zi3
(1)

where (xi1, yi1, zi1), (xi2, yi2, zi2), and (xi3, yi3, zi3) are the coordinates of the vertices of 

face i. This algorithm requires a closed mesh and face normals pointed to the same inner 

or outer direction (the order of the face vertices, clockwise or counterclockwise, indicates 

the normal). Thus, for calculating the spine head volume, after computationally severing 

the head, the hole was filled by connecting the border faces to the center point of the hole, 

considering the neighbor faces to find the correct direction of the normals.

For measuring spine length, we summed the length of the skeleton center line and the 

extension to the spine surface, in the direction of the vector of the last two vertices, 

in the two edges. For measuring spine’s neck length separately, each vertex among the 

centerline was labeled as “head” or “neck” according to the major of its belonged vertices. 

Summarizing the “neck” segments gives us the neck length.

The spine head sphericity was calculated by Equation (2):

Sphericity = π
1
3(6V )

2
3

A
(2)

where V is the spine head volume and A is the area. In a perfect ball, the sphericity equals 1.

2.5 | Statistical analysis

The Hartigan’s dip-test of unimodality (Hartigan & Hartigan, 1985) was applied to examine 

whether data are unimodal distributed. Since the Hartigan test was designed for a 1-

dimensional dataset, for considering mutually two parameters, we tested the unimodality 

on 18 projections of 10° rotations of the 2-dimensional dataset (Schelling & Plant, 2020). 

10,000 pairs of spines were randomly sampled from the entire database using the Python 

“random.choices()” function. Kolmogorov–Smirnov (KS) test for two samples was used to 

compare two empirical cumulative distribution function (CDF) with a two-tailed p-value.

2.6 | Code accessibility

The CGAL scripts were written in C++; the other codes were written in Python 3.7 using 

the libraries: numpy 1.17.4, scipy 1.5.4, scikit-learn 0.23.1, and unidip 0.1.1. All the data 

is publicly available at the Columbia University Academic Commons site (https://doi.org/

10.7916/d8-tdqd-dh88). VAST program, the EM stacks, and the segmentation are available 

at (https://lichtman.rc.fas.harvard.edu/vast/). Codes used in this paper are publicly available 

at the Columbia University Neurotechnology Center’s GitHub page (https://github.com/

NTCColumbia/Ultrastructural-analysis-of-dendritic-spine-head-and-neck-).
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3 | RESULTS

3.1 | Computational separation of spine head and neck

We first explored the morphological identity of the spine neck. To do so, we segmented 

spine structures into head and neck using their morphological properties. To this end, we 

divided the surface of the spine into a triangular mesh, and, for each face of the spine 

surface, two geometrical parameters, the SDF and the “skeleton radius,” were calculated. 

The SDF and the “skeleton radius” are complementary morphological parameters, and 

the combination of both distributions enabled a robust segmentation between the head 

and neck, as evident visually in a bimodal distribution of values (Figure 2d). The cluster 

with the lower value of average SDF was labeled as “neck” (blue) and the other cluster 

was labeled as “head” (green). Manual examination of the connecting point between the 

dendritic shaft and the spine neck in the EM data confirmed the automatic head and neck 

segmentation in 97.9% of the analyzed spines (3,073/3,138). To quantify the extent of the 

separation between head and neck for every spine, we tested whether the distributions of 

the SDF and the “skeleton radius” values were unimodal. Disproving unimodality implies 

a bimodal or higher-order distribution, with a clear clustering into two groups: the head 

and the neck faces. Statistical tests were applied to examine if the separation between 

head and neck was significant. The Hartigan’s dip-test revealed that 88.44% (3,717/4,203) 

of spines had a bimodal distribution of SDFs, and 74.87% (3,147/4,203) of spines had a 

bimodal distribution of “skeleton radius” values (p-value < .05, Hartigan’s dip-test). Mutual 

SDF and “skeleton radius” 2-dimensional Hartigan’s dip-test (see Methods) led to 95.12% 

(3,998/4,203) of the spines demonstrating statistically significant bimodal distributions. To 

find the exact border between head and neck we used a graph-cut algorithm with an energy 

minimization function, taking into account the SDF and “skeleton radius” values, as well as 

the convexity of the mesh surface. The border was often in sharp dihedral angles between 

neighboring faces, which occur between the head and neck. In 74.33% of the spines, the two 

clusters of faces led to two segments, one for head faces and the other for the neck faces. 

In 1% of spines there was only a single cluster, meaning that there was no clear separation 

between head and neck. In the rest of the spines, the two clusters led to more than two 

segments. These cases included cases of two spines that were connected to each other and 

cases of additional segments caused by a bulge or swelling on the spine head or neck. We 

concluded that most spines can be rigorously separated into a head and neck. For the rest 

of the study, focused on the morphological analysis of spine necks, we analyzed only spines 

consisted of clear two segments (3,138/4,223 spines).

3.2 | A continuum of spines morphological parameters

We then proceed to build a dataset of different morphological variables for each spine. First, 

we measured three basic morphological parameters of the entire spine: its volume, surface 

area, and length. The spine surface area was measured by adding all the triangle mesh areas 

of the spine. The volume of the spine was calculated using the signed tetrahedral volumes 

algorithm (Zhang & Chen, 2001). The spine’s length was obtained by measuring the 

extended centerline skeleton (Figure 2c). The separation between the spine head and neck 

enabled us to also measure “head volume,” “neck length,” and “neck diameter.” To measure 

head volume, since the algorithm for volume measurements requires a closed volume, we 
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first filled the hole created by the cutting of the neck with a simple plane, followed by 

calculating the volume of the new closed spine head mesh. To measure neck length, we used 

similar methods as with total spine lengths. Each vertex along the skeleton centerline was 

labeled as “head” or “neck” according to most of its faces (Figure 2c). Thus, we integrated 

the lengths of the neck-labeled centerline vertices. In contrast to previous methods that 

measure Euclidean or Geodesic distances either manually or semi-automatically with user 

mediation (Jorstad et al., 2014, 2018), our method is an automatic approach for measuring 

of the spine neck along the center of the 3D spine, considering also head position. Finally, 

to measure neck diameter, we first computed the value of the radius at each vertex along 

the skeleton centerline by averaging the shortest distance between the face center and the 

centerline skeleton line for all faces belonging to each vertex (see orange line in Figure 

2b, as example of a neck radius for a specific face). Then, we averaged these values along 

all the vertices and doubled this value to compute the neck diameter. This method for 

measuring spine neck dimensions provided reliable results even for non-round (elliptic) 

neck cross-sections. As neck radius was perpendicular to the centerline skeleton it was not 

affected by the 2D section-cutting or projection angle.

Using this analysis pipeline, we created a database of measured values of spine’s 

morphological parameters (Figure 3a–g). Inspection of the distributions for each of the 

morphological parameters revealed skewed unimodal functions, with no clear bi- or 

multimodality. To explore this in depth, and test if spines could be classified into different 

morphological subtypes, we plotted data along pairs of variables, including “spine volume,” 

“spine surface area,” and “spine length” (Figure 4a), and “head volume,” “neck length,” 

and “neck diameter” (Figure 4b). Visual inspection still failed to show clear multimodal 

distributions. This was confirmed with the 3-dimensional Hartigan’s dip-test, finding a 

continuous and unimodal distribution. The lack of multimodality in the morphological 

parameters disproves the existence of distinct spine types. We concluded that, in our dataset, 

spines displayed a continuum distribution of morphologies.

3.3 | Correlations between spine morphological parameters

The morphological ratio between head and neck affects the electrical and biochemical 

isolation of the spine (Araya et al., 2006). Previous studies in living tissue have reported 

no correlation between spine head and neck parameters (Araya et al., 2014; Tønnesen et 

al., 2014). Studies in fixed tissue have found weak correlations between head volume and 

neck diameter in chemically fixed spines, but not in cryo-fixed spines (Arellano et al., 

2007; Bartol et al., 2015; Tamada et al., 2020). We used our dataset and analysis pipeline 

to explore this issue with a larger number of ultrastructural reconstructed spines (Figure 

5). Our results confirmed the existence of a strong correlation between head volume and 

neck diameter (Figure 5a, p < .001, n = 2,998), a weak negative correlation between neck 

diameter and neck length (Figure 5b, p < .001, n = 2,998), and a lack of a significant 

correlation between head volume and neck length (Figure 5c, p = .3482, n = 2,998).

In addition, to investigate the relationship between biological properties and physical 

dimensions of the spines, we analyzed the postsynaptic density (PSD) size and presence 

or absence of a spine apparatus (SA), as a function of the measured spine morphology. In 
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agreement with previous studies (Arellano et al., 2007; Holler et al., 2021), the PSD size 

presented a long-tailed unimodal distribution (Figure 3h) and was strongly correlated with 

the spine head volume (Figure 5d, p < .001, n = 888). The PSD size also correlated with 

the spine neck diameter (Figure 5e, p < .001, n = 888), but not correlated with the spine 

neck length (Figure 5f, p = .0671, n = 888). We then examined the relationship between 

the presence of an SA and spine morphology. Spines with SA had higher head volumes 

and neck diameters than spines without SA (Figure 6a). We found also no clear correlation 

between head volume and neck length only in spines with SA or only in spines without 

SA (Figure 6b). Cumulative distribution functions showed a significant difference in head 

volume (Figure 6c, KS test p < .001) and neck diameter (Figure 6e, KS test p < .001) 

between spines with and without SA. Consistent with our finding that neck length and head 

volume are not significantly correlated (Figure 5c), we also saw no differences in neck 

length between the presence and absence of SA (Figure 6d, KS test p = .3677).

Finally, we examined the morphological relationship between two spines that create “dual 

connection,” meaning spine pair that share the same pre- and post-synaptic neurons. To 

determine the morphological similarity between these spines, we calculated the difference 

and the ratio of the morphological parameters of dual connection spines. We compared these 

distributions to the difference and ratio of any two spines, randomly chosen from the entire 

dataset. To examine whether the underlying probability distributions of the two empirical 

CDF curves differ, the Kolmogorov–Smirnov test was used. The differences between the 

morphological parameter values showed the same distribution as those found in random 

spines pairs (Figure 7a–c, KS test p = .5448, .7437, .0711, respectively). For neck length 

and neck diameter, the ratio between the dual connection spines also resembled those from 

random spines pairs (Figure 7e–f, KS test p = .5967, .0602). However, the ratios between 

head volumes in dual connection spines were significantly lower than those of two random 

spines (Figure 7d, KS test p = .0038). Only one of the 41 dual connection spines analyzed 

above arose from a branched spine, so the similarity between spine head volumes was 

not due to branched spines. These results are in line with previous studies that reported a 

correlation in head volumes between the two spines of a dual connection (Bartol et al., 2015; 

Dorkenwald et al., 2019; Kasthuri et al., 2015; Motta et al., 2019).

4 | DISCUSSION

Dendritic spines display a large morphological heterogeneity of head and neck dimensions. 

These differences likely have functional meaning, as the neck can cause a biochemical 

and electrical isolation between the spine head and the dendritic shaft (Yuste, 2010). 

Since spines regulate most excitatory communication between neurons, this diversity could 

enrich the computational capabilities of the brain. Here, using an objective head and neck 

separation algorithm, we showed that the vast majority of spines have a clear head and 

neck. Based on this, we developed methods to measure the spine head volume, neck length, 

and neck diameter. All these morphological parameters present a continuum distribution in 

our dataset, in agreement with previous proposals that spines do not belong to different 

morphological subtypes. Finally, we examined the correlation between the morphological 

parameters and the relationship between them and the PSD size and SA and detect 
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correlations between spine volume and neck width, PSD size, and presence of SA, but 

find no correlation between neck length and head volume.

4.1 | Objective identification of spine necks

Although the spine’s head and neck dimensions determine its electrical and chemical 

activity (Bell et al., 2019; Lagache et al., 2019; Segev & Rall, 1998; Yuste, 2013), the 

definition of head and neck and the exact border between them has been difficult in the past. 

Previous studies measured the head and neck manually or using algorithms with arbitrary 

cutoffs that required a large number of corrections by a human annotator (Arellano et al., 

2007; Benavides-Piccione et al., 2002; Dorkenwald et al., 2019; Motta et al., 2019). In this 

study, we developed an automatic algorithm to separate between head and neck, confirming 

that spine neck is real and that, in the vast majority of spines, one can separate the head and 

neck in a statistically significant manner.

4.2 | A continuum of spine morphologies

Given the great variety of spine morphologies, an open question in the field is whether 

spines belong to different morphological subtypes. The common nomenclature of Peters and 

Kaiserman-Abramof classified spines into three types, stubby, mushroom, and thin (Peters & 

Kaiserman-Abramof, 1970). Their description of stubby spines, without a well-defined neck, 

may be a consequence of the limited spatial resolution of optical microscopy (Tønnesen et 

al., 2014). Consistent with this, in our dataset “stubby” spines without a clear neck are very 

rare, approximately 1%. In addition, Kaiserman-Abramof’s “thin” spines were originally 

named after their “slender stalk,” but without taking into account the variety of neck lengths, 

so one could question the validity of that term. Following Peters and Kaiserman-Abramof 

visual classification, semi-supervised learning and a decision tree have also been used to 

classify spines into these same types: stubby, mushroom, and thin (Basu et al., 2018; Harris 

et al., 1992; Janoos et al., 2009; Rodriguez et al., 2008; Shi et al., 2014). On the other 

hand, unsupervised morphology-based clustering of dendritic spines from human cortical 

pyramidal neurons uncovered at least six separate groups of spines (Luengo-Sanchez et al., 

2018).

Our analysis, using computer vision methods to measure spine necks on ultrastructural 

data, reveals a clear continuum distribution of the morphological parameters, without any 

evidence of separate subtypes (Figure 4). Statistical tests applied to these data, the same 

that proved the morphological difference between spine neck and heads, do not reject the 

unimodal hypothesis, meaning that we cannot prove the existence of distinct types of spines. 

This conclusion is of course limited to our dataset and our measured variables, so we 

cannot rule out the possibility that in different datasets, or with different morphological 

measurements, one could identify different subtypes of spines. The spine morphological 

parameters present a skewed distribution with a small number of high values (Figure 3). 

Also, even logarithmic-scale plot reveals a spread and non-Gaussian distributions (Figure 

4). The existence of spines with extreme values in one of the morphological parameters 

could hint at the possible existence of distinct types of spines (for example, see the right 

blip in the bottom histogram in Figure 4b). Because of this, cluster analysis methods may 

indicate the existence of distinct spine types, even though the continuum distribution of the 
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parameters. However, in our hands, statistical tests of the clustering, based on the bootstrap 

approach (Hennig & Lin, 2015; Kimes et al., 2017), and Hartigan’s dip-test of unimodality 

failed to verify the existence of distinct spine types. Of course, we cannot rule out that larger 

datasets, with more spines that have extreme morphological values, could provide statistical 

evidence for the existence of different subtypes of spines. Also, different morphological 

subtypes of spines could still exist but have overlapping morphological parameters. For 

example, the boundaries between spines subtypes could be blurred as a result of the 

dynamic morphological transition between spine types (Bourne & Harris, 2007; Harris et 

al., 1992; Hering & Sheng, 2001), leading to a unimodality in cluster analysis. While all 

these possibilities are theoretically possible, the simplest interpretation of our results that 

spines represent a continuum of morphologies, without any clear subtypes.

4.3 | Functional considerations

Studying the morphological parameters of dendritic spines may shed light on their 

functional role. For example, the lack of correlation between head volume and neck length 

(Figure 5c) points out that different biological mechanisms must govern the development of 

the spine head and neck. As one possibility, the fact that spines could reach out to connect 

with axons that running close-by may dictate spine length, and could explain the lack of 

correlation of neck length with head size. Also, the similarity in head volume between dual 

connection spines, but not in neck length (Figure 7), implies different functional roles of the 

head and neck during synaptic plasticity. The correlation between the presence of SA and 

head volume was reported (Dorkenwald et al., 2019), but, in addition, here we show also a 

significant relationship between SA and neck diameter (Figure 6). This could be interpreted 

as if the large size of the head, together with a thick neck, enables the insertion of the SA 

from the dendritic shaft into the spine head.

Although our dataset is significantly larger than previous ones, our analysis is limited 

to spines from pyramidal cells from the mouse somatosensory cortex (Kasthuri et al., 

2015). More studies are needed to strengthen our results, and answer whether dendritic 

spine morphologies are continuous or form subtypes, and the extent of correlation between 

morphological parameters. Future studies could expand and compare the results to other 

species and brain regions, particularly examining the difference between mice and humans. 

While EM reconstruction of spines have nanometer resolution, they reflect a fixed structure, 

representing snapshots of spines in morphological transition that could bias towards 

a misleadingly static view of spine morphology. Moreover, the fixation method could 

introduce confounding differences. For example, spine morphology analysis using EM 

after cryo-fixation revealed similar spine head volume and neck length values, but overall 

thinner spine necks diameter (~30% less), as compared with standard chemical fixation 

(Tamada et al., 2020). Because of this, super-resolution microscopy in living samples 

should be considered to characterize the dynamic structures of spines and tracking structure 

changes. Finally, analysis methods can be subject to further improvements. Current tools 

for morphological analysis of spines, such as SpineJ—a wavelet-based custom-made ImageJ 

plugin (Levet et al., 2020), enable semi-automatically measurements of the neck length, 

neck diameter, and head area from a 2D image. Our algorithm could also enable measuring 

super-resolution microscopy data of living neurons. This could provide an additional test 
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of the morphological parameters measurements, especially comparing living tissue with 

compared to cryo- or chemical fixation.

As a final thought, the rich diversity of spine morphologies is likely not accidental but must 

enrich the neuronal circuit function. Because of this, the computational advantages of adding 

such complexity could be explored in models. Artificial neural networks with realistic 

architecture could be built, not only to model brain circuits but in addition, to explore 

improvements of existing computational algorithms, following a brain-inspired strategy.
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FIGURE 1. 
Ultrastructural 3D reconstruction and analysis. (a-b) Two sections from the EM stacks of the 

same spine. The spines are shaded in red (a) and blue (b). A synapse between the spine head 

and axonal above can be seen in (b). (c-d) Reconstructed triangle mesh of the same spine, 

from a top (c) and a side view (d). The frame of the spine shown in (a) is colored in red, and 

the frame of the spine shown in (b) in blue. Scale bar: 100 nm. Spine ID: Kasthuri_3316. 

Coordinates: 5,812, 8,354, slices: 1,203 (a) and 1,208 (b). (e) Workflow diagram, describing 

the algorithm
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FIGURE 2. 
Computational separation of spine head and neck. (a) Triangle mesh of a spine surface, 

scale bar: 100 nm. (b) The centerline skeleton line is colored in red. An example of the 

“skeleton radius” is colored in orange. An example of rays in a 60° cone for measuring 

the SDF colored in purple. (c) The head (green) and neck (blue) were classified according 

to the SDF and “skeleton radius” values. The centerline curve was extended and divided 

into neck length (blue) and head length (green). Parameters values are: spine volume: 0.006 

μm3, head volume: 0.004 μm3, spine surface area: 0.268 μm2, head surface area: 0.141 μm2, 

spine length: 0.854 μm, neck length: 0.596 μm, neck diameter: 0.072 μm, head sphericity: 

0.864. (d) Scatter plot of faces SDF and “skeleton radius” values. Each dot represents a 

single face of the spine. Distributions of SDF and “skeleton radius” on top and right. Faces 

were clustered using Gaussian Mixture Model. Hartigan’s dip-test p-values are under .001, 

indicating bimodality. The spine ID: Kasthuri_4643
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FIGURE 3. 
Unimodality of spine morphological parameters. (a-c) The morphological parameters of the 

entire spine. (d-f) The morphological parameters for the separated head and neck. (g) The 

sphericity of the head volumes. The dataset includes 2,998 spines. (h) Post-synaptic density 

size distribution, a dataset of 888 spines
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FIGURE 4. 
Continuous distribution of spine morphological parameters. The pair-plot presents in the 

upper and lower triangles the pairwise relationships of the morphological parameters of all 

the spines. The marginal distribution of each parameter can be shown on the diagonal. (a) 

For the three basic parameters of the entire spine. (b) For neck and head parameters after 

segmentation. The data were logarithmic z-scored and the outliers (above 3 STD) were 

removed
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FIGURE 5. 
Correlation between spine head and neck morphological variables. (a-c) Correlation between 

head and neck morphologies (2,998 spines). (d-f) Correlation between head volume, neck 

length, and neck diameter and post-synaptic density size (888 spines). The correlation 

coefficients (Spearman) are indicated for each graph. The asterisks indicate statistical 

significance ***p < .001. Two-sided p-value for a hypothesis test whose null hypothesis 

is that the slope is zero, using Wald Test with t-distribution of the test statistic

Ofer et al. Page 18

Dev Neurobiol. Author manuscript; available in PMC 2022 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 6. 
Spine apparatus is present in larger spines. Spine apparatus as a function of head volume and 

neck diameter (a), and head volume and neck length (b). Full red circles indicate the spine 

with spine apparatus, and empty blue circles indicate the spine without spine apparatus. (c-e) 

The empirical cumulative distribution function of the spines with spine apparatus (red) and 

without spine apparatus (blue). Kolmogorov–Smirnov test p-values: (c) p < .001, (d) p = 

.3677, and (e) p < .001. Spine apparatus indicated as “uncertain” or “N/A” in the spreadsheet 

were not included, resulted in 401 spines with spine apparatus, and 220 spines without spine 

apparatus

Ofer et al. Page 19

Dev Neurobiol. Author manuscript; available in PMC 2022 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 7. 
Dual connection spines have similar head volumes. The empirical cumulative distribution 

function of the difference between two spines (a-c) and the ratio between two spines (d-f) 

belong to the dual connection (red), compared to two random spines from the entire database 

(blue). Kolmogorov–Smirnov test p-values: (a) p = .5448, (b) p = .7437, (c) p = .0711, (d) p 
= .0038, (e) p = .5967, and (f) p = .0602. The dataset includes 41 dual connection pairs
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