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Abstract

Objectives

Triage is an essential emergency department (ED) process designed to provide timely man-

agement depending on acuity and severity; however, the process may be inconsistent with

clinical and hospitalization outcomes. Therefore, studies have attempted to augment this

process with machine learning models, showing advantages in predicting critical conditions

and hospitalization outcomes. The aim of this study was to utilize nationwide registry data to

develop a machine learning-based classification model to predict the clinical course of pedi-

atric ED visits.

Methods

This cross-sectional observational study used data from the National Emergency Depart-

ment Information System on emergency visits of children under 15 years of age from Janu-

ary 1, 2016, to December 31, 2017. The primary and secondary outcomes were to identify

critically ill children and predict hospitalization from triage data, respectively. We developed

and tested a random forest model with the under sampled dataset and validated the model

using the entire dataset. We compared the model’s performance with that of the conven-

tional triage system.

Results

A total of 2,621,710 children were eligible for the analysis and included 12,951 (0.5%) critical

outcomes and 303,808 (11.6%) hospitalizations. After validation, the area under the

receiver operating characteristic curve was 0.991 (95% confidence interval [CI] 0.991–

0.992) for critical outcomes and 0.943 (95% CI 0.943–0.944) for hospitalization, which were

higher than those of the conventional triage system.

Conclusions

The machine learning-based model using structured triage data from a nationwide database

can effectively predict critical illness and hospitalizations among children visiting the ED.
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Introduction

In the emergency department (ED), triage is the first and most important step and classifies

patients according to acuity and severity [1]. However, triage classifications tend to be similar

but not always identical to ED or hospitalization outcomes [2,3] because triage systems are

designed to provide timely and appropriate treatment in a resource-limited ED environment

[4–6], not to predict the clinical outcome of the patient. However, early identification of

patients at risk of deterioration is also a topic of interest for many individuals. Thus, studies

have tried to predict critical or hospitalization outcomes from EDs [7–12].

The Pediatric Early Warning Score (PEWS) is an example of a scoring system used to detect

children who are in need of intensive care unit (ICU) admission [13]. PEWS was originally

developed and validated in the inpatient setting [14,15], but some validation in the ED setting

was attempted [16,17]. Another attempt at the hospitalization prediction scoring system is the

Pediatric Risk of Admission (PRISA) score [11,12]. The PRISA score was developed to predict

hospitalization in the pediatric ED, but this scoring system is composed of 21 components

gathered after initial evaluation, including therapies, which makes it difficult to apply at the

initial presentation to the ED.

However, machine learning began to augment medical research, and various studies have

attempted to introduce prediction models using machine learning. Machine learning models,

such as random forest (RF), gradient boosting, and deep neural network methods, are able to

handle large datasets effectively and have been shown to predict clinical outcomes more accu-

rately than traditional methods for patients in the ICU and patients with sepsis [18–22]. Addi-

tionally, some studies have demonstrated that machine learning models can offer advantages

in predicting critical condition and hospitalization outcomes [23–27], even in the pediatric

population [28,29].

In this study, we used nationwide data from the National Emergency Department Informa-

tion System (NEDIS) to develop a machine learning-based classification model to predict the

clinical course of pediatric ED visitors. We also compared the performance of the derived

machine learning model with that of the conventional pediatric triage system of South Korea

(pediatric Korean Triage and Acuity Scale [pedKTAS]). In addition, we sought to define the

importance of factors that predict critical cases and hospitalization among the selected predic-

tor variables used in the analysis.

Methods

Study design and setting

This is a cross-sectional observational study investigating pediatric patients visiting the ED in

South Korea using nationwide registry data. The Korean Triage and Acuity Scale (KTAS) is a

5-level triage system (from level 1 the most critical to level 5 the nonurgent) that was developed

based on the Canadian Triage and Acuity Scale (CTAS). This scale has been used since its

introduction in 2016 and has shown adequate reliability and validity [30]. The KTAS is divided

into adult and pedKTAS based on an age cutoff of 15 years. We included emergency visits by

children under 15 years of age from January 1, 2016, to December 31, 2017, which was after

the pedKTAS was introduced and established in South Korea.

We obtained data from the NEDIS, which is a national database that was developed in 2004

and collects information from more than 400 EDs across South Korea. The NEDIS database

contains various types of information, such as patient age, sex, type of insurance, means of

transportation, level of consciousness at presentation, time variables (visit, discharge, and

admission), and vital signs at presentation. The NEDIS also provides information about ED
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disposition and final outcomes of each ED visit (information regarding discharge, transfer,

and death). All patients arriving at the ED must be enrolled in the system. All patient-related

information from ED arrival to discharge from hospital is transferred automatically from each

ED to a central server, and inaccurate data are filtered by a data processing system. NEDIS

data are available upon formal request and provided by the National Emergency Medical Cen-

ter (data acquisition number: N20192821211).

The Institutional Review Board of Seoul National University Hospital approved this study

(IRB No. E-1909-098-1065) with a waiver of consent. Patients or the public were not involved

in the design, conduct, reporting, or dissemination plans of our research.

Outcomes

The primary outcome of this study was the prediction of critically ill children (critical cases)

from triage data. Critical cases were defined as 1) children who were admitted to the ICU or

transferred for ICU admission, 2) children who received cardiopulmonary resuscitation during

their ED stay, and 3) children who died in the ED. The secondary outcome was the identifica-

tion of children who could not be discharged directly from the ED (hospitalization) from triage

data. Hospitalization was defined as including both admission to ICUs and general wards.

Predictor variables and preprocessing

Demographic information, such as patient age and sex, was collected. Vital signs (blood pres-

sure, heart rate, respiratory rate, body temperature and oxygen saturation) and consciousness

level measured on the AVPU scale (alert, verbal response, response to pain, and unresponsive)

at triage, transportation method, reason for ED visit (traumatic or nontraumatic), ED visit

time and time from onset were also collected. A detailed list of variables used in the develop-

ment of the model is shown in S1 Table.

Data on vital signs were preprocessed for machine learning because the normal values of

some vital signs vary depending on age (such as blood pressure, heart rate, and respiratory

rate). The Z scores of these age-dependent variables were calculated for each age range for

adjustment before the final analysis. Categorical variables with low cardinality (sex and level of

consciousness) were one-hot encoded. Missing values for continuous variables were imputed

as the means of the nonmissing values of each corresponding variable, and missing values for

categorical variables were coded as “Not Available”, representing an additional category (using

one-hot encoding).

Training of machine learning classifiers

In this study, we used RF to identify critically ill children and predict hospitalization. In

machine learning (ML), algorithms are often not interpretable, the so-called “black

box phenomenon”. However, compared to the “black box” models, interpretable models have

shown technical equivalence [31,32]. The RF algorithm can calculate the importance of vari-

ables used in the model using reduction of the Gini index, thereby solving the “black box”

problem and making the model more interpretable to some extent, allowing us to identify

important variables. Therefore, we selected RF as the ML algorithm for the predictive model in

this study.

Due to the imbalance in the entire dataset, the eligible study population was under sampled

at a ratio of 1:1 in both critical cases and hospitalization cases using the python package ‘imbal-

anced-learn’ [33]. Each under sampled dataset was subjected to model derivation and testing

through a 5-fold cross validation process. The “RandomForestClassifier” function of Python’s

Scikit-Learn library was used for RF model development and testing. The default value of this
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function was used for the remaining the hyperparameters except for the number of trees

(“n_estimator”). Regarding the number of trees, a value between 10 and 1000 showing excel-

lent performance was used [34]. In addition, we also compared the performance of our models

with that of pedKTAS, which served as the reference model.

Data analysis

All data handling, statistical analysis and machine learning were performed with R platform

version 3.6.3 (R Foundation for Statistical Computing, Vienna, Austria). Continuous variables

were reported using medians and interquartile ranges (IQRs), and categorical variables were

reported using frequencies and proportions.

The performance of the RF models was assessed by calculating the area under the receiver

operating characteristic curve (AUROC) and the area under the precision-recall curve

(AUPRC) with the 95% confidence interval (CI). In addition, the importance of each variable

was calculated by decreasing the Gini index, and Scikit-Learn’s “feature importance” function

was used [34].

Results

A total of 2,621,710 ED visits were made by children younger than 15 years old and classified

by the pedKTAS during the study period. As described above, the eligible cases were under

sampled at a ratio of 1:1 to overcome imbalance for both the critical case group and hospitali-

zation group. The basic demographic and clinical characteristics of the cases included in the

analysis are summarized in Table 1. Overall, 12,951 (0.5%) patients had critical clinical out-

comes (critical cases), and 303,808 (11.6%) patients were hospitalized (hospitalization). For the

total population, the median age was 3.0 years old (IQR 1.0–7.0), and 57.2% of the children

were male. Among the eligible patients, 22,359 (0.9%) had an unknown disease/injury cate-

gory, and 71,976 (2.7%) had an unknown initial mental status.

Fig 1 presents the classification results of the RF models and the comparison with pedKTAS

for both outcomes. For the prediction of critical cases, the AUROC was 0.973 (95% CI 0.971–

0.977) in the under sampled dataset (Fig 1A) and 0.991 (95% CI 0.991–0.992) in the validation

dataset (Fig 1B). For the prediction of hospitalization, the AUROC was 0.819 in the under

sampled dataset (Fig 1C) and 0.943 (95% CI 0.943–0.944) in the validation dataset (Fig 1D).

For validation with the entire dataset, we also compared the prediction performance with that

of pedKTAS.

Additionally, the AUPRC of RF models for the under sampled dataset and validation with

the entire dataset, including comparison with pedKTAS, are shown in Fig 2. The AUPRC was

0.977 (95% CI 0.974–0.979) in the under sampled dataset and 0.640 (95% CI 0.633–0.648) in

the validation dataset (Fig 2B). However, the AUPRC was 0.819 (95% CI 0.817–0.821) in the

under sampled dataset and 0.729 (95% CI 0.728–0.73) in the validation dataset. In validation,

the performance was compared with that of the conventional triage system (pedKTAS).

Fig 3 graphically displays the predictor variable importance. For critical cases, age was the

most important variable followed by respiratory rate, heart rate, arrival at other vehicles, and

body temperature. For hospitalization, age was also the most important variable with body

temperature being a close second. The other important variables for hospitalization were time

from onset to ED visit, heart rate, and respiratory rate.

Discussion

In this study, using national data from 2,621,710 ED visits by children, we developed and com-

pared several ML models to predict critical cases and hospitalization upon arrival at the ED.
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Table 1. Demographic and clinical information of eligible cases.

Variable Entire dataset

(n = 2621710)

Under sampled dataset–Critical cases

(n = 25902)

Under sampled dataset–Hospitalization

(n = 607616)

Age, years 3.0 (1.0–7.0) 1.0 (0.0–5.0) 3.0 (1.0–6.0)

Sex Female 1,122,069 (42.8) 10,988 (42.4) 259,029 (42.6)

Male 1,499,641 (57.2) 14,914 (57.6) 348,587 (57.4)

Vital signs Systolic blood pressure,

mmHg

106.0 (99.0–118.0) 100.0 (90.0–117.0) 105.0 (97.0–118.0)

Diastolic blood pressure,

mmHg

64.0 (60.0–73.0) 60.0 (51.0–71.0) 63.0 (60.0–73.0)

Heart rate, beats/minute 120.0 (100.0–133.0) 132.0 (110.0–154.0) 122.0 (102.0–140.0)

Respiratory rate, breaths/

minute

24.0 (20.0–28.0) 28.0 (22.0–36.0) 24.0 (20.0–29.0)

Body temperature (˚C) 37.0 (36.6–38.1) 37.0 (36.6–37.9) 37.2 (36.6–38.3)

Percutaneous oxygen

saturation (%)

99.0 (98.0–100.0) 99.0 (97.0–100.0) 99.0 (98.0–100.0)

Time from onset to ED visit, hours 4.0 (1.0–23.0) 4.0 (1.0–22.0) 7.0 (1.0–26.0)

Region Metropolitan 612,491 (23.4) 5,836 (22.5) 141,560 (23.3)

Urban 602,223 (23.0) 6,334 (24.5) 144,819 (23.8)

Rural 1,406,996 (53.7) 13,732 (53.0) 321,237 (52.9)

EMC class Regional EMC 879,240 (33.5) 10,767 (41.6) 219,550 (36.1)

Local EMC 1,666,350 (63.6) 14,692 (56.7) 373,201 (61.4)

Local ED 74,996 (2.9) 428 (1.7) 14,623 (2.4)

Others 1,124 (0.0) 15 (0.1) 242 (0.0)

Disease or

injury

Disease 1,851,355 (70.6) 20,148 (77.8) 480,586 (79.1)

Injury 747,996 (28.5) 5,587 (21.6) 122,443 (20.2)

Unknown 22,359 (0.9) 167 (0.6) 4,587 (0.8)

Mental status Alert 2,534,339 (96.7) 23,054 (89.0) 583,934 (96.1)

Verbal responsive 8,769 (0.3) 542 (2.1) 4,416 (0.7)

Pain responsive 4,878 (0.2) 789 (3.0) 3,540 (0.6)

Unresponsive 1,748 (0.1) 1,097 (4.2) 1,563 (0.3)

Unknown 71,976 (2.7) 420 (1.6) 14,163 (2.3)

pedKTAS level 1 5641 (0.2) 1696 (6.5) 4561 (0.8)

2 102,490 (3.9) 6,775 (26.2) 50,790 (8.4)

3 823,154 (31.4) 7,101 (27.4) 233,813 (38.5)

4 1,449,461 (55.3) 8,698 (33.6) 277,793 (45.7)

5 240,964 (9.2) 1,632 (6.3) 40,659 (6.7)

ED disposition Mortality 763 (0.0) 763 (2.9) 763 (0.1)

Admission to ICU 12,188 (0.5) 12,188 (47.1) 12,188 (2.0)

Admission to GW 290,857 (11.1) 1,404 (5.4) 290,857 (47.9)

Discharge 2,317,902 (88.4) 11,547 (44.6) 303,808 (50.0)

Critical case Yes 12,951 (0.5) 12,951 (50.0) 12,951 (2.1)

No 2,608,759 (99.5) 12,951 (50.0) 594,665 (97.9)

Hospitalization Yes 303,808 (11.6) 14,355 (55.4) 303,808 (50.0)

No 2,317,902 (88.4) 11,547 (44.6) 303,808 (50.0)

EMC = Emergency medical center, ED = Emergency department, NA = Not Applicable, EM = Emergency medicine, pedKTAS = Pediatric Korean Triage and Acuity

Scale, ICU = Intensive care unit, and GW = General ward.

https://doi.org/10.1371/journal.pone.0264184.t001
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The RF model presented good performance discriminating critical cases with an AUROC

of 0.991 and AUPRC of 0.640 from the limited information provided at the initial presenta-

tion. To our knowledge, this is the first attempt to use an ML algorithm for predicting out-

comes in pediatric ED visitors using nationwide data. The RF model achieved higher

performance than the conventional clinical prediction rules in predicting both critical cases

and hospitalization among pediatric ED visitors with AUROC values of 0.991 versus 0.844 and

0.943 versus 0.680, respectively. These scoring systems have better performance than pre-exist-

ing scoring systems for clinical prediction [10,17,35]. These conventional methods consist of

fewer variables and use a linear model with few interactions, whereas ML can perform high-

order calculations.

In a previous study by Goto et al [28] that predicted pediatric outcomes in ED triage based

on an ML model, the performance of the RF model had an AUROC of 0.85 (95% CI 0.79–

0.91) for critical cases and 0.80 (95% CI 0.78–0.81) for hospital admissions. The improvement

in the AUROC in our study may be due to the greater number of predictor variables used in

our analysis. Additionally, there were slight differences in the choice of variables. In the above-

mentioned study, the important predictors for critical care included age, vital signs, and arrival

mode. In contrast, our study showed a similar pattern for the importance of variables, except

Fig 1. Receiver operating characteristic curves comparing the performance of the random forest model with that of the conventional triage system

(pedKTAS). A. Under sampled dataset—critical cases, B. Validation with the entire dataset compared with pedKTAS–critical cases, C. Under sampled dataset–

hospitalization, D. Validation with the entire dataset compared with pedKTAS–hospitalization. AUC = Area under the curve, CI = Confidence interval.

https://doi.org/10.1371/journal.pone.0264184.g001
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for ‘level of consciousness’ and ‘time from onset to ED visit’. These variables were of high

importance in our study and were not included in the analysis of the previous study.

In another study, a gradient boosting model was used to predict mortality in an adult popu-

lation with AUROC values ranging from 0.949–0.960 [36]. Give that this study was conducted

in a single institute, it was possible to obtain more detailed variables, such as ‘unstructured

chief complaint’ or ‘number of days to previous ED visit’. Our study used only highly quality-

controlled and structured data, which did not completely utilize the various abilities of ML.

Integration of unstructured data, such as text data, into the algorithm may present new possi-

bilities. In addition to the abovementioned study, Choi et al. [37] showed that the addition of

text data improves the predictive performance of ML triage compared to that of a model using

only structured data. Lucini et al. [38] predicted the need for hospitalization based on written

records of the first medical assessment in the ED using text-mining approaches.

There are some limitations of our study. First, although our model showed high AUROC

values of 0.991 (for critical cases) and 0.943 (for hospitalization), the AUPRC of the entire

dataset was low (0.640 for critical cases and 0.729 for hospitalization), which was probably due

to the imbalanced dataset [39]. Critical cases accounted for only 0.5% (n = 12,951) of the total

population, and we tried to overcome imbalance using the under sampling method. With

under sampled training data, the AUPRC was higher (0.977 for critical cases and 0.819 for

Fig 2. Precision-recall curves comparing the performance of the random forest model with that of the conventional triage system (pedKTAS). A. Under

sampled dataset—critical cases, B. Validation with the entire dataset compared with pedKTAS–critical cases, C. Under sampled dataset–hospitalization, D.

Validation with the entire dataset compared with pedKTAS–hospitalization. AUC = Area under the curve, CI = Confidence interval.

https://doi.org/10.1371/journal.pone.0264184.g002
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hospitalization) than the validation with the entire dataset. In predicting hospitalization, the

RF model showed a lower AUROC than predicting critical cases. Moreover, it showed better

AUPRC than AUPRC for predicting critical cases, which was probably due to a larger number

of children being hospitalized (n = 303,808).

Second, although we used nationwide data, some bias is possible. As mentioned in the

methods, some variables has missing values that we had to impute to classify as ‘unknown’.

Additionally, input errors from each hospital could occur. However, the NEDIS dataset is

quality-controlled by the National Emergency Medical Center of Korea and regularly under-

goes a quality assessment process [40,41].

Finally, although this study used a large dataset from a nationwide registry, further studies

in other countries and/or prospective validation must be performed. However, for the pro-

spective validation of our ML model, the development of an EMR-embedded program with

automatic calculation will be appropriate and must precede the experiment.

Conclusions

ML models using structured triage data from a nationwide database can more effectively pre-

dict critical cases and hospitalizations among pediatric ED visitors than the conventional triage

method. Age was the most important predictor for both ED outcomes, but importance of the

other predictors differs between critical cases and hospitalization. Although prospective valida-

tion and integration of unstructured data are needed, the results of this study can support

advances in pediatric triage and resource distribution in PED.

Fig 3. Top thirty predictors with the highest importance for each outcome. The importance of each feature was calculated through information gain using

the difference in Gini impurity reduction. The “feature importance” function of Python’s scikit-learn library was used [34]. A. Critical cases, and B.

hospitalization.

https://doi.org/10.1371/journal.pone.0264184.g003
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