
Vol.:(0123456789)

SN Computer Science (2022) 3:164 
https://doi.org/10.1007/s42979-021-01000-0

SN Computer Science

ORIGINAL RESEARCH

Forecasting ATM Cash Demand Before and During the COVID‑19 
Pandemic Using an Extensive Evaluation of Statistical and Machine 
Learning Models

Alireza Fallahtafti1 · Mohammadreza Aghaaminiha2 · Sara Akbarghanadian3 · Gary R. Weckman3 

Received: 22 December 2020 / Accepted: 17 December 2021 / Published online: 15 February 2022 
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022

Abstract
The overarching goal of this paper is to accurately forecast ATM cash demand for periods both before and during the COVID-
19 pandemic. To achieve this, first, ATMs are categorized based on accessibility and surrounding environmental factors 
that significantly affect the cash withdrawal pattern. Then, several statistical and machine learning models under different 
algorithms and strategies are employed. In aiming to provide the feature matrix for machine learning models, some new 
influential variables are added to the literature. Finally, a modified fitness measure is proposed for the first time to correctly 
choose the most promising model by considering both the prediction errors and accuracy of direction’s change simultaneously. 
The results obtained by a comprehensive analysis—a statistical analysis together with grid search and k-fold cross-validation 
techniques—reveal that (i) category-wise prediction enhances forecasting quality; (ii) before COVID-19 and in times when 
there are only minor disturbances in withdrawal patterns, forecasting quality is higher, and in general, the machine learning 
models can more appropriately forecast ATM’s cash demand; (iii) despite studies in the literature, sophisticated models 
will not always outperform simpler models. It is found that during COVID-19 and in times when there is a sudden shock in 
demand and massive volatility in withdrawal patterns, the statistical models of the autoregressive integrated moving average 
(ARIMA) and seasonal ARIMA (SARIMA) can mainly provide better forecasting likely due to high performance of such 
models for short-term prediction, while minimizing overfitting.

Keywords ATM cash demand · COVID-19 · Machine learning · Time series forecasting · Statistical models

Introduction

Automated Teller Machines (ATMs) provide convenience to 
the customers and support various financial services round 
the clock without the need for a human clerk. Because of 
this, over the past years, the number of ATMs in the world 
has increased, reaching over 3 million machines [7]. Finan-
cial institutions (e.g., banks, credit unions, and stock broker-
ages) might have thousands of ATMs and, in turn, millions 
of transactions over the course of a year. In the case of Iran, 
for example, the number of ATMs and debit cards are about 
60 thousand and 23 million, respectively [14]. Aiming to 
maximize income from transactions and satisfy customer 
demand for cash, some banks might store as much as 40% 
more banknotes in ATMs than they actually need [38]. How-
ever, loading excess cash in ATMs, rather than only loading 
in what the demand roughly is, will increase operational 
and opportunity costs [9, 20, 21]. Conversely, if there is not 
enough cash loaded into ATMs, there will be “out of cash” 
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transactions, resulting in the bank’s reputation being dam-
aged, as well as lowered income and customer satisfaction. 
Thus, a more accurate prediction of ATM currency demand 
can help financial institutions avoid being tempted to fill 
ATMs with too many notes and earn more profit by mobi-
lizing idle cash and generating additional revenue through 
investments—specifically in countries with high-interest 
rates and overnight interest rates.

Much effort has been devoted to the context of predicting 
ATM cash demand by considering different features (e.g., 
historical patterns, geographical location, and seasonal fac-
tors) as well as predictive models (e.g., parametric or non-
parametric). However, choosing the most efficient model to 
appropriately forecast an ATM’s cash demand is one of the 
most important activities. According to an extensive study 
in time series prediction conducted by Parmezan et al. [33], 
no unique model can always be considered the best, because 
each model has its own benefits and limitations. More spe-
cifically, different problems have different components and 
attributes that need to be tackled separately. One primary 
assumption of models in the literature is that the amount of 
cash demand and withdrawal patterns are not overly volatile 
(though some studies have investigated chaos time series 
and uncertainty in demand). However, forecasting demand 
during a disaster and unprecedented challenges (e.g., earth-
quake, hurricane, and pandemic) substantially differs from 
the norm. The ongoing coronavirus (COVID-19) pandemic 
and the measures (e.g., total or partial lockdown) taken to 
prevent its outbreak have sharply decreased cash demand 
and significantly changed cash withdrawal patterns. In this 
context—a sudden shock in demand and massive volatil-
ity in the withdrawal pattern—selecting the most efficient 
model with appropriate diagnostic performance is of para-
mount importance as it relates to accurately predicting ATM 
cash demand.

Motivated by a real-world case in a private bank, this 
paper precisely addresses this gap in the literature by pro-
posing an extensive evaluation that can forecast ATM cash 
demand before and during the COVID-19 outbreak. To 
accomplish this, first, we collected real data from three 
different categories of ATMs, based on their accessibility 
and environmental factors that substantially affect both the 
daily cash demand and the withdrawal pattern. Next, sev-
eral predictive models (i.e., parametric and non-parametric) 
are applied to the collected data and compared systemati-
cally. Parametric models include a moving average (MA), 
simple exponential smoothing (SES), Holt’s exponential 
smoothing (HES), autoregressive integrated moving aver-
age (ARIMA), and seasonal autoregressive integrated 
moving average (SARIMA), while non-parametric models 
include an artificial neural network (ANN, also known as a 
multi-layered perceptron or MLP), support vector machines 
(SVM), random forest (RF), and k-nearest neighbors (KNN). 

Two algorithms are used to generate the feature matrix of 
non-parametric models. In the first algorithm, a named data-
sequence—the cash withdrawal of the preceding days (i.e., 
prior 7 days)—is used as the input variables to forecast any 
new observation's cash withdrawal data. However, the sec-
ond algorithm, named regular-features, utilizes features such 
as day-of-the-week, month, season, holidays, and even some 
new and influential time-related independent variables as 
the input variables to predict cash withdrawal for further 
observations. To recursively include each new observation 
in the learning process, two strategies (namely approximate 
and updated) are employed [33]. It should be mentioned 
that the improvement of the performance of these models 
is not possible without finding the optimal combination of 
hyperparameters. That being said, the main hyperparameters 
of all models are selected and tuned through an exhaustive 
grid search algorithm. The evaluation metric is set to be the 
Fitness measure proposed for the first time in this study. 
The presented metric simultaneously considers the differ-
ence between the predicted and the actual values, as well 
as the accuracy of direction’s changes—particularly when 
the pattern abruptly changes. Finally, all tuned models are 
trained and tested to best forecast the cash withdrawal for all 
three categories of ATMs for periods both before and during 
the COVID-19 pandemic to select the most promising model 
through a comprehensible analysis.

The rest of this paper can be summarized as follows. In 
Section “Literature Review”, previous relevant studies are 
reviewed. Section Methodology introduces the methodology 
and research process, followed by the results and discussion 
in Section “Results and Discussion”. Finally, Section “Con-
clusion” reports the conclusion and possible directions for 
future work.

Literature Review

Different approaches have been researched in forecasting 
ATM cash demand; among them, the most commonly used 
methods are time series modeling and machine learning 
algorithms [21]. In the following section, we review the lit-
erature on modeling and analyzing ATM cash withdrawal 
predictions.

Simutis et al. [38] derived daily predictions using 3 years 
of data from a bank in Lithuania. They employed the Lev-
enberg–Marquard algorithm for training neural networks 
(NNs) and then applied Artificial Neural Networks (ANN) 
to estimate the daily and weekly ATM cash demand. They 
used MAPE (mean absolute percentage error) as a perfor-
mance criterion and obtained prediction errors for simulated 
and real-case data equal to 5–10% and 25–30%, respectively. 
Simutis et al. [37] employed both ANN and support vector 
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regression (SVR) on a 2-year dataset. They boosted the pre-
diction quality by modeling days of the month, labeling each 
day from 1 to 31.

The ATM demand forecasting problem became more 
popular after the “Forecasting Competition for Artificial 
Neural Networks and Computational Intelligence” (NN5 
Competition) in [17]. The competition had some rules and 
assumptions, such as using the same model for all ATMs; 
using the same performance measure of symmetric MAPE 
(SMAPE); 2-year time frame data of 111 empirical ATM 
daily cash withdrawal series in England; and a demand 
prediction for the next 56 days. Andrawis et al. [4] were 
ranked first among the computational intelligence models in 
the competition. Their approach consisted of two essential 
components, including a combination of forecasts from dif-
ferent models (i.e., ANN, linear models, and regression) and 
seasonality modeling, which achieved 18.95% of SMAPE. 
Ramirez and Acuna [35] obtained the second place in the 
NN5 competition using an MLP neural networks model with 
a high degree of accuracy—over 85% for long-term predic-
tions. Some other works for NN5 Competition data were 
presented by Coyle et al. [16] and Wichard [46]. The former 
utilized self-organizing fuzzy neural networks and obtained 
21.5% SMAPE, while the latter predicted time series with 
recurring seasonal periods and developed a model based on 
a combination of forecasting methods via a simple average 
of forecasts, achieving 22.2% SMAPE. Teddy and NG [40] 
incorporated local learning to model the complex dynamics 
of heteroscedastic time series effectively. Later, using the 
same dataset, Taieb et al. [39] obtained the best results with 
a multi-input, multi-output forecasting strategy that selected 
autocorrelation selection criteria using input variable selec-
tion, deseasonalization, and average weight combination. 
The end result was an SMAPE accounting for 18.81%. Ven-
katesh et al. [43] yielded an average SMAPE of 18.44% via 
clustering ATMs and employing general regression NNs 
(GRNNs).

Forecasting the amount of money that must be placed in 
ATMs was also conducted on other ATM data. For instance, 
Broda et al. [12] presented a model based on time series 
and regression using the 3-year data from a bank in Serbia. 
The modeling approaches were ARIMA and exponential 
smoothing. Gurgul and Suder [24] modeled daily withdraw-
als from selected ATMs of the “Euronet” Network using 
switch ARIMA. Moreover, a hybrid of NN with a genetic 
algorithm created to predict cash withdrawal was proposed 
by Bhandari and Gill [11]. Recently, Ekinci et al. [21] inves-
tigated optimal ATM replenishment policies for a bank in 
Turkey and introduced linear programming to minimize both 
the holding cost and customer dissatisfaction.

Some researchers studied the uncertainty and chaos in 
an ATM’s daily cash demand. For instance, Darwish [18], 
Zandevakili, and Javanmard [47] incorporated fuzzy logic 

in models to deal with individual features of uncertainty and 
cover noise data by employing an Interval Type-2 Fuzzy NN 
(IT2FNN) method. Additionally, Arora and Saini [6] applied 
the Fuzzy ARTMAP Network to approximate the ATM cur-
rency demand using selected parameters for the simulated 
data, and Ekinci et al. [21] used robust optimization to fore-
cast the uncertain demand using prediction intervals. Ven-
katesh et al. [43] stated that chaos was present in the NN5 
Competition dataset; therefore, to appropriately estimate the 
cash demand, they used the TISEAN tool to calculate the 
optimal lag and embedding dimension of each series. In a 
more recent example, Vangala and Vadlamani [42] modeled 
chaos in the ATM cash withdrawal time series and predicted 
the money demand using deep learning methods.

In the literature, many studies examined time-related 
independent variables to capture the seasonality in the data. 
However, some significant features, such as the number of 
consecutive holidays ahead, have not been included in the 
previous studies. Besides, only a few papers considered both 
time- and location-related variables (e.g., [20, 21]), though 
the location of ATMs can meaningfully affect the amount 
of daily cash withdrawn from these ATMs. For instance, 
Ekinci et al. [20] included a location feature as an independ-
ent variable of the model and proposed grouping ATMs into 
nearby-location clusters. However, using a more meticulous 
outlook, the nearby-location and/or the same geographical 
location of ATMs do not necessarily indicate a similar with-
drawal pattern, since the points of interest in the ATM’s 
vicinity might be different. For example, two ATMs located 
on different floors of a mall have the same geographical 
location, but if ATM 1’s vicinities are company offices, and 
those of ATM 2 are recreation and shopping centers, the 
daily withdrawal pattern might be completely different. The 
reason for this is that the withdrawal of cash from ATM 1 is 
conducted mainly on weekdays throughout the year, while 
the money withdrawal from ATM 2 is made mostly on week-
ends and during specific months. Thus, to better capture the 
seasonality in the data and apprehend inherently different 
established usage patterns, we have categorized the ATMs 
based on their accessibility and surrounding environments.

Furthermore, to the best of the authors' knowledge, the 
studies cited above mostly predicted the ATM cash demand 
with normal volatility in the withdrawal pattern, utilized a 
few prediction models—mainly non-parametric methods—
and employed only one performance measure (e.g., MSE, 
SMAPE, and R2) to compute the error. Moreover, none of 
the previous ATM cash withdrawal time series contains a 
huge amount of volatility that stemmed from a disaster or 
unprecedented challenge (e.g., pandemic). Alongside the 
contributions already mentioned, this study aims to fill the 
gap and propose a comprehensive evaluation for ATM cash 
demand prediction both before and during the COVID-19 
pandemic (i.e., just after a disruption in demand) to choose 
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the most promising algorithms based on a new performance 
metric that simultaneously takes both the error and accuracy 
of direction’s change into account.

Methodology

Dataset

The purpose of this study is to propose an extensive evalua-
tion that accurately predicts ATM cash demand both before 
and during the COVID-19 pandemic for different categories 
of ATMs. With that aim, we first identify three different 
categories for ATMs based on their accessibility and envi-
ronmental factors, which significantly affect both the daily 
cash demand and the withdrawal pattern. These categories 
are comprised of ATMs that are located in one of the fol-
lowing districts: (i) residential districts—ATMs where the 
environment is dominated neither by office companies nor 
by shopping centers; (ii) business districts—characterized 
by high cash withdrawal on weekdays and low cash with-
drawal on the weekend; and (iii) shopping and recreation 
districts—cash withdrawals mostly on weekends and in par-
ticular months.

The collected data show the daily cash withdrawal 
from each category of ATMs (i.e., ATM 1 in the residen-
tial district, ATM 2 in the business district, and ATM 3 in 
the shopping and recreation district) for three consecutive 
years from 03/21/2017 to 03/19/2020, according to the solar 
calendar used in the studied case, a private bank in Tehran, 
Iran. ATMs in each category have a similar distribution, and 
ATMs used in this study are the most representative of their 
group. The datasets are publicly available at https:// github. 
com/ af551 515/ Forec asting_ ATM_ Cash_ Demand. Figure 1 
illustrates the time series of cash withdrawals from ATMs 
1, 2, and 3, while Fig. 2 depicts the effect of the day-of-the-
week on the cash withdrawal pattern. For each ATM, the 
reported values are averaged over all 3 years and normalized 
accordingly. It should be noted that in Iran, the weekdays 
are Saturday to Wednesday, and weekends are Thursday and 
Friday. Generally, as is shown in Fig. 1, in the last month of 
the first 2 years, the cash demand has an upward trend for 
all ATMs. However, the last month of the third year has a 
contrary trend because of the beginning of the COVID-19 
pandemic and the announcement of a stay-at-home order. 
Furthermore, as can be seen in Fig. 2, ATMs 1 and 2 have 
a high cash demand during weekdays, followed by a low 
amount of money withdrawn on weekends. However, the 
cash demand from ATM 2 (located in business districts) 
is lower because fewer people—mostly personnel of the 
companies/agencies in the vicinity—have access to such 
ATMs. ATM 3 has an opposite trend, with a huge cash with-
drawal on weekends rather than on weekdays. The ATMs are 

compared with other time-related features (i.e., day-of-the-
month and number of consecutive holidays ahead) in Fig. 
S1B, C of the supplementary material.

The given time frame of 3 years is split by the period 
that the COVID-19 pandemic was observed in society. From 
02/20/2020 to 03/19/2020 (i.e., the last month of the availa-
ble data) is the period in which the pandemic and preventive 
measures (e.g., stay-at-home-orders) began; thus, this period 
is selected as the during the COVID-19 testing set (the entire 
month 12 on the solar calendar), in which the cash demand 
decreased remarkably followed by significant volatilities in 
the withdrawal pattern just after implementing prevention. 
To be consistent with the length of testing sets, the before 
COVID-19 testing set was selected between 1/21/2020 and 
02/19/2020 (the entire month 11 on the solar calendar). The 
training set comprises the balance of the data, which starts 
from 03/21/2017 and ends 01/20/2020 (1036 days in total). 
The aim is to choose the most promising predictive model 
in two different situations in times when there is a minor 
disturbance in the pattern (here called as before COVID-19) 
or a significant disturbance in demand and radical changes in 
the withdrawal pattern (here named as during COVID-19). It 
is important to note that we first analyzed ATMs 1, 2, and 3 
separately due to their inherently different established usage 
patterns; then, we took the mean of these three machined, 
analyzed the ATM mean completely independently, and 
compared the results. Figure 3 represents the splitting of 
the data for ATM 1. The same splitting approach was used 
for the other ATMs (see Figs. S2–S4).

Prediction Approaches

Time series are ordered sequences of datapoints at equally 
spaced time intervals. Before applying any prediction 
method on a time series, one should ensure is that the data 
are discrete and uniformly sampled [22]. Figure 1 shows 
that the given data in this study satisfy such a requirement. 
In general, there are two types of time series prediction 
approaches, namely, (i) parametric and (ii) non-parametric. 
Parametric techniques are statistical methods that require 
some prior knowledge about the distribution of data [33]. 
In contrast, non-parametric approaches, known as machine 
learning (ML) prediction methods, have no such limitations 
and are ready to be applied to any non-linear series, as the 
distribution of data is not an issue [28, 33].

The parametric models used in this study are MA, SES, 
HES, ARIMA, and SARIMA. A thorough explanation of 
each of these models is given elsewhere [8, 15, 19, 41], but 
each model will be briefly discussed here. The MA model 
uses the arithmetic mean of the last n values of datapoints 
to predict future datapoints [30]. The SES model behaves 
similarly, but unlike MA, it uses exponentially decreasing 
weights for past datapoints. This model emphasizes the more 

https://github.com/af551515/Forecasting_ATM_Cash_Demand
https://github.com/af551515/Forecasting_ATM_Cash_Demand
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Fig. 1  Daily normalized cash withdrawal from ATMs 1, 2, and 3. The mean of the three ATMs’ daily cash demand, named the ATM mean, is 
shown in Fig. S1A

Fig. 2  The day-of-the-week withdrawal pattern from different types of ATMs. Note that, in Iran, the weekdays are from Saturday to Wednesday, 
while the weekend days are Thursday and Friday. See Fig. S1B, C for more comparison of ATMs in terms of time-related features
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recent observations by giving higher weights to them com-
pared to datapoints from the more distant past. Compared 
to the SES, the HES model employs both weight and trend 
parameters to avoid the methodical error (underestimation/
overestimation of the actual data) that often occurs in the 
SES [32]. The ARIMA model makes its prediction using the 
difference between the values of datapoints, rather than their 
actual values. In this model, the number of lags observed in 
the data (p), the number of times datapoints are subtracted 
to make the series stationary (d), and the size of the moving 
average window (q) are the substantial hyperparameters that 
should be carefully chosen based on some statistical analysis 
[27, 33]. To compensate the ARIMA limitation for the series 
with seasonality, the SARIMA model plays a prominent role 
by taking the seasonal autoregressive order (P), seasonal 
difference order (D), seasonal moving average order (Q), 
and the number of time-steps for a single seasonal period 
(s) into account [33].

The non-parametric models employed in this study are 
well-known ML regressors, namely MLP, SVM, RF, and 
KNN. The description of each model is beyond the scope 
of the current study, but each is briefly discussed here for 
context. The MLP, well known as a class of feedforward 
artificial neural network, is a popular stochastic technique 
used for forecasting purposes via performing a non-linear 
mapping from previous datapoints to future datapoints [33, 

43]. The structure of the network (number of layers: n-hid-
den-layers and number of neurons in each layer: n-nodes) 
is the critical part of this model required to obtain the high-
est possible accuracy. MLP is a self-adaptive method, using 
interconnected nodes called neurons, which are placed in 
multiple layers. The nodes of adjacent layers are linked by 
the edges of weights that are adjusted continuously as learn-
ing proceeds [10]. The SVM has been successfully applied 
to a variety of different classification and regression prob-
lems [2, 25, 36]. The SVM model accomplishes its predic-
tion by optimizing hyperplanes as well as a support vector’s 
positions to minimize the number of generalization errors. 
The cost and gamma are the two main hyperparameters that 
control the hyperplanes’ and support vectors’ functional-
ity, which are required to be tuned before any further inves-
tigation [2, 3]. Another well-known ML regressor is RF, 
which constructs a combination of multiple decision trees 
for regression purposes [34]. The number of trees (n-trees) 
and the fraction of features used to grow each tree (max-
features) are the primary hyperparameters that need to be 
tuned for this method [29]. The KNN regressor, unlike the 
stochastic models, looks for the k most similar samples that 
have been observed in the training set for each new sample. 
By taking the weighted average of their values, the regres-
sor then reports a predicted value for that new sample. The 
weighting average can be dependent or independent of the 

Fig. 3  Splitting data into training and testing sets for ATM 1. A 
shows all available data, while B magnifies the last 3 months of the 
dataset for the sake of clarity. The length of the testing set is 30 days, 

while the training set is 1036 days long. Figures S2–S4 contains the 
same information for other ATMs



SN Computer Science (2022) 3:164 Page 7 of 19 164

SN Computer Science

distance. Thus, the number of neighbors (n-neighbors) and 
the method of averaging (avg-method) are the two main 
hyperparameters of the KNN algorithm considered in this 
study [21, 23].

The non-parametric models require an attribute-value 
table (X, also known as a feature matrix) along with the 
target vector (y: cash withdrawal). Two different algo-
rithms, namely, data-sequence and regular-features, are 
used in this study to generate the feature matrix. The 

models suffixed “_DS” constitute ML models in which a 
data-sequence algorithm was used to build their feature 
matrix. In contrast, ML prediction models without any suf-
fix are non-parametric models in which a regular-features 
algorithm was applied to generate their feature matrix. The 
hierarchy of all employed prediction models in the current 
study is displayed in Fig. 4.

In the data-sequence algorithm, the feature matrix is 
constructed via the transposition of the data-sequence with 
the sliding window of length 7 (the yellow-shaded rows 
in Fig. 5). However, in the regular-features algorithm, the 
feature matrix is described by 12 input variables repre-
sented in Table 1 

The first eight features were considered in the previous 
studies [20, 21], while the last four features were added to 
accurately model the cash withdrawal pattern (Table 1). 
Importantly, the last feature of the table is a new influential 
independent variable, which denotes how many consecu-
tive holidays (including weekends) are ahead of each day. 
Figures S1C and 8 show the influence of this feature on 
the cash withdrawal pattern. Note that the special days are 
“Mother’s Day”, “Father’s Day”, “Teacher’s Day”, “Stu-
dent’s Day”, “College Day”, “Valentine’s Day”, “Love 
Day”, and “Yalda (national day).” However, the exact 
types of special days are not considered; instead, “yes” 
or “no” values are employed. The same approach was 
employed for the categories of holidays that are “New Year 
(4 days)”, “Religious Holidays (17 days)”, and “National 
Holidays (6 days).”

Prediction models

Parametric Non-parametric

Data-sequence Regular-features

MLP_DS

SVM_DS

RF_DS

KNN_DS

MLP

SVM

RF

KNN

SES

HES

ARIMA

SARIMA

MA

Fig. 4  Hierarchy of employed time series prediction models in this 
study

Data-sequence algorithm Regular-features algorithm

X: feature matrix, y: target vector X: feature matrix, y: target vector

x1 x2 x3 x4 x5 x6 xl=7 y x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 y

zt-7 zt-6 zt-5 zt-4 zt-3 zt-2 zt-1 zt s m dm dy dw sd hd wd nx tm wh ah zt

NA NA NA NA NA NA NA z1 1 1 1 1 3 No Yes No Yes Yes Yes 3 z1
NA NA NA NA NA NA z1 z2 1 1 2 2 4 No Yes No Yes Yes Yes 2 z2
NA NA NA NA NA z1 z2 z3 1 1 3 3 5 No Yes Yes Yes Yes Yes 1 z3
NA NA NA NA z1 z2 z3 z4 1 1 4 4 6 No Yes Yes No No Yes 0 z4
NA NA NA z1 z2 z3 z4 z5 1 1 5 5 7 No No No No No No 0 z5
NA NA z1 z2 z3 z4 z5 z6 1 1 6 6 1 No No No No No No 0 z6
NA z1 z2 z3 z4 z5 z6 z7 1 1 7 7 2 No No No No No No 0 z7
z1 z2 z3 z4 z5 z6 z7 z8 1 1 8 8 3 No No No No No No 0 z8
z2 z3 z4 z5 z6 z7 z8 z9 1 1 9 9 4 No No No Yes Yes No 4 z9
z3 z4 z5 z6 z7 z8 z9 z10 1 1 10 10 5 No No Yes Yes Yes No 3 z10

… …
… …

z1088 z1089 z1090 z1091 z1092 z1093 z1094 z1095 4 12 29 365 5 No Yes Yes Yes Yes Yes 4 z1095

Fig. 5  Data-sequence algorithm (left) vs. regular-features algorithm 
(right) to build a feature matrix of non-parametric models. The 
shaded rows on the left panel show the window of length 7 for the 

data-sequence algorithm based on the autocorrelation matrix results 
that report a lag of 7 for the available data
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Iteration Strategies

The multi-step prediction approach is an intuitive method 
used in the prediction of the sequence of values in time 
series problems via using observed values in the past [7]. 
One of the well-known strategies in multi-step time series 
forecasting is a recursive strategy (also known as walk-for-
ward). This approach provides a forecast using either the 

previous forecast (approximate iteration) or respective actual 
value (updated iteration) based on the single constructed 
model. The approximate iteration is a recursive strategy that 
uses the previous predicted value in determining the esti-
mation of the next forecast value, while the updated itera-
tion adopts the actual values in predicting the next value 
recursively [33]. Figure 6 schematically compares these two 
iteration strategies. For both strategies, a history of feature 

Table 1  Selected input variables 
(features) considered in the 
regular-features algorithm

Description Symbol Range Type

Season s [1, 2, 3, 4] Numerical
Month m [1–12] Numerical
Day of month dm [1–30] Numerical
Day of year dy [1–365] Numerical
Day of week dw [1–7] Numerical
Special day sd {yes, no} Categorical
Holiday hd {yes, no} Categorical
Weekend wd {yes, no} Categorical
The next 3 days includes special day or holiday nx {yes, no} Categorical
Tomorrow is a special day or holiday tm {yes, no} Categorical
Weekend is a special day or holiday wh {yes, no} Categorical
Number of consecutive holidays ahead ah [1–5] Numerical

Fig. 6  Approximate iteration (left) vs. updated iteration (right) used to build the feature matrix as well as the target vector. The first 1,036 data-
points are in the training set, so no target-predicted values are shown for them
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matrix and target vectors have been constructed to generate 
the future observations’ (next days’) input variables; how-
ever, to prevent the forecasted observations from entering 
into the learning process, this history was not added to the 
training set when the model was fitted. The approximate 
iteration was only applied to the parametric and non-para-
metric with data-sequence algorithm methods, because the 
non-parametric models with regular-features algorithms 
(MLP, SVM, RF, and KNN) are independent of previously 
predicted values, and the history is not required to generate 
the input variables. Thus, the results of approximate and 
updated iterations are the same for these models.

Performance Measurement Metrics

Mean squared error (MSE) is a common metric used to eval-
uate the performance of predictions. The MSE, as formal-
ized by Eq. (1), is calculated by the average squared differ-
ence (error) between the actual values and prediction values

where N is the number of observations in the testing set, and 
yt and ŷt represent the actual and predicted values at time t, 
respectively. The MSE is computed to figure out how far 
the prediction values are from the actual values in terms of 
quantity. The lower MSE, the higher accuracy of the predic-
tor. However, this metric’s limitation is that the prediction 
trend in time series is not clear—specifically when the pat-
tern abruptly changes. The prediction of the change in direc-
tion (POCID) metric, denoted by Eqs. (2) and (3), addresses 
the issue by mapping the prediction trend and estimating the 
accuracy of the direction’s changes

where yt and yt−1 are the actual values at times t and t-1, 
while ŷt and ŷt−1 are the predicted values obtained at times 
t and t − 1. POCID is applied to examine the trend of the 
prediction set compared with the actual testing set. The 
higher value of POCID, the better the mapping of the trend. 
However, the POCID metric does not consider the exact 
closeness of the prediction to the actual values. Therefore, 
considering the metric’s limitations, it is not advisable to 
use either measure solely for time series forecasting. In this 
paper, we propose a new measure to properly evaluate pre-
dictors’ performance by considering both MSE and POCID 
in one metric. The proposed metric modifies the fitness 

(1)MSE =
1

N

N
∑

t=1

(

ŷt − yt
)2
,

(2)POCID = 100

∑N

t=1
Dt

N

(3)Dt =

{

1,
(

ŷt − ŷt−1
)(

yt − yt−1
)

> 0

0, otherwise ,

function evaluations in the literature [29] by giving more 
weight to the MSE in the denominator to make the Fitness a 
more inclusive measurement of both POCID and MSE. The 
fitness metric is expressed in Eq. (4) as follows:

The min and max possible values of the Fitness metric are 
0 and 100, respectively. The greater Fitness value indicates 
better forecasting of fluctuations in time series and better 
accuracy of the prediction model. In the denominator, the 
MSE is multiplied by a factor of 10 to give some weight to 
it compared to the number 1 that it was added to. Since 1 is 
much greater than the MSE values, if MSE is not multiplied 
by the factor of 10, the Fitness value would become rela-
tively the same as POCID, which is not desired.

Experimental Setup

All predictive models were implemented in Python 3.8 using 
numerous Python libraries. The algorithms were performed 
on a computer with a Windows 10 operating system and a 
CPU Core i7-6700 with 16 GB of memory.

Design of Elements

The performance of the prediction algorithms was quite 
sensitive to the value of the hyperparameters [45] and thus 
needed to be tuned before comparing their performance. 
First, three statistical analyses, including a fuller test, auto-
correlation function (ACF) plot, and partial autocorrelation 
function (PACF) plot, were employed to initially estimate an 
acceptable range of required parameters for the parametric 
models. Then, the grid search method with a fivefold cross-
validation algorithm was utilized to tune the hyperparam-
eters of all of the models.

The fuller test is a test that is known to ensure the data are 
stationary. This test reports the p value and test statistics of 
the given time series. By definition, stationary time series 
hold the p value and test statistics lower than 0.05 and criti-
cal values, respectively (see Table 2 for more details). As 
is shown, ATM 1, ATM 2, and ATM (mean) are stationary, 
while ATM 3 requires a transformation to become stationary. 

(4)Fitness =
POCID

1 + 10 ×MSE
.

Table 2  Fuller test results for the ATMs time series

ATM 1 ATM 2 ATM 3 ATM (mean)

Test statistic – 6.19 – 4.44 – 2.26 – 3.88
p Value 6.0e– 8 2.5e– 4 1.8e– 01 2.1e– 3
Critical values:1% – 3.43 – 3.43 – 3.43 – 3.43
Critical values:5% – 2.86 – 2.86 – 2.86 – 2.86
Critical values: 10% – 2.56 – 2.56 – 2.56 – 2.56
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Our results suggest that the first-order differencing was 
enough to make ATM 3 stationary (see Fig. S6). Thus, the 
differentiation order (d) of 0 or 1 has been selected for the 
range of d parameter for the ARIMA and SARIMA models.

The ACF and PACF plots are the key analysis when it 
comes to approximating the autoregression, moving average, 
and other seasonality parameters of non-parametric models. 
To obtain a decent range for other parameters of the non-
parametric models, we estimated the ACF and PACF plots 
of cash withdrawal data for both d values of 0 and 1 (Fig. 7). 
Looking at the ACF, a seasonal lag of 7, 14, 21, etc. (every 
week) is clear and means that the number of time-steps for 
a single seasonal period (s) is 7. Giving the significant non-
seasonal lag of 1, 6, 7, 8, and 9 suggests that the autoregres-
sive order (p) is in this range. The moving average (q) of 0 
or 1 is good enough to be applied. The positive value of s 
indicates that the seasonal autoregressive order (P) is greater 
than or equal to 1 [13], and since P + Q should not exceed 

2 [13], the seasonal moving average order (Q) was found to 
be either 0 or 1.

Consequently, this initial analysis suggests that a possible 
model for ATM 1 is an ARIMA (7,1,0) and SARIMA (1,1,0) 
(1,1,0)7. These models, along with some variations, have 
been used to find the best models according to the Fitness 
metric. The same statistical analysis for the other ATMs was 
performed, and the results are presented in Figs. S5–S7.

For the tuning process, a range of values for the hyper-
parameters of all models is considered, and accordingly, 
several sub-models are then constructed. Afterward, these 
sub-models are compared thoroughly, based on the proposed 
fitness metric. \* MERGEFORMAT

Table 3 summarizes the utilized hyperparameters of each 
model, coupled with their designed range of values. The 
selected values corresponding to each category of ATMs are 
presented in Tables S1–S4. In addition, the full comparison 
of the sub-models of each employed model for all ATMs 

Fig. 7  The ACF and PCF plots for ATM 1 time series with differencing orders of A 0, and B 1
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alongside the corresponding Fitness scores is available 
in Tables S5–S14. The selected best models from Tables 
S1 to S4 are used hereafter for further comparisons and 
predictions.

It is necessary to mention that the employed MA method 
is set to always have a window of 7, since we observed the 
seasonal lag of 7, 14, 21, etc. As suggested, the default 
parameters of the corresponding packages are used for the 
SES and HES models.

Results and Discussion

Features Importance

To evaluate the importance of features in the non-parametric 
models embedded with the regular-features algorithm, we 
estimated the importance of features using random forest 
(RF) regressor. Figure 8 depicts the results and produces 
the rank of features in such a way features, including “day 
of year,” “day of month,” “weekday,” “month,” and “n HDs 
ahead” are the most influential attributes selected for ATM 

1. The latter feature that stands for the number of consecu-
tive holidays ahead is one of the proposed attributes in this 
paper for the first time. As shown, such a feature is among 
the factors with the greatest impact in estimating the amount 
of cash withdrawal for all ATMs (see Fig. S8).

Comparison of Models

In this study, the performance of predictive models on 
forecasting the cash demand for different ATMs both 
before and during the COVID-19 pandemic with approxi-
mate and updated iteration strategies are extensively 
evaluated. Figure 9 reports the performance of predictors 
(i.e., parametric, non-parametric with data-sequence, and 
regular-features) on ATM 1 with an approximate itera-
tion strategy both before COVID-19 (Fig. 9A) and after 
COVID-19 (Fig. 9B). Results obtained with the approxi-
mate iteration strategy in Fig.  9 show that the overall 
performance of predictive models before COVID-19 was 
significantly better than those during COVID-19. This 
observation was expected, since the predictive algorithms 
perform better when there is a more stable pattern, not 

Table 3  Description and range of values of the hyperparameters for the employed models

Method Hyperparameters’ description Abbreviation Values’ range

ARIMA Autoregressive order AR (p) [1, 6, 7, 8, 9]
Differentiation order I (d) [0, 1]
Moving average order MA (q) [0, 1]

SARIMA Autoregressive order AR (p) [1]
Differentiation order I (d) [0, 1]
Moving average order MA (q) [0, 1]
Seasonal autoregressive order P [0, 1]
Seasonal difference order D [0, 1]
Seasonal moving average order Q [0, 1]
The number of t-steps for a single seasonal period s [7]

MLP_DS Number of hidden layers n-hidden-layers [1, 2, 3]
Number of neurons per hidden layer n-nodes [2, 4, 6, 8, 10]

SVM_DS Regularization parameter Cost [1, 5, 10, 100, 1000]
Kernel coefficient Gamma [1.0, 0.1, 0.01, 0.001, 0.0001]

RF_DS Number of trees (estimators) in the forest n-trees [10, 50, 100, 200, 500]
Number of features to consider for best splitting Max-features [0.6, 0.7, 0.8, 0.9, 1.0]

KNN_DS Number of neighbors n-neighbors [3, 4, 5, 6, 7]
Weight function Weights [“uniform”, “distance”]

MLP Number of hidden layers n-hidden-layers [1, 2, 3]
Number of neurons per hidden layer n-nodes [2, 4, 6, 8, 10]

SVM Regularization parameter Cost [1, 5, 10, 100, 1000]
Kernel coefficient gamma [1.0, 0.1, 0.01, 0.001, 0.0001]

RF Number of trees (estimators) in the forest n-trees [10, 50, 100, 200, 500]
Number of features to consider for best splitting Max-features [0.6, 0.7, 0.8, 0.9, 1.0]

KNN Number of neighbors n-neighbors [3, 4, 5, 6, 7]
Weight function Weights [“uniform”, “distance”]
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only in time series forecasting but also in other predic-
tion fields. Before COVID-19 (Fig. 9A), in which there 
is only a minor disturbance in the pattern, generally, non-
parametric models overshadowed the parametric models, 
demonstrating the better performance of machine learning 
models than the statistical models (see the same results 
in [5, 26, 42]). More specifically, non-parametric models 

with regular-features, including SVM, RF, and KNN, out-
performed the others. Among all models, RF reported the 
highest performance, with a Fitness equal to 68.87 com-
puted by MSE and POCID at 0.0101 and 75.86, respec-
tively. However, during COVID-19, in which the ATM 
cash withdrawal pattern sharply went into a downward 
trend, the performance of non-parametric models with 

Fig. 8  (ATM 1) The importance of employed features in non-parametric-regular-feature models. The results of other ATMs are reported in Fig. 
S8

Fig. 9  (ATM 1) Comparison of performance measures for differ-
ent models (parametric: MA, SES, HES, ARIMA, and SARIMA; 
non-parametric-data-sequence: MLP_DS, SVM_DS, RF_DS, and 
KNN_DS; and non-parametric-regular-features: MLP, SVM, RF, and 

KNN) in the prediction of cash demands with “approximate” itera-
tion. A Before and B during the COVID-19 pandemic. Figures S9–
S11 report the results of other ATMs
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regular-features notably decreased; however, performance 
loss in parametric models and non-parametric models with 
data-sequences were insignificant, and in some cases (i.e., 
SARIMA and KNN_DS), the Fitness rate improved. As 
shown in Fig. 9B, the parametric method of SARIMA has 
the highest Fitness during COVID-19 at 55.53 with respect 
to MSE and POCID at 0.0158 and 64.28, respectively. The 
reasons for such results might be mainly related to the 
high performance of ARIMA and SARIMA for short-term 
prediction [44], while avoiding or minimizing overfitting.

Comparing Fig. 9A with Fig. 9B, generally, all predictors 
performed more accurately before COVID-19 than during 
COVID-19 in terms of MSE. During COVID-19, although 
the error (MSE) increased, the trend prediction rate (POCID) 
stayed the same and, in some cases, improved. These results 
indicate that during a pandemic, ML models are capable of 
capturing the trend of cash withdrawal; however, the Fitness 
rate worsens due to an increase in the number of errors. 
Moreover, the results show that during an unprecedented 
challenge, when a sudden change in the withdrawal pattern 
occurs, by utilizing preceding days’ data—instead of features 
such as day-of-the-week, month, or year—we can better map 
the following datapoints and, in turn, boost the prediction 
outcome. However, in case there is normal volatility in the 

time series, these features play a more pivotal role than the 
preceding days’ cash withdrawal information.

Likewise, Fig. 10 illustrates the results with the updated 
iteration strategy on ATM 1. As is shown, the maximum 
Fitness before and during COVID-19 was observed for RF 
and ARIMA, respectively. The former obtained a Fitness 
at 68.87, and the latter achieved 71.57. According to the 
results represented in Figs. 9 and 10, the updated iteration 
strategy has a better predictive performance compared to the 
approximate iteration strategy. However, the approximated 
approach seems to be a more reasonable strategy when it 
comes to forecasting ATM cash demand in the following 
days due to using the previously estimated values, and not 
adopting the actual values.

Comparison of the Best Models

To visually compare the performance of the three catego-
ries of employed models (i.e., parametric, non-paramet-
ric with data-sequence, and regular-features) before and 
during COVID-19, the prediction of the best predictive 
model of each category versus the actual data are plotted 
in Figs. 11 and 12. The former depicts the prediction qual-
ity in forecasting cash withdrawals from ATM 1 with the 
approximate iteration, and the latter shows the results with 

Fig. 10  (ATM 1) Comparison of performance measures for different 
models (parametric: MA, SES, HES, ARIMA, and SARIMA; non-
parametric-data-sequence: MLP_DS, SVM_DS, RF_DS, and KNN_
DS; and non-parametric-regular-features: MLP, SVM, RF, and KNN) 

in the prediction of cash demands with “updated” iterations. A Before 
and B during the COVID-19 pandemic. See Figs. S12–S14 to see the 
results of other ATMs
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the updated iteration strategy. The best predictive model 
in each class is reported with different colors (i.e., the 
parametric model in green, non-parametric-data-sequence 
in purple, and non-parametric-regular-features in orange). 
As illustrated in Fig. 11, non-parametric models can reli-
ably predict the changes in the withdrawal pattern both 
before and during COVID-19. According to Fig. 11A, 
before COVID-19, ARIMA, KNN_DS, and RF are the 
best representatives of the parametric, non-parametric 
with data-sequence, and non-parametric with regular-
features models, respectively; among them, the stochastic 
method of RF showed the highest performance, thanks to 
its lowest prediction error. However, during COVID-19 
(Fig. 11B), the quality of prediction—specifically MSE 
in non-parametric models with regular-feature—substan-
tially declines. In this context, SARIMA, SVM_DS, and 
SVM are the best models for each category. SARIMA 
represented the highest performance among all predictive 
models owing to its closest prediction to the actual data 
(small prediction error). Thus, the pandemic condition is 
perfectly observed and captured with SARIMA, and it can 
better map further withdrawal patterns from ATMs dur-
ing COVID-19. Note that before COVID-19, ARIMA has 

shown to be the best predictor of parametric models, while 
during the pandemic, SARIMA was the best in terms of 
overall Fitness among parametric models.

Similarly, Fig. 12 reports the quality of the best-fitted 
models when compared with the updated iteration strat-
egy. Overall, the updated iteration fits the models better 
than the approximate iteration, as expected, especially 
when there is a huge change in a trend. As can be seen, 
before COVID-19 (Fig. 12A) the RF learning predictor 
has the highest performance both in terms of prediction 
error and the accuracy of direction’s changes, while during 
COVID-19 (Fig. 12B), the parametric method of ARIMA 
outperformed the other predictors with high performances 
in both MSE and POCID.

The schematic architecture of employed statistical and 
machine learning models is described in Fig. 13. The 
four main stages for the parametric models, as shown in 
Fig. 13A, included data preprocessing, tuning hyperpa-
rameters, predictive regressors, and evaluating the per-
formance of models. For the non-parametric models with 
data-sequence and regular-features iteration (respectively, 
shown in Fig. 13B, C), constructing a feature matrix was 
also required.

Fig. 11  (ATM 1) Comparison of different ML methods to predict 
cash demand with “approximate” iteration strategy. A Before and B 
during the COVID-19 pandemic. (Colors code—green: best paramet-

ric model, purple: best non-parametric-data-sequence model, and yel-
low: best non-parametric-regular-feature model.) See Figs. S15–S17 
to see the results of other ATMs
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Comparison of ATMs

Our last comparison constitutes all of the datasets (i.e., dif-
ferent cash withdrawal patterns based on different environ-
ments and levels of accessibility around the ATMs). Apart 
from an exhaustive hyperparameter tuning, we extensively 
evaluated a total of 192 configurations (including 12 pre-
dictors, 2 iteration strategies, 2 statuses of before/during 
COVID-19, and 4 ATMs with different time series). Table 4 
reports the results of such a comprehensive evaluation of 
the best predictors for forecasting cash withdrawal in terms 
of MSE, POCID, and Fitness metrics. Overall, the qual-
ity of prediction before COVID-19 is higher than during 
COVID-19, and the updated iteration strategy does a better 
job in mapping the trend during the pandemic. According 
to the results, before COVID-19, non-parametric models 
outperform the parametric methods in all eight configura-
tions. However, during COVID-19, the performance of the 
parametric methods of ARIMA and SARIMA mostly over-
shadows the non-parametric models. Another highlighted 
takeaway from the table is that analyzing and forecasting 
ATMs’ cash demand based on their withdrawal patterns 
(i.e., three different types) compared to researching them 
in a single class resulted in higher predictive performance. 

Generally, ATM means that contains the average daily cash 
withdrawal for all three ATMs has a higher MSE, as well as 
a lower POCID and Fitness, in all associated configurations, 
resulting in lower overall performance. For instance, when 
using an approximate iteration before COVID-19, the per-
formance measures of MSE, POCID, and Fitness for ATM 
(means) were 0.0105, 75.86, and 68.62, while ATM 1, ATM 
2, and ATM 3 had the better performance individually for 
all three metrics. This result shows that category-wise fore-
casting based on the accessibility, environment factors, and 
different withdrawal patterns—rather than taking the average 
of daily cash demand from different ATMs—significantly 
enhances the prediction quality.

The results also showed that the comprehensive analy-
sis conducted in this study led to a high level of accuracy 
in estimating cash withdrawal from ATMs. As shown in 
Table 4, the category-wise prediction can enhance the fore-
casting by at least 4%. Additionally, the maximum mean 
squared errors before and during COVID-19 are about 1% 
and 5%, respectively. Such a significant prediction can help 
bank managers to mobilize idle cash and generate additional 
revenue—rather than load excess banknotes in ATMs, which 
increases operational and opportunity costs, especially when 
there are thousands of ATMs.

Fig. 12  (ATM 1) Comparison of different ML methods to predict 
cash demand with “updated” iteration strategy. A Before and B dur-
ing the COVID-19 pandemic. (Colors code—green: best parametric 

model, purple: best non-parametric-data-sequence model, and yellow: 
best non-parametric-regular-feature model.) See Figs. S18–S20 to see 
the results of other ATMs
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Conclusions

This study presented a comprehensive analysis when 
it came to forecasting ATM’s cash demand both before 
and during the COVID-19 pandemic, using an extensive 
evaluation of statistical and machine learning models. 

Several parametric models (MA, SES, HES, ARIMA, 
and SARIMA) and non-parametric models (MLP, SVM, 
RF, and KNN), followed by the data-sequence and reg-
ular-features algorithms were employed in the analysis 
of the collected datasets. The models were evaluated 
for three groups of ATMs having different accessibility 

Cash withdrawal Training setData pre-
processing

MA

ACF, PACF

SES

HES

ARIMA

SARIMA

Testing set

Tuning 
hyperparameters

Time series 
regressors

Evaluating the 
performance

Splitting data

Adfuller test

Exhaustive 
grid search

Begin

Cash demand 
prediction

End

(A)

(B)

(C)

Data pre-
processing

Building 
feature matrixTraining set Cash demand 

prediction

MLP_DS

Exhaustive 
grid search

SVM_DS

RF_DS

KNN_DS

Testing set

Tuning 
hyperparameters

Time series 
regressors

Evaluating the 
performance

Splitting data

Cash 
withdrawal

Last seven days cash 
demand are input 

variables for a new 
observation 

Begin

End

Predicted cash 
demand is used

Real cash 
demand is used

Approximate Updated

Data pre-
processing

Building 
feature matrixTraining set Cash demand 

prediction

MLP

Exhaustive 
grid search

SVM

RF

KNN

Testing set

Tuning 
hyperparameters

Time series 
regressors

Evaluating the 
performance

Splitting data

Cash 
withdrawal

In-house features are 
input variables for a 

new observation 

Begin

End

Fig. 13  The architecture of built A parametric models, B non-parametric-data-sequence models, and C non-parametric-regular-features models



SN Computer Science (2022) 3:164 Page 17 of 19 164

SN Computer Science

and withdrawal pattern. Applying the predictive models 
on diverse (not a single) time series datasets can reduce 
the raising of questions regarding the statistical signifi-
cance of our results and generalization [31]. Moreover, we 
applied the approximate and updated iteration strategies 
to incorporate each new datapoint in the learning process 
recursively.

In previous studies in this context, different research 
papers came up with varying conclusions regarding the 
performance of machine learning models (non-parametric 
predictors) compared to the statistical models (paramet-
ric predictive models). For example, Adebiyi et al. [1] 
claimed that statistical methods such as ARIMA under-
perform machine learning models, while Makridakis et al. 
[31] concluded that machine learning models underper-
form the counterpart in terms of accuracy and thereby 
might be upsetting from a scientific perspective. This 
paper strived to conduct a trustful comparison approach 
and perform different models equally well. With that aim, 
the models were implemented and compared after per-
forming an exhaustive statistical analysis, coupled with 
grid search and k-fold cross-validation techniques that 
led to the highest performance of models. On the other 
hand, in the literature, the performance of models has been 
mainly compared in terms of accuracy measures such as 
MSE, SMAPE, and R2, representing the error of predic-
tion. In this study, it has been revealed that error measure 
(e.g., MSE) alone cannot be the best evaluation metric in 
comparing the performance of the predictors on ATM cash 
demand—especially when the withdrawal pattern drasti-
cally changes as a result of preventive measures such as 

a stay-at-home order or partial lockdowns that are taken 
to reduce the spread of COVID-19. To address this issue, 
we proposed a modified fitness metric that simultaneously 
considers both prediction error (MSE) and trend (POCID).

Our findings demonstrated that the extensive evaluations 
performed in this study resulted in a high accuracy when 
it came to forecasting ATM cash demand. The maximum 
mean squared errors before and during COVID-19 were 
about 1% and 5%, respectively. Additionally, category-wise 
forecasting led to improving forecasting quality by at least 
4%. Before the COVID-19pandemic—in times when there 
were only minor disturbances in withdrawal patterns—fore-
casting quality was higher, and generally, the non-parametric 
models could more accurately predict the ATM’s money 
demand. However, the results showed that despite earlier 
studies in the literature of forecasting ATM cash demand, 
sophisticated non-parametric methods will not always have 
higher performance when compared to parametric methods. 
It was revealed that during COVID-19, in which there was a 
sudden shock in demand followed by abnormal volatility in 
withdrawal patterns, the parametric models of ARIMA and 
SARIMA could mostly provide better predictions based on 
the Fitness evaluation metric. Taking comprehensive hyper-
parameter tuning into account, the reasons for such impres-
sive results might be mainly related to the high performance 
of ARIMA and SARIMA for short-term prediction [44] and 
the fact that we aimed to predict the demand just after the 
occurrence of the pandemic, while avoiding or minimizing 
overfitting.

From a managerial perspective, such a high prediction 
accuracy level can help the bank’s top management keep 

Table 4  Comparison of ATMs 
in terms of MSE, POCID, and 
Fitness metrics

Details of performance measures for each model are reported in Tables S5–S14

Iteration Time interval ATM Best method MSE POCID Fitness

Approximate iteration Before
COVID-19

ATM 1 RF 0.0101 75.86 68.87
ATM 2 KNN_DS 0.0044 86.20 82.57
ATM 3 KNN_DS 0.0046 79.31 75.82
ATM (mean) SVM 0.0105 75.86 68.62

During
COVID-19

ATM 1 SARIMA 0.0158 64.28 55.53
ATM 2 KNN 0.0169 85.71 73.31
ATM 3 SES 0.0158 75.00 64.77
ATM (mean) SARIMA 0.0576 78.57 49.84

Updated iteration Before
COVID-19

ATM 1 RF 0.0101 75.86 68.87
ATM 2 RF 0.0065 82.75 77.68
ATM 3 MLP_DS 0.0098 79.31 72.21
ATM (mean) SVM 0.0105 75.86 68.62

During
COVID-19

ATM 1 ARIMA 0.0098 78.57 71.57
ATM 2 KNN 0.0042 78.57 75.38
ATM 3 ARIMA 0.0055 64.28 60.92
ATM (mean) SARIMA 0.0105 67.85 61.39
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cash at the right levels instead of excessive cash storage, 
allow the bank to save a large sum on operational costs, 
protect the bank’s reputation, and increase its profitabil-
ity through investments. Although this paper addressed 
some gaps in the literature, some limitations still need to 
be tackled in the future to further enhance the forecasting 
performance. For instance, the results of this study were 
discussed based on short-term forecasting horizon during 
pandemic (30 days period for before and during COVID-19) 
to determine the most appropriate models in forecasting cash 
demand. However, it is beneficial to use long-term horizon 
forecasting to achieve more accurate discussion. Further-
more, other methods, such as deep learning, hybrid AI, and 
metaheuristics optimization algorithms, can be utilized and 
compared.
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