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Aims: Intensive lifestyle intervention (ILS) targeting health behaviors is efficacious for diabetes 

mellitus prevention, but there is heterogeneity in the effect of ILS. We tested whether diabetes 

genetic risk modifies the association of successful lifestyle changes with incident diabetes.

Materials and Methods: We studied 823 individuals randomized to the ILS arm of the Diabetes 

Prevention Program who were diabetes-free one year after enrollment. We tested additive and 

multiplicative interactions of a 67-variant diabetes genetic risk score (GRS) with achievement 

of three ILS goals at one year (≥7% weight loss, ≥150 minutes/week of moderate leisure-time 

physical activity, and/or a goal for self-reported total fat intake) on the primary outcome of 

incident diabetes over 3 years of follow-up.

Results: A lower GRS and achieving each or all three ILS goals were each associated with lower 

incidence of diabetes (all p<0.05). Additive interactions were significant between the GRS and 

achievement of the weight loss goal (p<0.001), physical activity goal (p=0.02), and all three ILS 

goals (p<0.001) for diabetes risk. Achievement of all three ILS goals was associated with 1.8 

[0.3, 3.4], 3.1 [1.5, 4.7], and 3.9 [1.6, 6.2] fewer diabetes cases/100-person-years in the 1st, 2nd, 

and 3rd GRS tertiles (p<0.001 for trend). Multiplicative interactions between the GRS and ILS 

goal achievement were significant for the diet goal (p<0.001) but not for weight loss (p=0.18) or 

physical activity (p=0.62) goals.

Conclusions: Genetic risk may identify high-risk subgroups for whom successful lifestyle 

modification is associated with greater absolute reduction in the risk of incident diabetes.

Introduction

Diabetes mellitus is a highly morbid condition with increasing incidence and prevalence.1 

Lifestyle modifications targeting weight loss, increased physical activity, and dietary 

change have been clearly shown to reduce the risk of incident diabetes in randomized 

trials enrolling high-risk individuals2–4 and in modeling studies of hypothetical mid-life 

behavioral interventions using observational data.5 In the Diabetes Prevention Program 

(DPP) randomized trial, weight loss through intensive counseling on dietary modification 

and increased exercise reduced the risk of transition from prediabetes to overt diabetes 

compared to control subjects.2 While the intensive lifestyle intervention (ILS) reduced 

diabetes incidence compared to placebo in the DPP, a subset of participants randomized 

to ILS progressed to diabetes despite achieving each or a combination of the ILS goals 

(7% weight loss, 150 minutes/week of leisure-time physical activity, and <25% of weekly 

dietary calories from fat).6 If participant characteristics can predict how well individuals 

will respond to lifestyle modification, then alternative diabetes prevention modalities (e.g., 

metformin) can be targeted rationally.

Genetics is an attractive tool for such precision prevention, and recent studies have 

identified common variation associated with type 2 diabetes and related traits.7,8 However, 

gene-lifestyle interaction studies have failed to demonstrate significant interactions between 

most cross-sectional lifestyle risk factors and diabetes genetic risk in observational cohort 

studies.9,10 Similarly, secondary analysis of the DPP failed to find a statistical interaction 

between a 34-variant type 2 diabetes genetic risk score (GRS) and intervention arm 

for diabetes incidence.11 The prior studies did not examine the effects of interactions 
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between successful change in lifestyle risk factors and genetic risk on incident diabetes. In 

addition, most prior assessments of gene-lifestyle interactions have focused on multiplicative 

interactions (interaction on the risk ratio or relative scale) that elucidate how risk factors 

jointly contribute to diabetes pathogenesis. In contrast, additive interactions (interactions on 

the risk difference or absolute scale) may have greater relevance to public health as they 

describe absolute effects of risk factors on disease risk in subgroups of the population.

A recent analysis of the DPP examined interactions with randomization to metformin 

treatment and found that baseline glycemia and a history of gestational diabetes 

mellitus modify the effect of metformin on incident diabetes on both the additive and 

multiplicative scales.12 An analogous evaluation of additive and multiplicative interactions 

between diabetes genetic risk and successful lifestyle modification has not been reported. 

Accordingly, we examined whether the association between achievement of ILS goals and 

incident diabetes was modified by underlying diabetes genetic risk by evaluating both 

additive and multiplicative interaction models using data from the DPP.

Materials and Methods

Study participants

The details of the Diabetes Prevention Program randomized clinical trial have been 

described in detail previously.2,13 Briefly, the DPP enrolled individuals ≥25 years old 

(maximum age 84 years) at elevated diabetes risk based on body mass index (BMI) ≥24 

kg/m2 (≥22 kg/m2 in Asian Americans), fasting plasma glucose of 5.3 to 6.9 mmol/L (95 to 

125 mg/dL), and plasma glucose 7.8 to 11.0 mmol/L (140 to 199 mg/dL) after a 75-gram 

oral glucose load.2,13 Exclusion criteria from DPP enrollment included taking medicines 

that could alter glucose tolerance, life-limiting illness, and illnesses that could limit 

trial participation. Enrolled participants were randomized to standard lifestyle counseling 

(written instructions and an annual in-person visit encouraging health lifestyle) plus placebo, 

standard lifestyle counseling plus metformin (850 mg twice daily), or an intensive lifestyle 

intervention (ILS) plus placebo. A fourth arm studying troglitazone was terminated early 

due to reports of liver toxicity. The ILS included a 16-lesson curriculum administered 

individually in person to study participants by case managers over 24 weeks with follow 

up in person sessions at least every other month, covering diet, exercise, and behavior 

modification. Study participants were followed for a mean of 3.2 years during the masked 

treatment phase of DPP before results were unmasked and the protocol modified.

In this secondary analysis, we included all participants randomized to the intensive lifestyle 

intervention arm, who provided written informed consent for genetic analysis, who had 

not developed diabetes within the first year of study enrollment, who had physical activity, 

diet, or weight assessed at one year after enrollment, and who had fewer than 3 out of 67 

missing single nucleotide polymorphisms (SNPs) for the construction of the diabetes genetic 

risk score (see below). Of the 955 participants who were randomized to the ILS arm and 

consented to genetic studies, 823 individuals met the inclusion criteria. 813, 790, 820, and 

785 individuals had non-missing assessments of physical activity, diet, weight, and all three 

ILS goals at one year after enrollment and were included in analyses of the respective ILS 
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goals. Each clinical center and the coordinating center obtained institutional review board 

approval; the DPP study is registered on ClinicalTrials.gov (Identifier: NCT00004992).

Predictors of interest

The primary predictor explored was the achievement of each of three ILS goals at one 

year from study enrollment. We focused on ILS goal achievement at one year after study 

enrollment since the ILS curriculum was delivered over 24 weeks with a goal of achieving 

7% weight loss by one year. In addition, prior work has shown that participants achieved 

greater weight loss and increases in physical activity in the first year after enrollment 

than in the subsequent years of follow-up.6 The weight loss goal was 7% weight loss 

from baseline body weight. The physical activity goal was 150 minutes of self-reported 

moderate-to-strenuous physical activity per week. The dietary goal in the DPP focused on 

reducing fat intake as a means of achieving the weight loss goal; the goal was a fat gram 

intake of fewer than 25% of calories from fat each week based on calorie targets that would 

promote weight loss of 1–2 pounds per week. A calorie goal was added to the fat intake 

goal for participants who were not on track to achieve 7% weight loss during the 24-week 

ILS curriculum, but dietary goal achievement for this study was based on the fat intake 

goal irrespective of achievement of the weight loss goal. Weight was assessed at semiannual 

and annual study visits. Self-reported physical activity was assessed annually using the 

Modifiable Activity Questionnaire14 and calculated as the weighted sum across all activities 

of the product of the duration and frequency of each activity, weighted by the estimated 

metabolic equivalents (MET) for each activity. The result was the average MET-hours/week 

of leisure-time physical activity in the previous year. Dietary intake during the first year of 

enrollment was assessed using a modified Block food-frequency questionnaire,15 including 

the usual daily caloric intake from fat, carbohydrate, protein, and other nutrients. Finally, we 

examined the achievement of all three ILS goals as a fourth predictor. Achievement of each 

of the ILS goals was not mutually exclusive, and Table S2 shows the pairwise correlation in 

achievement of each of the goals.

Diabetes genetic risk

Genetic risk for diabetes was estimated as an additive GRS using 67 SNPs previously 

found to be associated with type 2 diabetes at genome-wide significance in genome-wide 

association studies (GWAS).7 Genotyping in the DPP has been described previously, and 

details are provided in the Online Supplementary Material.11,16,17 If the index SNP reported 

in GWAS was not available, a proxy in strong linkage disequilibrium was selected (r2 

>0.8). Of 72 candidate SNPs for the GRS,7 67 were present or had suitable proxies that 

passed genotyping quality control on the Illumina MetaboChip or the Illumina Human Core 

Exome Array (Online Supplementary Material, Table S1). Each participant could carry 0, 

1, or 2 diabetes risk alleles at each of 67 loci, meaning that the diabetes GRS could take 

values from 0 to 134. SNPs were not weighted as their effects on diabetes risk are largely 

comparable, and we found similar associations of an unweighted GRS and one weighting 

each allele proportionally to its effect size in the source GWAS with incident diabetes 

(Table S3). previous analyses using previously published weights have not changed results 

substantially. We examined the GRS as a continuous variable, such that associations with 

incident diabetes reflected the average effect per risk allele, and categorized into tertiles with 
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the 1st tertile representing the lowest genetic risk of diabetes and the 3rd tertile representing 

the highest genetic risk of diabetes.

Outcomes

The primary outcome of this study was incident diabetes at 3 years diagnosed during follow-

up based on an oral glucose-tolerance test or fasting plasma glucose. Oral glucose tolerance 

tests were performed annually for all study participants, and diabetes was diagnosed if 

plasma glucose was 11.1 mmol/L (200 mg/dL) or higher two hours after a 75-gram oral 

glucose load. Fasting plasma glucose tests were performed semiannually, and diabetes was 

diagnosed if fasting glucose was 7.0 mmol/L (126 mg/dL) or higher. The diagnosis of 

diabetes was confirmed by a second test applying the same criteria, typically within six 

weeks of the first positive test.

Statistical analysis

We compared participant demographics, baseline adiposity, baseline glycemia, and diabetes 

genetic risk across levels of ILS goal achievement using chi-square tests for categorical 

data and two-sample t-tests for continuous or ordinal data. We performed the primary 

analyses in three steps. First, we estimated associations of achievement of ILS goals 

and of the diabetes GRS with incident diabetes in separate models using multivariable 

Cox proportional hazards regression. Second, we included achievement of ILS goals and 

the diabetes GRS together in multivariable Cox proportional hazards regression models 

with incident diabetes as the outcome. Third, we evaluated additive (difference scale) and 

multiplicative (ratio scale) interactions between achievement of ILS goals and the diabetes 

GRS using multivariable Poisson regression. We opted for this modeling framework for 

the interaction analysis as it permits estimating incidence rate differences and incidence 

rate ratios, allowing straightforward comparison of associations and interactions on both 

the additive and multiplicative scales. We assessed interaction on the risk difference scale 

by estimating diabetes incidence rate differences between those who did and did not 

achieve ILS goals stratified by GRS tertile in generalized linear models specifying a 

Poisson distribution and log link function. We tested heterogeneity in the tertile-specific 

diabetes incidence rate differences using a test for a directional trend across subgroups. 

We assessed interaction on the ratio scale using an ILS goal * GRS tertile product term in 

generalized linear models specifying a Poisson distribution and log link function. Finally, we 

confirmed multiplicative interactions in Cox proportional hazards regression models using 

an ILS goal * GRS term with the continuous GRS rather than stratifying into tertiles. All 

regression models were adjusted for age at randomization, sex, baseline waist circumference 

(in centimeters), and the first ten genetic principal components to account for ancestry. 

We employed a significance threshold of p<0.05 for all association tests, with the tests 

of interaction representing the primary hypothesis test for this study. All analyses were 

conducted in SAS 9.3 (SAS Inc., Cary, NC) or R (version 3.3, R Foundation for Statistical 

Computing, Vienna, Austria).
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Results

A total of 823 individuals were randomized to the ILS arm of DPP, were diabetes-free at one 

year after enrollment, had at least one ILS goal assessed at that time, and had genetic data 

available. Of these participants, 414 (50.5%), 605 (74.4%), 363 (46.0%), and 168 (21.4%) 

individuals achieved the weight loss goal, physical activity goal, diet goal, and all three 

goals at one year after study enrollment, respectively. Of the 823 individuals included in this 

study, the mean diabetes GRS was 65.7 (standard deviation [SD] 4.4, Figure S1) and did not 

differ substantially between individuals who did and did not achieve each or all three ILS 

goals (Table 1). For all three goals examined, white participants were more likely to achieve 

ILS goals, but other baseline characteristics did not differ consistently on the basis of ILS 

goal achievement (Table 1). Baseline glycemia, measured as hemoglobin A1c or fasting 

glucose, was similar between those who did and did not achieve each or all three ILS goals 

(Table 1).

Achievement of each and achievement of all three ILS goals were associated with incident 

diabetes in multivariable Cox proportional hazards models adjusted for age, sex, baseline 

waist circumference, and genetic principal components for ancestry (Table 2). Similarly, the 

diabetes GRS was associated with incident diabetes in an adjusted model with each diabetes 

risk-raising allele associated with a 5% increased hazard of incident diabetes, corresponding 

to a 23% increased hazard of incident diabetes per standard deviation increase in the GRS 

(Table 2). When categorized, tertiles of the diabetes GRS were also associated with incident 

diabetes (Table 2). When a term for ILS goal achievement was included in adjusted models 

with the diabetes GRS, both ILS goal achievement and the GRS remained associated with 

incident diabetes (Table 3). Similar results were observed when the diabetes GRS was 

categorized into tertiles, with the exception that the confidence intervals for achieving the 

diet goal widened to include 1.00 (Table S4).

Next we used multivariable Poisson regression models to evaluate incidence rate differences 

and incidence rate ratios in the same modeling framework. Those who failed to achieve 

had a higher risk of incident diabetes than those who successfully achieved the weight loss, 

physical activity, or all three ILS goals on both the risk difference and risk ratio scales (Table 

4, Figure 1). For example, those who did not achieve all three ILS goals had 2.9 (95% 

CI 1.8–4.1) more incident diabetes cases/100-person-years and 3.7-fold (95% CI 1.8–7.6) 

higher risk of incident diabetes than those who successfully achieved all three ILS goals 

(Table 4, Figure 1). In contrast to the Cox proportional hazards models, achievement of the 

dietary fat intake goal was not associated with incident diabetes on either the risk difference 

scale (1.1 [-0.2, 2.3] more incident cases/100-person-years) or risk ratio scale (1.4 [0.9, 2.0]) 

in multivariable Poisson models owing to wider confidence intervals.

Additive but not multiplicative interactions, that is interaction on the risk difference but not 

the risk ratio scale, were significant between GRS tertiles and achievement of the weight 

loss, physical activity, and all three ILS goals (Table 4, Figure 1). The risk reduction 

associated with achievement of all three ILS goals increased across GRS tertiles from 1.8 

[0.3, 3.4] to 3.1 [1.5, 4.7] to 3.9 [1.6, 6.2] fewer incident diabetes cases/100-person-years 

in the first, second, and third genetic risk tertile, respectively (p<0.001 for trend). In 
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contrast, multiplicative but not additive interaction was significant between GRS tertiles and 

achievement of the dietary goal with a larger relative risk reduction of diabetes incidence 

observed in those in the lowest GRS tertile than in those with a higher diabetes GRS 

(Table 4, Figure 1). Similarly, tests for multiplicative interaction in Cox proportional hazards 

models using the diabetes GRS as a continuous variable were non-significant for each 

combination of the diabetes GRS and ILS goals (Table S5).

Discussion

In this study, we have shown that a common variant diabetes genetic risk score and ILS 

goal achievement were independently associated with incident diabetes among participants 

randomized to the ILS intervention in the DPP, and that the absolute reduction in diabetes 

risk – that is the number of cases prevented per person-year of follow-up – associated 

with achievement of specific ILS goals (weight loss, physical activity, or all three goals) 

was greatest in individuals with the highest diabetes genetic risk. In contrast, the relative 

reduction in the risk of incident diabetes – that is the proportional reduction in incident cases 

– associated with achieving weight loss, physical activity, or all three lifestyle modification 

goals did not vary depending on the underlying genetic risk of diabetes. Our findings suggest 

that the number of incident diabetes cases prevented from successful lifestyle modification is 

greater in individuals at high genetic risk than in those at lower genetic risk.

Whether genetic information can personalize lifestyle modification approaches to mitigate 

diabetes risk has motivated a number of gene-lifestyle interaction studies.9,10,18–27 While 

some studies have identified statistically significant interactions between genetic risk and 

lifestyle factors on either risk of type 2 diabetes or intermediate phenotypes such as insulin 

resistance,18–24 whether those findings can be effectively incorporated into clinical care has 

been unclear. Of note, the majority of gene-lifestyle interaction evaluations have focused on 

lifestyle measurements at a single “baseline” timepoint. Examination of interactions between 

genetics and lifestyle modification or change in risk factors have been less common except 

secondary analyses of randomized trials of specific diets.18–25,28

We extend prior work by focusing specifically on interactions between genetic risk and 

lifestyle risk factor change. The evaluation of additive and multiplicative interactions 

provides insight two different approaches for examining the combinatorial effect of diabetes 

genetic risk and lifestyle modification on diabetes incidence. The additive interaction 

quantifies differences across populations (in this case defined by GRS tertiles) in the 

absolute reduction of diabetes cases associated with successful lifestyle modification. 

In contrast, the multiplicative interaction quantifies whether genetic risk and lifestyle 

modification combine to yield a proportional or relative effect on diabetes incidence that 

differs from what would be expected from their individual or independent contributions to 

diabetes risk. The interpretation of the additive interaction, therefore, largely pertains to the 

impact of lifestyle risk factor modification in populations of at-risk individuals, whereas 

the multiplicative interaction may have a biological or pathophysiological interpretation 

pertaining to diabetes risk in individuals who achieve lifestyle modification goals in 

different strata of diabetes genetic risk. Importantly, we observed a significant trend for 

greater incident diabetes absolute risk reduction from weight loss, physical activity, and 
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achievement of all three ILS goals across increasing GRS tertiles. Variation in absolute risk 

reduction from successful lifestyle modification on diabetes incidence would be expected to 

be observed across a gradient of an independent diabetes risk factor (in this case genetic 

risk).29,30 However, the direction of that gradient in absolute risk reduction across genetic 

risk strata is difficult to anticipate a priori. Taken together, this study and prior work provide 

further motivation for additional prospective investigation of the population health impacts 

of intensive lifestyle interventions across strata of diabetes genetic risk, acknowledging that 

improved lifestyle should be recommended for all individuals irrespective of genetic risk.

Our observation that the relative benefit of achieving weight change, physical activity 

change, or all three lifestyle modification goals is similar in genetically low- and high-risk 

individuals complements prior work. This finding suggests that in a population similar to 

that enrolled in the DPP, a diabetes GRS is unlikely to provide predictive insight into who 

will or will not respond to an intensive lifestyle intervention, with the possible exception 

of dietary change for which we did observe interaction on the ratio scale. An earlier study 

found that a 34-SNP diabetes GRS predicted incident diabetes but did not have a significant 

interaction with treatment arm in the full DPP study population.11 Notably, the number of 

SNPs included in the GRS in this study expanded to 67, and the HR per allele increase in the 

GRS was larger in the current study than previously. Another prior study examined whether 

a GRS associated with insulin resistance modified improvements in insulin sensitivity 

associated with the ILS and metformin treatment arms of the DPP.17 While improvement 

of insulin sensitivity and insulin secretion from ILS is a predictor of diabetes risk reduction 

in the DPP,31 changes in insulin sensitivity from ILS did not vary across levels of insulin 

resistance genetic risk.17

Although the DPP demonstrated the efficacy of ILS on reducing diabetes risk in a high-

risk population, the effects of real-world programs based on the DPP ILS have been 

heterogeneous in terms of reach, retention, and effectiveness.32–37 Lower engagement, 

retention, and weight loss than seen in the original DPP trial may be due to the resource 

intensiveness of the programs for participants and the communities and/or health systems in 

which they are deployed.38–41 This difficulty of effectively executing DPP-style programs 

highlights that selecting the highest risk patients or those who are likely to derive the 

greatest diabetes risk reduction is critical to lifestyle intervention success. Indeed, an earlier 

study found that the DPP interventions – ILS or metformin – were more effective in the 

highest risk enrolled participants based on a diabetes risk prediction model.42 In addition, 

analyses of the DPP including up to 15-years of follow-up found that the absolute risk 

reduction of diabetes incidence from metformin treatment was greater in individuals with 

higher baseline glycemia (by fasting glucose or HbA1c) or with a history of gestational 

diabetes mellitus.12,43 Thus, this study and prior work suggest that concentrating ILS efforts 

in real-world settings on genetically or clinically high-risk individuals may result in more 

diabetes cases prevented from a resource-intensive intervention.

The strengths of our study include the use of DPP randomized trial data, including a 

standardized lifestyle counseling intervention and standardized measurement of lifestyle 

modification at one year after randomization. In addition, we used a more comprehensive set 

of diabetes genetic risk loci than previous DPP studies.11 There are also several important 
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limitations worth noting. First, by restricting our study to the ILS treatment arm of the 

DPP, we limited sample size and thus the power to detect interactions. Second, recent 

genome-wide association studies of diabetes have expanded the number of associated loci 

beyond those used in our study. However, expanding the GRS using common variants 

with small effect sizes is unlikely to substantially impact the overall predictive utility 

of a diabetes GRS44,45 or reclassify individuals’ genetic risk sufficiently to impact the 

interaction tests conducted in this study. Third, we have treated the ILS arm of the DPP 

as an observational cohort for the purposes of this study. That is, the primary predictors in 

this study, achievement of ILS goals, were not randomized; therefore, residual confounding 

is a threat to the validity of the associations estimated in our study. To address this 

limitation, we included age, sex, and baseline waist circumference as covariates in all 

multivariable models, but we cannot exclude potential residual confounding. Fourth, the 

study population was limited to individuals with BMI ≥24 kg/m2, elevated fasting glucose, 

and impaired glucose tolerance, which were major inclusion criteria for the DPP. Thus, 

we cannot necessarily extrapolate our results to the general population of individuals who 

may be at lower risk of type 2 diabetes but could benefit from lifestyle modification to 

attenuate that risk further. Fifth, by design we excluded participants randomized to the 

ILS intervention who developed diabetes within the first year after study enrollment. This 

may have resulted in the exclusion of the highest risk individuals and consequently led to 

misestimation of the association of successful lifestyle modification or of the GRS with 

diabetes incidence. However, the number of individuals excluded based on this criterion was 

small (7 participants), reducing the likelihood that this study design choice substantially 

influenced our results. Sixth, the dietary goal in the DPP focused on fat intake and 

secondarily on caloric intake; thus, our study does not provide insight on the interactions 

of other dietary components with diabetes genetic risk. Finally, the genetic loci used to 

build the GRS used in this study were initially discovered in individuals of European 

ancestry,7 and trans-ethnic studies have demonstrated differential effect sizes for many 

diabetes-associated loci across different ancestry groups.46,47

While lifestyle modification remains a mainstay of diabetes prevention for all at-risk 

individuals, we conclude that diabetes genetic risk may help identify individuals who derive 

greater absolute benefit from intensive lifestyle modification programs than the average 

person at high-risk of diabetes. On the other hand, diabetes genetic risk does not fully 

explain the heterogeneous effect of ILS goal achievement on incident diabetes in the DPP 

study. Additional observational studies utilizing larger cohorts and genetically-stratified 

randomized trials of lifestyle intervention are needed to confirm whether the absolute 

risk reduction from lifestyle modification on diabetes incidence varies across levels of 

underlying genetic risk and whether genetic data can inform referrals to intensive lifestyle 

modification programs in real-world clinical practice.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Association of achievement of lifestyle modification goals with incident diabetes 
mellitus on the risk difference and risk ratio scales, stratified by diabetes genetic risk tertiles.
Forest plot of diabetes incidence rate differences (left) and incidence rate ratios (right) for 

individuals who did relative to those who did not achieve intensive lifestyle intervention 

goals for weight loss, physical activity, diet, or all three at one year after study enrollment 

across subgroups defined by genetic risk tertiles. Statistically significant heterogeneity 

across subgroups (P<0.05) noted for: *weight loss on risk difference scale (P<0.001 for 

trend across genetic risk tertiles); †physical activity on risk difference scale (P=0.02 for trend 

across genetic risk tertiles); ‡all three goals on risk difference scale (P<0.001 for trend across 

genetic risk tertiles); §diet on the risk ratio scale (P<0.001 for diet*genetic risk interaction 

term).
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Table 2.

Association of achievement of lifestyle modification goals or diabetes genetic risk with incident diabetes 

mellitus in the DPP.

HR (95% CI) p-value

ILS goals

Weight loss 0.19 (0.12, 0.32) <0.0001

Physical activity 0.50 (0.33, 0.76) 0.001

Fat intake 0.67 (0.45, 1.00) 0.05

All three ILS goals 0.26 (0.13, 0.54) 0.0003

Genetic risk

Diabetes GRS

Per allele increase 1.05 (1.01, 1.10) 0.02

Per SD increase 1.23 (1.01, 1.49) 0.04

GRS tertiles 0.009

1 st Reference

2nd vs 1st 1.26 (0.74, 2.14)

3rd vs 1st 2.05 (1.27, 3.30)
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Table 3.

Association of achievement of lifestyle modification goals and diabetes genetic risk with incident diabetes 

mellitus examined together in the DPP.

HR (95% CI) p-value

Weight loss 0.19 (0.12, 0.32) <0.001

Genetic risk score 1.06 (1.01, 1.10) 0.02

Physical activity 0.50 (0.33, 0.76) 0.001

Genetic risk score 1.05 (1.01, 1.10) 0.02

Fat intake 0.67 (0.45, 1.00) 0.05

Genetic risk score 1.05 (1.00, 1.10) 0.05

All three ILS goals 0.26 (0.12, 0.54) <0.001

Genetic risk score 1.05 (1.00, 1.10) 0.03
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Table 4.

Diabetes incidence rates associated with lifestyle goal achievement and interactions with diabetes genetic risk.

Genetic Risk Tertiles

All Participants Low Intermediate High Heterogeneity P-value
†

Weight loss

Incidence Rate (95% CI) ‡ 

Not Achieved 5.9 (4.7, 7.5) 3.9 (2.5, 6.1) 5.4 (3.7, 7.8) 8.2 (5.9, 11.4)

Achieved 1.3 (0.8, 2.0) 0.8 (0.3, 1.9) 0.6 (0.2, 1.9) 2.1 (1.3, 3.7)

Risk Difference 
‡ −4.7 (−3.2, −6.1) −3.1 (−1.2, −5.0) −4.7 (−2.6, −6.8) −6.0 (−3.2, −8.9) <0.001

Rate Ratio 0.22 (0.14, 0.34) 0.20 (0.07, 0.56) 0.12 (0.05, 0.38) 0.26 (0.48, 0.14) 0.18

Physical Activity

Incidence Rate (95% CI) ‡

Not Achieved 5.3 (3.8, 7.5) 3.2 (1.7, 6.1) 6.0 (3.5, 10.1) 7.0 (4.3, 11.3)

Achieved 2.9 (2.2, 3.7) 1.8 (1.1, 3.0) 2.3 (1.5, 3.7) 4.2 (2.9, 5.9)

Risk Difference 
‡ −2.5 (−0.6, −4.3) −1.4 (0.8, −3.6) −3.6 (−0.3, −7.0) −2.8 (0.8, −6.4) 0.02

Rate Ratio 0.56 (0.36, 0.83) 0.56 (0.25. 1.25) 0.4 (0.19, 0.83) 0.59 (0.33, 1.11) 0.62

Diet

Incidence Rate (95% CI) ‡

Not Achieved 3.9 (3.0, 5.1) 3.2 (2.0,5.1) 2.9 (1.8,4.9) 5.1 (3.6,7.4)

Achieved 2.9 (2.1, 3.9) 1.4 (0.7,3.0) 2.8 (1.6, 4.6) 4.2 (2.7,6.5)

Risk Difference 
‡ −1.1 (0.2, −2.3) −1.7 (−0.0, −3.5) −0.2 (1.9, −2.2) −0.9 (1.6, −3.4) 0.07

Rate Ratio 0.71 (0.50, 1.11) 0.45 (0.20, 1.11) 0.91 (0.45, 2.0) 0.83 (0.48, 1.43) <0.001

All three goals

Incidence Rate (95% CI) ‡

Not Achieved 4.0 (3.2, 5.0) 2.6 (1.7, 4.1) 3.6 (2.5, 5.1) 5.6 (4.1, 7.7)

Achieved 1.1 (0.5, 2.2) 0.8 (0.2, 3.5) 0.5 (0.1, 3.4) 1.7 (0.7, 4.1)

Risk Difference 
‡ −2.9 (−1.8, −4.1) −1.8 (−0.3, −3.4) −3.1 (−1.5, −4.7) −3.9 (−1.6, −6.2) <0.001

Rate Ratio 0.27 (0.13, 0.56) 0.30 (0.07, 1.43) 0.13 (0.05, 1.0) 0.31 (0.13, 0.77) 0.92

†
Test for heterogeneity reflects: test for directional trend across genetic risk tertiles for risk difference models; and lifestyle*genetic risk interaction 

term for rate ratio models

‡
events/100 person-years
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