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Abstract

Background: Postmenopausal women with isolated osteoporosis at the 1/3 radius (1/3RO) 

present a therapeutic dilemma. Little is known about whether these patients have generalized 

skeletal fragility, and whether this finding warrants treatment. The aim of this study was to 

investigate the biochemical and microarchitectural phenotype of women with 1/3RO compared 

to women with classic postmenopausal osteoporosis by DXA at the spine and hip (PMO), and 

controls without osteoporosis at any site.

Methods: This cross-sectional study enrolled 266 postmenopausal women, who were grouped 

according to densitometric pattern. Subjects had serum biochemistries, areal BMD (aBMD) 

measured by DXA, trabecular and cortical vBMD, microarchitecture, and stiffness by high 

resolution peripheral QCT (HR-pQCT, voxel size ~82 μm) of the distal radius and tibia.

Results: Mean age was 68±7 years. DXA T-Scores reflected study design. By HR-pQCT, 1/3RO 

had abnormalities at both radius and tibia compared to controls: lower total, cortical and trabecular 

vBMD, cortical thickness and trabecular number, higher trabecular separation and heterogeneity, 

and lower whole bone stiffness. In contrast, the magnitude and pattern of abnormalities in vBMD, 

microarchitecture and stiffness in 1/3RO were similar to those in PMO; the difference compared 

to controls was similar among the two groups. Serum calcium, creatinine, parathyroid hormone, 

25-hydroxyvitamin D, and 24-hour urine calcium did not differ.
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Conclusions: Although aBMD appeared relatively preserved at the spine and hip by DXA, 

women with 1/3RO had significant microarchitectural and biomechanical deficits comparable to 

those in women with typical PMO. Further study is required to guide treatment decisions in this 

population.
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Introduction

Approximately 34 million Americans have osteoporosis and more than two million fragility 

fractures occur each year (1). Over 15 billion dollars are spent annually on health care costs 

related to osteoporosis and fragility fractures (1-3), which result in considerable morbidity 

and increased mortality (1, 4-9). While there are several available pharmacologic therapies 

that effectively lower fracture risk, identification of those patients at high risk for fracture 

remains a challenge. Treatment decisions are relatively straightforward in patients with 

osteoporosis at the spine and hip by DXA (10). However, the management of patients who 

have osteoporosis only at the 1/3 radius site is less clear. These patients present a therapeutic 

dilemma for several reasons. Little is known about fracture risk in patients who have 

isolated osteoporosis at the radius or whether isolated osteoporosis at this site reflects more 

widespread skeletal fragility. Moreover, data is lacking regarding the efficacy of anti-fracture 

treatment in these patients.

In this study, we investigated the biochemical and microarchitectural phenotype of women 

with isolated osteoporosis at the 1/3 radius using high resolution peripheral computed 

tomography (HR-pQCT). We compared the biochemical and structural characteristics of 

these women to those of women with classic postmenopausal osteoporosis by DXA at 

central sites, the spine and hip, and to postmenopausal controls without osteoporosis 

at any site. We hypothesized that women with isolated osteoporosis at the 1/3 radius 

have low volumetric bone mineral density (vBMD) and abnormal microarchitecture, with 

predominantly cortical bone deficits. We further hypothesized that microarchitectural 

abnormalities are less pronounced in these women compared with women who have 

osteoporosis at the spine and hip.

Methods

Patients

Postmenopausal women, over age 60 or more than 10 years postmenopause, were recruited 

at Columbia University Medical Center (CUMC; New York, NY) or Helen Hayes Hospital 

(HHH; West Haverstraw, NY) by advertisement, self- or physician referral. Potential 

subjects were excluded if they had a history of abnormal mineral metabolism (e.g., primary 

hyperparathyroidism, osteomalacia), endocrinopathy (e.g., untreated hyperthyroidism, 

Cushing's syndrome, prolactinoma), celiac or other gastrointestinal diseases, malignancy 

(except for skin cancer), and drug exposures that could affect bone metabolism 

(e.g., glucocorticoids, anticonvulsants, anticoagulants, methotrexate, aromatase inhibitors, 
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thiazolidinediones, strontium). Women with stage 4 or 5 chronic kidney disease were 

excluded. Women who had ever used teriparatide, denosumab, or who had taken 

bisphosphonates for more than one year were excluded. Women using hormone replacement 

therapy or raloxifene were not excluded. At the study visit, past medical history, 

reproductive history, and medication use were assessed. A physical exam was performed 

including height by Harpenden stadiometer and weight, and body mass index (BMI) was 

calculated. All subjects provided written informed consent and the Institutional Review 

Board of Columbia University Medical Center approved this study.

Areal bone mineral density (aBMD) and spine radiographs

Areal BMD was measured by DXA (QDR-4500, Hologic Inc., Marlborough, MA at 

CUMC; Lunar Prodigy, GE, Madison, WI at HHH) at the lumbar spine (LS: L1-4), total 

hip (TH), femoral neck (FN), and 1/3 radius (1/3R). Lumbar vertebrae with significant 

deformity, osteosclerosis, osteophytes or degenerative disease were excluded from the 

analysis. T-scores compared subjects with young-normal populations of the same race 

and sex, as provided by the manufacturer. Spine radiographs were performed at the study 

visit to evaluate prevalent vertebral fractures. Vertebral fracture severity was determined 

using the semi-quantitative method of Genant et al.(11). Women were classified into 

groups by densitometric pattern after DXA data had been obtained, specifically as: isolated 

osteoporosis at the 1/3 radius (1/3RO), postmenopausal osteoporosis at the hip and/or spine 

(PMO), and controls without osteoporosis at any site. Women with osteoporosis by DXA at 

the spine or hip (TH or FN) were classified as PMO regardless of wrist BMD. Among this 

group, 39% had osteoporosis only at the spine, 30% only at the hip, 31% at both the spine 

and hip. In addition, 40% had osteoporosis at the wrist as well as at the spine or hip.

HR-pQCT and Image-Based μFEA of the distal radius and tibia

HR-pQCT (XtremeCT1, voxel size 82 μm, Scanco Medical AG, Brüttisellen, Switzerland) 

was performed at CUMC. The non-dominant forearm and ipsilateral tibia (or non-fractured 

arm or leg in subjects with prior wrist or ankle fracture) was immobilized in a carbon fiber 

shell. Scans were performed as we have described in prior publications (12-17). Briefly, 

the region of interest was defined on a scout film by manual placement of a reference line 

at the endplate of the radius or tibia; with the first slice 9.5 mm and 22.5 mm proximal 

to the reference line at the radius and tibia, respectively. A stack of 110 parallel CT 

slices was acquired at the distal end of both sites using an effective energy of 40 keV, 

image matrix size 1024 x 1024, with a nominal voxel size of 82 μm. This provided a 3D 

image of approximately 9 mm in the axial direction. Attenuation data were converted to 

equivalent hydroxyapatite (HA) densities. The European Forearm Phantom was scanned 

daily for quality control. All scans were acquired by the same technician. HR-pQCT data 

were used to calculate whole bone stiffness, a measure of bone's resistance to force using 

finite element analysis. The analysis methods have been described, validated (18-20), and 

applied in several clinical studies (21-28). Bone tissue was modeled as an isotropic, linearly 

elastic material with a Young’s modulus (Es) of 15 GPa and a Poisson’s ratio of 0.3 (29). A 

uniaxial displacement equaling 1% of the bone segment height was applied perpendicularly 

to the distal surface of the radius or tibia while the proximal surface was imposed with 

zero displacement along the same direction. Both ends of the tibia were allowed to expand 
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freely in the transverse plane. The total reaction force was calculated from the linear μFE 

analysis, and the axial stiffness was calculated as the reaction force divided by the imposed 

displacement.

Biochemistries

Fasting morning serum was collected from all subjects. Serum was archived at −80 

degrees C and analyzed in one batch after all visits were completed. Laboratory 

assays were performed in the Core Laboratory of the CUMC Clinical and Translational 

Research Center. Serum calcium, albumin, and creatinine were measured using automated 

techniques. Serum 25-hydroxyvitamin D2 and D3 were measured by Ultra-performance 

Liquid Chromatography combined with tandem mass spectrometry (UPLC-MS/MS) using 

a 1290 UPLC and a 6410 Tandem Mass Spectrometer (Agilent, Santa Clara, CA). Inter-

assay coefficient of variation (CV) was 2.9% for 25OHD2 and 5.4% for 25OHD3. Intact 

parathyroid hormone (iPTH) was measured by chemiluminescent immunoassay (CLIA, 

Siemens Healthcare Diagnostics, Deerfield, IL; CV 8.3%). Serum C-terminal telopeptide of 

type 1 collagen (CTX) was measured by ELISA (Immunodiagnostics Systems, Scottsdale 

AZ; CV <10%). Serum osteocalcin was measured by ELISA (Immunodiagnostic Systems, 

Scottsdale, Arizona; CV 2.7%). Serum bone alkaline phosphatase was measured by ELISA 

(Quidel Corp, Sand Diego, CA; CV 7.6%).

Statistical Methods

Analyses were conducted with STATA version 9.0 (Stata Corp, College Station, Texas) and 

SAS version 9.1 (SAS Institute Inc., Cary, North Carolina). Two-sided p values < 0.05 were 

considered to indicate statistical significance. Normality testing (Kolmogorov-Smirnov) was 

performed and variables that were not normally distributed were logarithmically transformed 

prior to group comparisons. Differences among the three groups were assessed by ANOVA 

with Scheffe test for multiple comparisons. Comparison of HR-pQCT parameters among 

groups after adjustment for age and BMI was performed using ANCOVA. Mean percent 

difference and the standard error of the difference between each osteoporosis group (1/3RO 

and PMO) and controls was calculated using multiple T-tests.

Results

Study Subjects

This study enrolled 266 postmenopausal women. Characteristics of the subjects in the three 

groups are detailed in Table 1. The majority of women were White Non-Hispanic (78%). 

The mean age was 68 ± 7 years. Controls were younger than the other two groups. Mean 

BMI was in the normal or overweight range for all groups, and was highest among controls. 

Tobacco and alcohol use were similar. There was no difference in use of calcium and 

vitamin D supplements or in mean intake between groups. Less than 10% of women were 

currently using HRT; use was higher among controls. Approximately half of the women 

in the overall cohort (56%) had a history of fragility fracture or a prevalent vertebral 

fracture by spine radiographs. There was no difference in overall clinical fracture history 

between the three groups. The prevalence of extremity fractures (wrist, ankle or humerus) 

appeared higher in patients with 1/3RO but the difference was not significant between 
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groups. Vertebral fracture prevalence appeared higher in patients with PMO but was not 

significantly different between groups. Among patients with a vertebral fracture, there was 

no difference according to group in either the presence of multiple vertebral fractures or 

fracture severity.

Biochemical Data

Calciotropic hormones and bone turnover markers are detailed in Table 2. Calcium and 

intact parathyroid hormone (iPTH) were in the normal range and did not differ between 

groups. Kidney function assessed by creatinine and estimated Glomerular Filtration Rate 

(eGFR) calculated by MDRD (30), was in the normal range and similar between groups. 

Urinary calcium excretion, measured as 24 hour urine calcium/creatinine ratio was also 

similar. Serum 25OHD levels were above 20 ng/ml in all groups. Although 25OHD was 

numerically lower in the 1/3RO group compared to controls and PMO this difference 

was not significant. Bone formation markers, serum osteocalcin and bone specific alkaline 

phosphatase were higher in 1/3RO. Bone resorption, assessed by serum CTX was also 

higher in 1/3RO.

Areal BMD

As expected according to our study design, mean T-Scores were lowest in PMO at all central 

sites compared to both controls and 1/3RO, lumbar spine (LS: −2.6 ± 1.1), total hip (TH: 

−2.0 ± 0.6) and femoral neck (FN: −2.4 ± 0.6). At the 1/3 radius, mean T-Score was −3.1 

(± 0.5) among 1/3RO but higher and above the osteoporosis threshold in PMO (−2.3 ± 1.3). 

Values for 1/3RO fell within the osteopenic range at all other sites, the LS (−1.2 ± 1.0), TH 

(−1.5 ± 0.6), and FN (−1.9 ± 0.4). Controls had average T-Scores in the normal range at the 

LS (−0.8 ± 1.2), TH (0.8 ± 0.9) and 1/3R (−0.7 ± 1.0), and in the osteopenic range at the FN 

(−1.4 ± 0.8).

Volumetric BMD, Microarchitecture and Stiffness

Bone size, vBMD, cortical and trabecular microarchitecture were assessed by HR-pQCT 

(Figure 1A and 1B). Raw data are detailed in Table 3. Compared to controls, 1/3RO had 

substantial abnormalities in cortical and trabecular bone at both radius and tibia. At the 

radius, 1/3RO had lower total vBMD (−18%; p<0.001), cortical vBMD (−5%; p<0.01) and 

trabecular vBMD (−24%; p<0.001). They had lower cortical thickness (−14%; p<0.01), 

lower trabecular number (−22%; p<0.001), greater trabecular separation (+46%; p<0.05), 

and greater heterogeneity (+75%; p<0.05). Abnormalities were observed in vBMD and 

microarchitecture in women with 1/3RO at the tibia as well; compared to controls, 1/3RO 

had lower total vBMD (−16%; p<0.001), cortical vBMD (−6%; p <0.01) and trabecular 

vBMD (−16%; p <0.001). They had lower cortical thickness (−15%; p<0.05), lower 

trabecular number (−16%; p<0.001), greater trabecular separation (+24%; p<0.001), and 

greater heterogeneity (+49%; p<0.01). Trabecular thickness did not differ significantly at 

either site.

As expected, vBMD and microarchitecture were worse in PMO compared with controls as 

well. Specifically, at the radius, PMO had lower total vBMD (−17%; p<0.001), trabecular 

vBMD (−22%; p<0.001), and cortical vBMD (−5%; p<0.001). They had lower cortical 
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thickness (−19%; p<0.001) and trabecular number (−19%; p<0.001), greater trabecular 

separation (+40%; p<0.001), and greater heterogeneity (+91%; p<0.001). At the tibia, PMO 

had lower total vBMD (−15%; p<0.001), trabecular vBMD (−16%; p<0.001), and cortical 

vBMD (−5%; p<0.001) compared to controls. They had lower cortical thickness (−17%; 

p<0.001) and trabecular number (−16%; p<0.001), greater trabecular separation (+24%; 

p<0.001), and greater heterogeneity (+49%; p<0.001).

Interestingly, the extent of abnormalities in vBMD and microarchitecture were similar 

among 1/3RO and PMO. There were no significant differences between these groups in 

any cortical or trabecular parameter. Both groups had substantial deficits at both the radius 

and the tibia. When compared with controls, the same parameters were significantly worse 

in 1/3RO and PMO and differences from controls were of similar magnitude.

Biomechanical properties of bone were worse in both groups compared to controls. At the 

radius, whole bone stiffness was lower in both 1/3RO (−13%; p<0.01) and PMO (−21%; 

p<0.001) compared to controls. At the tibia, stiffness was lower in 1/3RO (−13%, p<0.01) 

and PMO (−17%, p<0.001). As observed with vBMD and microarchitecture, stiffness did 

not differ between women with 1/3RO and PMO.

Differences between groups were further compared after adjustment for age and BMI. 

The previously observed significant differences in vBMD, microarchitecture, and stiffness 

between the 1/3RO and the other groups remained statistically significant after adjustment.

Volumetric BMD and microarchitecture in women with 1/3RO with and without a history of 

fracture were compared. While no parameter was significantly different between the groups, 

radial total and trabecular vBMD tended to be lower among fracture subjects (p=0.06 and 

p=0.07 respectively).

Discussion

In this study, we investigated the microarchitectural and biochemical phenotype of women 

with isolated osteoporosis at the 1/3 radius by DXA compared to women who manifested 

the more typical pattern of osteoporosis at the spine and hip, and controls without 

osteoporosis. We found that women with 1/3RO had substantial abnormalities in vBMD, 

microarchitecture, and stiffness compared to controls. Significantly, the deficits documented 

by HR-pQCT at the radius and tibia in women with 1/3RO mirrored those detected in 

women with central osteoporosis at the spine and hip. These results suggest that the finding 

of isolated osteoporosis at the wrist by DXA is indicative of deteriorated microarchitecture 

and compromised biomechanical properties of bone similar to those seen in women with 

central osteoporosis at the spine and hip.

As the 1/3 radius is a predominantly cortical site, we hypothesized that women with 

1/3RO would have cortical abnormalities compared to controls. In support of this, we 

found that they had lower cortical vBMD and thinner cortices. However, interestingly, they 

had substantial trabecular deficits as well, with lower trabecular vBMD, and fewer, more 

widely and irregularly spaced trabeculae at the radius. Moreover, the trabecular deficits were 

more marked than the cortical deficits. It could be postulated that small bone size might 
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contribute to the finding of 1/3RO as 2-dimensional DXA measurements are artifactually 

lower in patients with smaller bones (31), however, we observed that bone size measured as 

cross-sectional area by HR-pQCT was not smaller among women with 1/3RO compared to 

controls or PMO.

Microarchitectural differences between women with 1/3RO and controls were apparent at 

both radius and tibia. Although the site assessed by HR-pQCT is distal to the 1/3 radius 

site by DXA, the finding that patients who have lower values at the DXA 1/3 radius 

site have microarchitectural abnormalities at the radius is not unexpected. More surprising 

were the number and extent of abnormalities that were also observed at the tibia. This 

observation suggests that the microarchitectural deficits are generalized, at least throughout 

the peripheral skeleton, rather than limited to the 1/3 radius. While we observed differences 

at both radius and tibia, a limitation of our study is that we did not use modalities other 

than DXA to evaluate central sites. Other studies have shown that peripheral HR-pQCT 

measurements correlate with central QCT measurements in young women with osteoporosis 

(32). Future studies using higher-order imaging techniques at the spine and hip will help to 

elucidate how pervasive skeletal abnormalities are in the postmenopausal population.

While vBMD and microarchitecture were similar between women with 1/3RO and PMO, 

forearm DXA measurements were higher in the women with PMO. Work from our group 

and others has shown that peripheral HR-pQCT measurements are predictive of fragility 

at central sites (14, 17, 26). Peripheral DXA, in contrast, may not be as sensitive to 

these abnormalities. It is well established that low aBMD at the hip and spine are highly 

correlated with fracture risk (33-37). Current guidelines recommend that central DXA be 

used primarily as the reference of osteoporosis for postmenopausal women, as they are 

more reliable than peripheral measures (36). However, there are many instances when 

peripheral measures may be necessary. In the older population, spine measurements are 

often artifactually high because of degenerative disease. In the growing population of 

patients who have had orthopedic procedures involving hardware at the spine and the hip, 

these sites may not be evaluable. As a result, in some patients only wrist measurements 

are available. Studies have shown that aBMD at the wrist does correlate with aBMD at the 

spine and the hip (38). In the NORA trial, patients with osteoporosis at peripheral sites, 

including the wrist, had a higher rate of fracture at both the wrist and hip compared to 

patients with higher aBMD at these peripheral sites (39). Our results suggest that wrist DXA 

measurements provide valuable information even when central measurements are available, 

as they allow for identification of patients with microarchitectural abnormalities who might 

otherwise be missed if only spine and hip values are considered.

Subjects were classified in this study based upon densitometric pattern alone, and there were 

subjects with a history of fragility fracture included in each of the groups. Overall fracture 

prevalence was similar between the groups. As might be expected, a greater proportion of 

women with 1/3RO had fractures of the extremities, and more women in the PMO group 

had vertebral fractures. However, these differences were not significant, possibly due to our 

small number of woman with 1/3RO. This pattern of differences in fracture suggests that 

1/3RO may represent a specific entity of peripheral skeletal abnormalities, with a particular 
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susceptibility to extremity fractures. Further, larger studies are needed to confirm these 

observations.

We investigated biochemical differences between the groups to determine whether there 

were differences in calciotropic hormones or bone turnover markers that might provide 

an underlying mechanism for the observed phenotype. Bone turnover was elevated in 

the 1/3RO women compared to the other groups which may have contributed to the 

microarchitectural abnormalities observed. No underlying metabolic abnormalities were 

observed to explain this increase in turnover or the structural abnormalities in 1/3RO. 

Although women with overt hyperparathyroidism and known renal disease were excluded 

from this study, we hypothesized that more subtle elevations in PTH, secondary to vitamin 

D deficiency, inadequate calcium intake, or mild chronic kidney disease, might contribute to 

cortical bone loss and 1/3RO, however we did not find this to be the case. We found that 

25OHD levels were sufficient in the majority of subjects (>20 ng/ml). While values were 

numerically lower among 1/3RO, they did not differ significantly between groups. Calcium 

intake was similar between groups and 24-hour urine calcium was normal in these women, 

making it unlikely that inadequate calcium intake or a renal calcium leak played a role 

in the development of 1/3RO. Renal function, assessed by creatinine and MDRD did not 

differ. These results suggest that factors other than these biochemistries are responsible for 

the densitometric and microarchitectural abnormalities seen in women with 1/3RO. Genetic 

factors could play an important role.

Our study is limited by its cross-sectional design and the relatively small population of 

women with 1/3RO. We were unable to investigate the relationship between the structural 

abnormalities observed and prediction of fractures at peripheral or central sites. Studies 

from our group and others have shown that vBMD, microarchitecture and stiffness can 

discriminate fracture status in multiple populations. Recently HR-pQCT measurements 

predicted fracture in a longitudinal study (40). Whether the abnormalities that we detected 

in our cohort with isolated 1/3RO are directly related to fracture risk is an important topic 

for future work. Whether the higher remodeling rate observed in the 1/3RO contributed to 

the microarchitectural abnormalities cannot be determined in our cross-sectional study but 

is an important question to be addressed in future prospective work. There were differences 

in some demographic factors, age and BMI between our groups. While we did adjust for 

these differences in our analyses, it is possible that multiple factors may have contributed to 

the observed differences in microarchitecture. Further, although all HR-pQCT measurements 

were performed on one machine, DXA measurements were performed at two sites, one 

using a Hologic (CUMC) and the other a Lunar (HHH) system. We used T-Scores to 

reduce the confounding introduced by this variability (41) however, some disparities likely 

still existed and 1/3 radius measurements may be more variable between manufacturers 

than other sites. Finally, we enrolled women on the basis of aBMD and therefore women 

with fractures were included in each group of our cohort. Although the presence of a 

fragility fracture should prompt consideration of treatment regardless of aBMD, in practice 

treatment is often not initiated. Our subjects were not treated and many, despite their fracture 

history had never been told that they had osteoporosis, underscoring the reliance of many 

practitioners on DXA for assessment of bone health.
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In conclusion, we found that postmenopausal women with isolated osteoporosis at the 1/3 

radius have low volumetric BMD, abnormal cortical and trabecular microarchitecture and 

low stiffness at both radius and tibia compared to controls. In addition, these women had 

similar deficits in volumetric density, microarchitecture and stiffness to those observed 

in women with osteoporosis at the spine and hip. Our results suggest that although 

aBMD appears relatively preserved at the spine and hip by DXA, women with 1/3RO 

have substantial microarchitectural and biomechanical deficits throughout their extremities. 

Further study is required investigate the extent of these abnormalities throughout the axial 

skeleton and to guide treatment decisions in this population.
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Highlights

• Isolated osteoporosis at 1/3 radius (1/3RO) presents a therapeutic dilemma

• Women with 1/3RO had microarchitectural and biomechanical deficits

• The skeletal abnormalities in 1/3RO were similar to those in classic PMO
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Figure 1. 
A. Percent differences +/− SEM in vBMD, microarchitecture and whole bone stiffness at 

the radius compared to controls for women with 1/3RO (white bars) and PMO (grey bars) * 

P-value<0.05.

B. Percent differences +/− SEM in vBMD, microarchitecture and whole bone stiffness at 

the tibia compared to controls for women with 1/3RO (white bars) and PMO (grey bars). * 

P-value<0.05.
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