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Abstract

Background—Wildfire smoke is responsible for around 20% of all particulate emissions in the 

U.S. and affects millions of people worldwide. Children are especially vulnerable, as ambient 

air pollution exposure during early childhood is associated with reduced lung function. Most 

studies, however, have focused on the short-term impacts of wildfire smoke exposures. We aimed 

to identify long-term baseline epigenetic changes associated with early-life exposure to wildfire 

smoke. We collected nasal epithelium samples for whole genome bisulfite sequencing (WGBS) 

from two groups of adult female rhesus macaques: one group born just before the 2008 California 

wildfire season and exposed to wildfire smoke during early-life (n = 8), and the other group born 

in 2009 with no wildfire smoke exposure during early-life (n = 14). RNA-sequencing was also 

performed on a subset of these samples.

Results—We identified 3370 differentially methylated regions (DMRs) (difference in 

methylation ≥ 5% empirical p < 0.05) and 1 differentially expressed gene (FLOT2) (FDR< 

0.05, fold of change ≥ 1.2). The DMRs were annotated to genes significantly enriched for 

synaptogenesis signaling, protein kinase A signaling, and a variety of immune processes, 

and some DMRs significantly correlated with gene expression differences. DMRs were also 

significantly enriched within regions of bivalent chromatin (top odds ratio = 1.46, q-value < 3 
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× 10−6) that often silence key developmental genes while keeping them poised for activation in 

pluripotent cells.

Conclusions—These data suggest that early-life exposure to wildfire smoke leads to long-term 

changes in the methylome over genes impacting the nervous and immune systems, but follow-

up studies will be required to test whether these changes influence transcription following an 

immune/respiratory challenge.
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BACKGROUND

According to the National Interagency Fire Center, there were 50,477 wildfires (4.7 million 

acres burned) in the United States in 2019. In total, 212 million Americans lived in counties 

affected by wildfires in 2011 (1). These wildfires have contributed to levels of air pollution 

in the United States that have been linked to premature death (2–5). About 20% of all 

fine particulate emissions in the U.S. are from wildfire smoke, while half of all particulate 

matter less than 2.5 μm in diameter (PM2.5) in California resulted from wildfires (2). PM2.5 

are especially harmful, as these particles are able to penetrate the respiratory system and 

the lungs (2). Exposure to these particles has been associated with asthma, bronchitis, 

lung cancer, and cardiovascular disease (3–5). Young children are especially vulnerable to 

these negative health effects, as studies have linked air pollution exposure in children to 

reduced lung function (6, 7), reduced height-for-age (8), increased blood pressure (9), and 

an increased risk of developing asthma and eczema (10). Most of these studies, however, 

focused on the short-term effects of exposures to wildfire smoke or polluted air and none 

have performed an unbiased assessment of gene pathways impacted by wildfire smoke 

exposure.

A cohort of rhesus macaques (Macaca mulatta) that were exposed in their first three months 

of life to a harsh wildfire season in 2008 in California was previously studied to understand 

some of the long-term effects (macaques were 3–3.5 years of age when sampled in this 

prior study) of wildfire smoke exposure (11). Peripheral blood mononuclear cells (PBMCs) 

were cultured and challenged with either LPS or flagellin, and secretions of IL-8 and IL-6 

were compared to macaques that were born in 2009 (PM2.5 and ozone levels were much 

lower in 2009 compared to 2008) (11). Lung function was also compared between exposed 

and control macaques. Compared to control macaques, wildfire smoke-exposed macaques 

had significantly reduced lung volume. Female wildfire-exposed macaques showed reduced 

production of IL-8 compared to controls, while male wildfire-exposed macaques showed 

reduced production of IL-6 compared to controls (11). This study implied that early-life 

exposure led to a difference in IL-8 and IL-6 production following an immune challenge, but 

it was still unclear to what degree these macaques exhibited baseline differences at the level 

of epigenetics and gene expression.
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Epigenetic changes (defined as modifications to DNA that do not alter the underlying 

sequence) such as DNA methylation have the potential to reflect past exposures with 

long-lived marks on genes. Current evidence specifically suggests that early-life exposures 

can lead to epigenetic reprogramming in the airways (12). The transcriptome, on the other 

hand, reflects current levels of gene expression in a sampled tissue. To test the hypothesis 

that early-life wildfire smoke exposure would result in detectable epigenetic differences to 

gene pathways reflecting cellular function, we performed the integrated unbiased approaches 

of whole genome bisulfite sequencing (methylome) and RNA-sequencing (transcriptome) 

from nasal epithelial samples collected the same cohorts of female macaques examined a 

decade earlier for lung functions and immune responses. Nasal epithelial tissue was sampled 

because they have been shown to be a biologically relevant proxy for airway epithelial cells 

in epigenomic studies of environmental exposures (13, 14). We identified a large number 

of genes associated with early-life exposure-related differential methylation involved in 

neuronal and immune signaling. In contrast, only one differentially expressed gene (FLOT2) 

was stably associated with early-life wildfire smoke exposure.

RESULTS

Exposure to wildfire smoke during infancy is associated with long-lasting changes to DNA 
methylation patterns in nasal epithelial cells.

To test the effects of early-life wildfire smoke-exposure on methylation status throughout 

the genome, we performed whole genome bisulfite sequencing on nasal epithelial samples 

collected from 22 adult rhesus macaques in 2019 (8 born in 2008 and exposed to high 

levels of PM2.5 and ozone due to wildfires, 14 born in 2009 and therefore has relatively 

low levels of exposure to PM2.5 and ozone; Figure 1, Table 1). Though there were 

several shared exposures to high levels of wildfire smoke PM2.5 (> 35ug/m3, the 24-hour 

PM2.5 National Ambient Air Quality Standard) and ozone after the 2009 cohort was born 

(especially in the year of 2019), there was one high exposure event that only the 2008 

cohort was exposed to in early-life (10 days above 35ug/m3, Figure 1, Table 1). There 

were no significant, sustained wildfire events during the pregnancy periods for either group 

(Table 1). We assessed 26,609,677 CpG sites and identified 3370 differentially methylated 

regions (DMRs) between exposed and non-exposed samples (Figure 2, empirical p < 0.05, 

differences in methylation>5%). The majority of these DMRs were hypermethylated in 

exposed animals (2899, ~86%). A total of 114 (3.38%) of these DMRs were primarily 

located in CpG islands (15), 287 (8.52%) were located in CpG shores (0–2kb from island), 

205 (6.08%) were located in CpG shelves (2–4kb from island), and 2764 (82.02%) were in 

the open sea (>4kb from island). This distribution was significantly different than expected 

by chance, with an enrichment towards CpG islands, shores, and shelves compared to 

regions assayed (Supplementary Figure 1). These 3370 DMRs were annotated to 2139 genes 

(Supplementary Table 1), of which 1852 genes were annotated to DMRs hypermethylated 

in the exposed group, while 376 genes were annotated to DMRs hypomethylated in the 

exposed group, and 89 genes were annotated to both hypermethylated and hypomethylated 

DMRs (examples of DMRs shown in Figure 3). The DMRs were significantly more 

associated with promoters and exons than expected by chance, while they were less 

associated with intergenic regions than expected by chance (Supplementary Figure 2). The 
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genes annotated to DMRs as a whole were significantly enriched (FDR < 0.05) for 186 

IPA canonical pathways, including axonal guidance signaling, synaptogenesis signaling 
pathway, protein kinase A signaling, IL-15 production, CXCR4 signaling, and Th1 and Th2 
activation pathway (Figure 4, Supplementary Table 2). Genes annotated to hypermethylated 

DMRs were enriched for 187 IPA pathways, 168 of which were also enriched in genes 

annotated to DMRs as a whole. The 19 unique IPA pathways enriched in hypermethylated 

DMRs include 14–3-3-mediated signaling, LPS-stimulated MAPK Signaling, and NF-κB 
activation by viruses (Supplementary Table 3). Genes annotated to hypomethylated DMRs 

were enriched for 41 IPA pathways, 23 of which were also enriched in genes annotated to 

DMRs as a whole. The 18 unique IPA pathways enriched in hypomethylated DMRs include 

dermatan sulfate biosynthesis, xenobiotic metabolism PXR signaling pathway, and HOTAIR 
regulatory pathway (Supplementary Table 4).

Impact of wildfire smoke-associated DNA methylation changes on TF binding.

As the binding of transcription factors (TFs) are often influenced by DNA methylation, we 

performed a HOMER analysis to determine whether any transcription factor binding sites 

were enriched in these wildfire smoke-associated DMRs (16). A total of 131 transcription 

factor motifs were enriched in all DMRs (q < 0.05; Supplementary Table 5). Eight of the 

top ten most highly enriched TF motifs are part of the bZIP TF family (shown in Table 2). 

When testing for TF binding site enrichment in only DMRs that were hypermethylated in 

exposed macaques, six of the top ten were part of the bZIP TF family, while none of the 

top ten enriched TF binding sites in hypomethylated DMRs were part of the bZIP TF family 

(five out of ten contained homeobox motifs). Interestingly, the TFs whose binding sites were 

most enriched in all wildfire smoke-associated DMRs were primarily unmethylated (Table 

2) in other ChIP-seq datasets (17), so the differential methylation could theoretically have 

a large impact on transcription factor binding and expression (18). In support of this, DNA 

methylation generally inhibits binding of bZIP TF members to DNA (18, 19).

Regions with hypomethylated DMRs are enriched for bivalent chromatin marks across 
tissue types.

In order to understand the gene regulatory role of regions with wildfire smoke-DMRs, we 

searched for the enrichment of 15 pre-defined chromatin states across 127 epigenomes from 

multiple tissues and cell types in the Roadmap Epigenomics project (20). After converting 

the M. maculatta coordinates into human (hg38) coordinates and using LOLA, the DMRs 

as a whole were enriched for bivalent chromatin marks (top odds ratio for any mark = 1.46, 

q-value < 3 × 10−6; Figure 5A). Bivalent chromatin marks represent co-existing activating 

and repressing marks, which often silence key developmental genes while keeping them 

poised for activation in pluripotent cells (21). Hypomethylated DMRs seemed to drive 

this enrichment (top odds ratio for any mark = 2.05, q-value < 0.02; Figure 5B), though 

hypermethylated DMRs showed enrichment (top odds ratio for any mark = 1.51, q-value < 

1 × 10−6) for bivalent chromHMM (chromatin Hidden Markov Model) chromatin states as 

well (Figure 5C).
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Correlation of DNA methylation and gene expression differences resulting from wildfire 
smoke exposure during infancy

To determine whether early-life exposure to wildfire smoke leads to detectable differences in 

gene expression later in life, we performed RNA-sequencing on 15 female rhesus macaques 

(6 born in 2008 and exposed to wildfire smoke, 9 born in 2009 and not directly exposed 

to the 2009 California wildfires). Out of the 2139 genes annotated to DMRs, 2128 had 

enough corresponding expression data to evaluate the correlation between expression and 

methylation. To identify genes where differential methylation may be ultimately leading to 

differential expression, we calculated the spearman rank correlation between methylation 

and expression levels for genes that were annotated to DMRs. In total, 172 genes were 

significantly correlated (spearman p-value < 0.05), with 76 genes showing a negative 

correlation and 96 showing a positive correlation between methylation and expression 

(Supplementary Table 9, two examples are shown in Figure 6). These 172 genes were 

enriched for 32 IPA pathway terms, including leukocyte extravasation signaling, CCR5 
signaling in macrophages, and MIF regulation of innate immunity (Supplementary Table 

10).

Early-life wildfire smoke exposure had a minimal effect on baseline genes expression 
levels.

A principal component analysis (PCA) and hierarchical clustering of all detected transcripts 

were performed to visualize how samples clustered based on expression (Supplementary 

Figure 3D). The top two principal components in a principal component analysis (PCA) 

explained 62% of the variation in the dataset. Exposed and non-exposed samples did not 

cluster separately in either the PCA or the hierarchical clustering analysis, implying no 

widespread transcriptomic difference between exposed and non-exposed individuals. After 

multiple hypothesis correction (FDR < 0.05, fold change ≥ 1.2; Supplementary Table 6), 

there was only one differentially expressed gene (FLOT2; Supplementary Table 6). None of 

the genes annotated to DMRs were significantly differentially expressed.

To identify co-expressed genes whose expression correlated with wildfire smoke-exposure 

status, we performed a weighted gene co-expression network analysis (WGCNA) (22). 

We identified 16 co-expressed modules using WGCNA. None of the modules were 

significantly associated with early-life exposure status (p < 0.05). The module that best 

correlated with exposure status was the purple module (p = 0.1; consisting of 585 genes, 

including IFI44, IFNA21, and IL24; Supplementary Figure 4, Supplementary Table 7). 

No genes in this module were significantly differentially expressed at an individual level, 

19 genes were annotated to significant DMRs, and two genes had significantly correlated 

methylation and expression. The genes in this module were enriched (FDR < 0.05) for 21 

IPA pathways, including EIF2 signaling, mTOR signaling, Th17 activation pathway, and 

interferon signaling (Supplementary Table 8).

DISCUSSION

Utilizing rhesus macaques that experienced the harsh conditions of the 2008 California 

wildfire season in their first three months, we have elucidated some of the long-term effects 
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of early-life exposure to wildfire smoke. Baseline methylation profiles generally clustered 

better by exposure status than expression profiles (Supplementary Figure 3). Many genes 

(2139) were annotated to differentially methylated regions between exposed and control 

macaques (empirical p < 0.05), while only 1 gene (FLOT2) was differentially expressed 

between these groups after multiple hypothesis correction (FDR < 0.05). Out of the genes 

annotated to differentially methylated regions, 172 had methylation levels that significantly 

correlated with expression levels across samples, indicating that the overall epigenetic 

regulatory landscape ultimately led to few significant differences in baseline expression. 

However, the changes in DNA methylation were significantly enriched at promoters and 

enhancers, and located at regions that transcription factors may bind, suggesting that they 

may have an impact on gene regulation.

FLOT2 (flotillin 2) encodes a caveolae-associated, integral membrane protein that belongs 

to the lipid raft family. Flotillins are implicated in variety of cellular functions, including 

regulation of G-protein coupled receptor signaling (23), endocytosis (24), cell-cell adhesion 

(25), uropod formation and migratory capacity of neutrophils and monocytes (26) and T 

cells (27). FLOT2 also protected lung epithelial cells from Fas-signaling mediated apoptosis 

(28), and silica nanoparticles were found in Flotillin-1 and −2 marked vesicles in alveolar 

epithelial cell (29). However, its role in response to wildfire smoke exposure has not been 

reported.

One potential explanation for the few gene expression changes despite more widespread 

methylation differences is that many of these DMRs are in regions associated with 

bivalent chromatin marks. The differential methylation at these regions may not affect gene 

expression because the bivalent chromatin marks generally keep expression repressed, but 

poised for rapid activation during early development (30) or in cancer (31). This would 

imply that some of the methylation differences were due to early-life events that were 

not reflected in baseline transcript levels later in life. Additionally, although baseline gene 

expression was relatively similar between exposed and control macaques, one hypothesis is 

that the altered regulatory landscape could lead to differences in expression upon additional 

immune (or other) challenges. This hypothesis is supported by a previous study on macaques 

from these same cohorts that found differences in IL-6 (significant in males) and IL-8 

(significant in females) production in peripheral blood mononuclear cells (PBMC) from 

wildfire smoke-exposed macaques compared to controls after a challenge with media, LPS, 

or flagellin (11). Out of 84 genes tested, only two (RELB and REL) showed significant 

differences in expression following a media challenge (essentially a comparison of baseline 

expression), while five genes were differentially expressed following a challenge with either 

LPS or flagellin (11). RELB was the only gene that was differentially expressed in all 

three tests, but the direction of change in challenged cells (increased RELB in cells from 

exposed animals) was opposite of what was found at baseline (decreased RELB in cells 

from exposed animals) (11). In summary, there were very few differences in baseline 

expression in the previous study between exposed and control cells, and even when there 

was differential expression, those patterns changed or became non-significant following 

an immune challenge. While the sample types (PBMCs vs. nasal epithelium) and ages of 

the macaques (adolescents vs. adults) differ between the prior study and the current study, 

they both support that early exposure to wildfire smoke did not lead to drastic differences 
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in baseline expression profiles between samples. Perhaps immediately following shared 

exposures to wildfire smoke, such as the one in 2018, there was more differential gene 

expression between the two cohorts, but gene expression returned to baseline levels and 

became indistinguishable by the time of sampling in 2019. Another potential explanation for 

differences in the degree of differential expression and differential methylation is that we 

had fewer samples for our differential expression analysis, potentially limiting our ability to 

identify differential expression compared to our ability to identify differential methylation. 

If there were widespread differences in expression due to exposure status, however, we 

expect that wildfire smoke-exposed samples would have clustered together in the principal 

component analysis and in hierarchical clustering analyses, so we postulate that this is not 

the major reason for the lack of differential expression.

Long-term effects of wildfire smoke exposure on the methylome

Our data implies that there are long-term effects on the methylome due to wildfire smoke 

exposures during infancy. DMRs were enriched for many pathways linked to asthma, 

COPD, or other pulmonary diseases, including IL-15 production (32, 33), CXCR4 signaling 
(34, 35), Actin cytoskeleton signaling (36, 37), VDR/RXR activation (38, 39), Th1 and Th2 
activation pathway (40, 41), and Wnt/β-catenin signaling (42, 43) (Supplementary Table 

2). Cytokines derived from T helper type 2 (Th2) cells have long been thought to play 

a critical role in allergic asthma through regulation of immunoglobulin E (IgE) synthesis 

(41, 44), but other T helper subsets (such as Th1) are starting to gain recognition for their 

role in asthma as well. Increased levels of the Th1 cytokine IFN- γ have been shown to 

exacerbate existing asthmatic responses (45) and increase airway hyperresponsiveness (44) 

in transgenic mice. IFNGR2 (interferon gamma receptor 2) was differentially methylated 

in our comparison (as were several other Th1 related genes, including IL6R, LOC694631/
IFNA1/13-like, and NFATC1), perhaps indicating that the early life wildfire smoke exposure 

has altered Th1 gene regulation, which could lead to differential responses to bacterial 

and viral infection. Additionally, hypermethylation of IL6 and IFNA13 was associated with 

idiopathic pulmonary fibrosis (IPF) (46), while hypermethylation of IL6R was associated 

with COPD in prior studies (47). IL6R and IFNA13 were also hypermethylated in exposed 

macaques in our current study (Supplementary Table 11), indicating that changes in the Th1 

pathway may contribute to the reduction in lung function noted in macaques exposed to 

wildfire smoke early in life (11). Th2-related genes that were differentially methylated in our 

dataset include IL4R and TIMD4, while there were several genes annotated to DMRs that 

were related to both the Th1 and Th2 pathways (including CD4, IL10, IL12RB2, NFATC2, 

RUNX3, and SOCS3). Hypermethylation of NFATC2 (47), RUNX3 (47), and SOCS3 (48) 

has been associated with COPD (Supplementary Table 11). These three genes were also 

hypermethylated in wildfire smoke-exposed macaques versus controls.

Deletion of Fra1, the transcription factor with the most enriched motif in the DMRs (Table 

2, Supplementary Table 5), in mice led to greater levels of progressive interstitial fibrosis 

(49). Fra1 is a bZIP transcription factor and bZIP transcription factor binding is generally 

inhibited by methylation (18, 19). Meanwhile, overexpression of Fra2 (another highly 

enriched bZIP TF motif in the DMRs) in mice lead to non-allergic asthma development 

(50). The other bZIP transcription factors whose motifs were among the top ten enriched 
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motifs have also all been linked to pulmonary disease (ATF3 (51), JunB (52), BATF (53), 

and AP-1 (49, 54)). The role of bZIP transcription factors in pulmonary disease pathogenesis 

combined with the sensitivity of bZIP to changes in methylation imply that the differences 

in methylation noted between wildfire smoke-exposed and non-exposed macaques could 

greatly impact how bZIP targets are regulated following a respiratory challenge. Overall, 

differences in methylation in Th1 and Th2-related genes (and the relation of those genes 

to asthma, IPF, and COPD pathogenesis; see Supplementary Table 11) may explain the 

long-term differences in lung function previously observed between wildfire smoke-exposed 

macaques and controls (11).

Interestingly, there is also recent research that suggests that exposure to air pollution can 

have negative neuropsychological effects in children (55, 56). The DMRs from our dataset 

were enriched in multiple IPA neurological pathways, including axonal guidance signaling 
(most significant pathway), synaptogenesis signaling pathway (third most significant 

pathway), and neuropathic pain signaling in dorsal horn neurons (Supplementary Table 

2). Additionally, the top enriched biological process term in GOfuncR (57) was neuron 
differentiation, while the top enriched cellular component term was synapse (Supplementary 

Figure 5). Nasal epithelial tissue has also been considered to be a potential surrogate 

for neurons and neurodevelopment (58), our results showing enrichment for neuronal 

functions are consistent with this expectation. The effect of wildfire smoke on neurological 

development is understudied, but studies have shown that particles less than 0.1 μm 

in diameter (which are produced by wildfires) can cross the blood-brain barrier (59). 

Additionally, exposure to these ultrafine particles has been associated with ADHD, autism, 

and declines in school performance and memory in children (56). Along with this 

evidence from prior studies, the differential methylation of regions near genes involved 

in neurological pathways indicates that early-life wildfire smoke exposure could have a 

long-lasting impact on nervous system function.

Genes with correlated changes in methylation and expression are enriched for pathways 
associated with respiratory diseases

In addition to directly studying genes and enriched pathways associated with DMRs, we 

also wanted to identify genes that showed correlations between expression and methylation 

to get a better understanding of how differences in methylation modify mRNA expression. 

Though only one gene was differentially expressed between our groups following multiple 

hypothesis correction (FLOT2), there were many more genes annotated to DMRs that had 

a significant correlation between methylation and expression (172 in total; Supplementary 

Table 9). MAPK10 (Spearman’s ρ ~ 0.75) and WNT8B (Spearman’s ρ ~ 0.82) were two 

other genes that were annotated to DMRs that showed a significant correlation between 

methylation and expression (Supplementary Table 9). Wnt signaling has been linked to in 
utero lung development and development/maturation during early life (alveologenesis) (60–

62). Prior studies have shown that Wnt/β-catenin and the mitogen-activated protein kinase 

(MAPK) signaling pathway take part in the airway remodeling process in asthma (42). In 

a mouse model of asthma, blocking Wnt signaling reduced airway remodeling, while p38 

MAPK expression was increased in asthmatic mice compared to controls (42). MAPK10 
expression was slightly higher on average in wildfire smoke-exposed macaques than 
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control macaques, and methylation was significantly positively correlated with expression 

(hypermethylated in exposed animals). WNT8B expression was slightly lower on average 

in exposed macaques, while methylation was significantly negatively correlated with 

methylation (hypomethylated in exposed animals). Neither of these genes were significantly 

differently expressed, however. Given the role of Wnt signaling and MAPK signaling in 

airway remodeling, it seems possible that changes in gene regulation could have contributed 

to the reduced lung function noted in wildfire smoke-exposed macaques (11).

Our study had several limitations. As previously touched upon, our current study included 

only female rhesus macaques, but a prior study with these macaques noted significant 

sex-specific differences in PBMCs challenged with LPS or flagellin. Male wildfire smoke-

exposed macaques had significantly higher levels of IL-8 compared to controls, while 

female wildfire smoke-exposed macaques had significantly higher levels of IL-6 compared 

to controls (11). While IL-6 was not differentially expressed or methylated in our exposed 

macaques compared to controls, this does underscore that we may have missed some sex-

specific differences in gene expression or methylation by sampling only female macaques 

for our current study. Indeed, studies have shown that there are sex-specific differences 

in expression between female and male asthmatics (63, 64), implying that the molecular 

underpinnings of asthma and other pulmonary issues may differ between the sexes. 

Additionally, our cohort of wildfire smoke-exposed macaques was roughly one year older 

than our cohort of control macaques. Studies have indicated that methylation patterns are 

associated with aging (epigenetic clocks) in humans (65, 66), so this is likely the case 

for rhesus macaques as well. Out of 2139 genes that were annotated to DMRs in our 

dataset, 20 were differentially methylated in a pattern that was consistent with the models 

from the previously referenced studies on epigenetic clocks. Based on these results, most 

of the differential methylation we observed cannot be explained by known differences 

in how methylation correlates with age. Another potential alternative explanation is that 

the differences in methylation we observed were due to greater cumulative exposure to 

pollutants in the older macaques. Table 1 shows that the difference in cumulative exposures 

to high levels of PM2.5 and ozone between the two groups were roughly equivalent to the 

differences observed in the first three months of life, implying that these early exposures 

were key drivers of the noted differences between the groups. However, cumulative 

exposures below the current U.S. EPA standards were associated with increased mortality 

in a Medicare population (67), and they may also have an impact on the epigenome. The 

epigenetic effects of acute and chronic wildfire smoke exposure are worthy of further 

investigation. As previously discussed, we had a smaller sample size for our expression 

dataset (n = 13 after removing two outliers) than our methylation dataset (n = 22). This 

could explain why we saw fewer changes in expression overall, however samples appeared 

to cluster more closely based on exposure status for the methylation dataset than the 

expression dataset (Supplementary Figure 3). The p-values from DMRichR were empirical 

p-values calculated from permutation tests (68, 69). Although this puts our study at a higher 

risk of false-positive findings, these permutation p-values calculated by DMRichR were used 

to determine DMR significance in multiple published studies in combination with effect 

size (68–71). Given that our analysis of chromatin states relied on human hg38 annotations, 

we compared our macaque rheMac10 annotations to the hg38 annotations to make sure 
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they were similar enough. About 67% of the DMR gene annotations were exact matches 

after lifting over the coordinates to hg38. While 30% of DMRs had a different annotation, 

some of these differences were just due to differences in gene naming convention between 

the species. For example, one DMR was annotated to LOC694631 (IFNA1/13-like) in 

rheMac10, while the lifted over DMR was annotated to IFNA13 in hg38. In a broader 

pathway analysis, 90% of the IPA pathways enriched in DMRs using rheMac10 annotations 

were also enriched when we used hg38 annotations. We also focused our discussion on 

genes that were consistent between the two annotations.

One area of interest for future studies would be the stability of these changes. The exposure 

event took place in 2008, while samples were collected from the macaques in 2019. Over 

that relatively long course of time (the average lifespan for macaques in captivity is ~27 

years (72)), the methylation profiles still clustered based on exposure status (Figure 2, 

Supplementary Figure 3). This implies that there are long-term impacts of wildfire smoke 

exposure on methylation, and that at least some of these changes are highly stable. An 

early study on DNA methylation stability involved sampling individuals three days apart 

to check for differences in DNA methylation. This study on 12 gene promoters indicated 

that methylation stability was marker dependent and varied based on sequence composition 

(73). Meanwhile, a large-scale study on how storage conditions affect methylation stability 

indicated that storing DNA samples in temperatures as high as four degrees Celsius for up 

to 20 years had no significant impact on methylation (74). Additionally, studies are needed 

to determine whether these epigenetic changes are associated with alterations in lung and 

immune functions, which will help to establish them as biomarkers for risk assessment in 

affected communities.

CONCLUSIONS:

In summary, our study revealed differences in methylation and gene expression in nasal 

epithelial samples between macaques that were exposed to wildfire smoke during early life 

and macaques that were not exposed to wildfire smoke during early life. The wildfire smoke 

associated DMRs were enriched for a variety of immune processes, but there were few 

significant expression differences at baseline between exposed and non-exposed macaques. 

Given the differences in methylation, perhaps differences in expression between these 

two groups would become apparent following an immune/respiratory challenge, but future 

studies would be required to explore this hypothesis. Our study indicates that wildfire smoke 

exposure in early life can have long-term impacts on the epigenome.

METHODS:

Animals

Wildfire smoke-exposed rhesus macaque monkeys born between April 1 and June 8, 2008 

were housed in outdoor facilities at the CNPRC from birth to now (Table 1). Monkeys born 

between April 1 and June 8, 2009 were used as controls. PM2.5 and ozone were measured by 

a California Air Resources Board air monitoring station (site no. 57,577) located 2.7 miles 

southeast of the California National Primate Research Center on the University of California 

Davis campus (Figure 1). Care and housing of animals complied with the provisions of 
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the Institute of Laboratory Animal Resources and conformed to practices established by 

the American Association for Accreditation of Laboratory Animal Care. Procedures in this 

study were approved by the UC Davis Institutional Animal Care and Use Committee.

Sample Collection and DNA/RNA Extraction

Nasal epithelium samples were collected from 22 female rhesus macaques (Macaca 
mulatta) housed at the California National Primate Research Center. Nasal cells have been 

shown in many studies to be a biologically relevant proxy for airway epithelial cells in 

epigenomic studies of lung diseases and effects of environmental exposures, particularly 

PM2.5 exposures (13, 14, 75–79). Exposures of these animals to wildfire smoke were 

previously estimated (11). Eight of these macaques were born in 2008 and exposed to 

wildfire smoke from birth to 3 months old, while the other 14 were born in 2009 with low 

wildfire exposure from birth to 3 months old (Table 1, demographic comparison of two 

groups). We collected these nasal epithelium samples in 2019. RNA and DNA were isolated 

using the Allprep DNA and RNA kit (Qiagen) according to the manufacturer’s instructions.

Library preparation for whole genome bisulfite sequencing (WGBS)

Whole genome bisulfite sequencing (WGBS) libraries were prepared for all 22 samples. 

Library quality was checked prior to sequencing using an Agilent 2100 Bioanalyzer system; 

library concentration was measured using a Qubit DNA high sensitivity assay. Each library 

was comprised of sample from a single individual; these individually barcoded libraries 

were then pooled and sequenced on two lanes from a NovaSeq 6000 S4 flow cell at 

PE150 using Swift’s Accel-NGS Methyl-Seq Kit at the DNA Technologies and Expression 

Analysis Cores at the UC Davis Genome Center. We sequenced approximately 475 million 

paired end reads per sample that passed initial filters. Reads were demultiplexed using the 

bcl2fastq Illumina software.

WGBS read alignment, differential methylation analysis, pathway analysis, and chromatin 
state analysis

The CpG_Me pipeline (80–83) was utilized to align the WGBS data. Reads were trimmed 

using Trim Galore (82) to address methylation biases at the 5’ and 3’ end of reads (10 

bases were trimmed from the 3’ end of both read 1 and read 2, and 10 and 20 bases were 

trimmed from the 5’ end of reads 1 and 2 respectively). The reads were aligned to the 

M. mulatta genome using Bismark (81), which was also used to deduplicate the aligned 

reads and generate CpG count matrices. Read quality and mapping quality were assessed 

using MultiQC (83). Differentially methylated regions between exposed and non-exposed 

macaques were identified using DMRichR (68, 84, 85), which uses the dmrseq (84) and 

bsseq (85) algorithms. Animal weight was adjusted for as a covariate. We used the default 

paramters for DMRichR, including requiring at least 1x coverage for all samples for a 

CpG, requiring a minimum of 5 CpGs for a DMR, performing 10 permutations for DMR 

and block analyses, and setting the single CpG coefficient required to discover testable 

background regions to be at least 0.05. Using DMRichR, candidate regions are identified 

based on differences in mean methylation between groups, then region-level metrics that 

account for mean methylation, CpG correlation, and coverage are computed. These region-

level metrics are then compared to a pooled null distribution generated via permutations to 

Brown et al. Page 11

Environ Int. Author manuscript; available in PMC 2022 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



calculate an empirical p value for each candidate region (68, 69). Bsseq (85) was used to 

generate individual smoothed methylation values and heatmap visualizations. IPA (QIAGEN 

Inc., https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis) was used 

for pathway enrichment analysis. We also used GOfuncR (57) for GO enrichments based 

on DMR coordinates rather than gene names. HOMER (16) was used to identify enriched 

transcription factor binding motifs in the DMRs (p < 0.05), while we utilized MethMotif 

(17) to characterize methylation frequency of transcription factors whose binding motifs 

were enriched in the DMRs. We used the UCSC liftover tool (86) to lift DMR coordinates 

from rheMac10 to hg38 because chromatin state information was not available for M. 
mulatta. Locus Overlap Analysis (LOLA) (87) was used to determine whether DMRs were 

enriched for chromHMM (88) states relative to the background regions. The spearman 

correlation coefficient between gene expression and methylation levels for genes annotated 

to DMRs was used to determine whether significant methylation changes were associated 

with changes in gene expression (p< 0.05).

Library preparation for RNA-seq

RNAseq libraries were prepared for a total of 15 samples: 6 from wildfire smoke-exposed 

individuals and 9 from non-exposed individuals (Supplementary Table 12, comparison of 

these two groups). As some of the RNA samples were of low quantity, a special low-input 

RNA-seq pipeline were applied at the Genomics, Epigenomics and Sequencing Core of 

University of Cincinnati (89, 90). Briefly, polyA RNA was isolated using NEBNext Poly(A) 

mRNA Magnetic Isolation Module (New England BioLabs, Ipswich, MA) and enriched 

using SMARTer Apollo NGS library prep system (Takara Bio USA, Mountain View, CA). 

Libraries were prepared using NEBNext Ultra II Directional RNA Library Prep Kit (New 

England BioLabs), indexed, pooled and sequenced using Nextseq 550 sequencer (Illumina, 

San Diego, CA). Approximately 40 million reads passing filter per sample were generated 

under the sequencing setting of single read 1×85 bp. Reads were demultiplexed and adapters 

were trimmed using the bcl2fastq Illumina software.

RNA-seq read alignment, differential expression analysis, pathway analysis, and co-
expression analysis

Read quality was checked using FastQC (91), then the reads were aligned to the 

Macaca mulatta genome (rheMac10, GenBank assembly accession: GCA_003339765.3) 

with Bowtie2 (92). Transcripts were quantified using RSEM (93). The data from 

RSEM was congregated and converted into DESeq2 (94) format using tximport (95). 

Sample clustering by expression (investigated via principal component analysis and 

hierarchical clustering) and detection of differentially expressed genes between wildfire 

smoke-exposed and non-exposed samples was done using DESeq2 (94). Individual weight 

was included as a covariate in the differential expression analysis. Two samples (one wildfire 

smoke-exposed and one non-exposed sample) were excluded from all subsequent RNA-

sequencing analyses because they were identified as outliers in the hierarchical clustering 

analysis (Supplementary Figure 6). The resulting log-fold change values were shrunken 

(following the recommendation from the DESeq2 reference manual) using apeglm (96). 

Differentially expressed genes had FDR < 0.05 and an absolute shrunken fold change 

of at least 1.2. The Ingenuity Pathway Analysis (IPA) software (QIAGEN Inc., https://
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www.qiagenbioinformatics.com/products/ingenuitypathway-analysis) was used for pathway 

analysis. Significantly enriched pathways in IPA had a p-value < 0.05.

Co-expressed modules of genes were found using WGCNA (22). The soft threshold (power) 

was set to 8 based on a plot of soft threshold vs scale free topology model fit. Modules 

that were too similar to one another (below a height of 0.5) were merged into one module. 

After merging, the final co-expression modules were tested for significant associations with 

wildfire smoke exposure and animal weight. Pathways enriched in genes in modules of 

interest were identified using IPA.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Average daily PM2.5 from April 2008 through October 2019 at the California Air Resources 

Board air monitoring station (site no. 57,577) located 2.7 miles southeast of the California 

National Primate Research Center on the University of California Davis campus. The dotted 

line at 35ug/m3 represent the 24-hour PM2.5 National Ambient Air Quality Standard. Note 

the arrow pointing to the early-life exposure event in macaques born in 2008. All other 

exposure events were shared between the two groups.
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Figure 2: 
Heatmap showing sample clustering based on methylation. The heatmap includes only 

differentially methylated regions (DMRs). The heatmap was normalized on a per row basis 

for visualization, therefore the values on the scales are relative rather than absolute.

Brown et al. Page 20

Environ Int. Author manuscript; available in PMC 2022 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Examples of differentially methylated regions (DMRs) between rhesus macaques exposed 

in the first three months of life to wildfire smoke and those that were not. A) IL4R (part 

of the STAT3 and Th2 canonical pathways). B) RXRG (part of the VDR/RXR Activation 

and the Aryl Hydrocarbon Receptor Signaling canonical pathways). C) TLR5 (toll-like 

receptor that is part of the Phagosome Formation canonical pathway). D) ITGB6 (part of 

the Paxillin Signaling and Integrin Signaling canonical pathways). Each dot represents the 

methylation percentage of one individual at one CpG site, while each line represents the 

smoothed average methylation level moving across the region. The red shaded boxes denote 

the specific DMR locations. Tracks for CpG islands (if present) or genes are included 

underneath each plot. For the gene tracks, a solid box indicates an exon, while the arrows 

indicate the direction of transcription.
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Figure 4: 
Enriched pathway analyses for differentially methylated regions (DMRs). Only the top ten 

(out of 186) enriched Ingenuity Pathway Analysis (IPA) canonical pathways are shown.
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Figure 5: 
Enrichment in chromHMM (88) states in A) all differentially methylated regions (DMRs), 

B) DMRs that were hypomethylated in wildfire smoke-exposed macaques, and C) DMRs 

that were hypermethylated in wildfire smoke-exposed macaques. The rows in the plot 

represent different datasets from different cell types from the NIH Roadmap Epigenomics 

Consortium (97). Epithelial and IMR90 are highlighted in the plots, as these are the closest 

to the nasal epithelial samples in our current study.
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Figure 6. 
Correlation plots between expression and methylation for A) MAPK10 (part of the CXCR4 

Signaling and the Leukocyte Extravasation Signaling canonical pathways) and B) CD44 
(part of the Leukocyte Extravasation Signaling and the Wnt/β-catenin Signaling canonical 

pathways). Each individual point represents one sample. Expression and methylation were 

significantly correlated (spearman p-value < 0.05) for both genes.
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Table 1:

Demographic characteristics of animal populations

2008 Birth Year 2009 Birth year P

Participants

 N 8 14

 Age at sample collection (yr) 11.2±0.2 10.3±0.1 P<0.001

 Weight at sample collection (kg) 8.61±1.60 10.11±2.78 0.12

 Genetic background

  Indian 7 13 1.0

  Mixed Indian-Chinese 1 1

 Corral diversity 8 13 1.0

Maternal Background

 Age at parturition (yr) 5.5±1.7 5.8±2.5 0.8

 Genetic background

  Indian 7 12 1.0

  Mixed Indian-Chinese 1 2

 Corral diversity 8 14 1.0

Ambient pollutant during pregnancy

  Days with PM2.5 higher than 35ug/m3 3±0 (38.2±1.5) 1±0 (39.8±0) N/A (0 SD)

  Mean PM2.5 concentration (μg/m3) 8.4±6.3 10.0±6.6 0.007

  Median PM2.5 concentration (μg/m3) 6.5 (4.3–10.6) 7.8 (5.1–13.4) 0.007

Ambient pollutants months 0–3

  Days with PM2.5 higher than 35ug/m3 10±1.0 (58.1±11.8) 0±0 P<0.0001

  Mean PM2.5 concentration (μg/m3) 14.6±16.3 9.1±3.7 P<0.0001

  Median PM2.5 concentration (μg/m3) 9.5 (6.0–15.6) 8.8 (6.4–11.4) P<0.0001

  Hours over California 1-h ozone standard 13±2.9 0±0 P<0.0001

  Mean ozone level (ppm) 0.032±0.020 0.029±0.017 P<0.001

  Median ozone level (ppm) 0.030 (0.016–0.045) 0.027 (0.016–0.040) P<0.001

Cumulative exposures through sampling date

  Days with PM2.5 higher than 35ug/m3 40±0 29±0.4 P<0.0001

  Mean PM2.5 concentration (μg/m3) 9.3±8.0 9.1±7.7 P<0.0001

  Median PM2.5 concentration (μg/m3) 8.4 (5.5–13.4) 8.6 (6.3–11.4) P<0.0001

  Hours over California 1-h ozone standard 24±0 7±0 N/A (0 SD)

  Mean ozone level (ppm) 0.026±0.015 0.026±0.015 P<0.001

  Median ozone level (ppm) 0.025 (0.015–0.036) 0.025 (0.015–0.036) P<0.001

Note: Age, weight and exposures are shown as mean ± (SD) or median (interquartile range), and compared using t test. Categorical variables 

(genetic background and corral diversity) are reported as group-specific numerical frequency and compared using Fisher’s exact tests. 35ug/m3 is 
the 24-hour PM2.5 National Ambient Air Quality Standard. 0.09ppm is the California 1-h ozone standard. For the “Days with PM2.5 higher than 

35ug/m3” rows, the mean ± SD of the exposure levels in μg/m3 for those days are shown in parentheses.
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Table 2

Methylation status of top ten predicted TF binding sites in public ChIP-seq datasets

Motif unmethylated partially methylated methylated

Fra1/FOSL1 0.68 0.32 0.00

Atf3 0.82 0.18 0.01

JunB 0.88 0.12 0.00

BATF 0.69 0.28 0.03

Fra2/FOSL2 0.90 0.10 0.00

AP-1/Jun 0.81 0.19 0.00

p63/TP53 0.46 0.35 0.19

NF1-halfsite(CTF)/NFIA 0.64 0.31 0.05
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