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Abstract

The ammonia-oxidizing bacterium Nitrosomonas europaea has been widely recognized as

an important player in the nitrogen cycle as well as one of the most abundant members in

microbial communities for the treatment of industrial or sewage wastewater. Its natural met-

abolic versatility and extraordinary ability to degrade environmental pollutants (e.g., aro-

matic hydrocarbons such as benzene and toluene) enable it to thrive under various harsh

environmental conditions. Constraint-based metabolic models constructed from genome

sequences enable quantitative insight into the central and specialized metabolism within a

target organism. These genome-scale models have been utilized to understand, optimize,

and design new strategies for improved bioprocesses. Reduced modeling approaches have

been used to elucidate Nitrosomonas europaea metabolism at a pathway level. However,

genome-scale knowledge about the simultaneous oxidation of ammonia and pollutant

metabolism of N. europaea remains limited. Here, we describe the reconstruction, manual

curation, and validation of the genome-scale metabolic model for N. europaea, iGC535.

This reconstruction is the most accurate metabolic model for a nitrifying organism to date,

reaching an average prediction accuracy of over 90% under several growth conditions. The

manually curated model can predict phenotypes under chemolithotrophic and chemolithoor-

ganotrophic conditions while oxidating methane and wastewater pollutants. Calculated flux

distributions under different trophic conditions show that several key pathways are affected

by the type of carbon source available, including central carbon metabolism and energy

production.
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Author summary

Nitrosomonas europaea catalyzes the first step of the nitrification process (ammonia to

nitrite). It has been recognized as one of the most important members of microbial com-

munities of wastewater treatment processes. Genome-scale models are powerful tools in

process optimization since they can predict the organism’s behavior under different

growth conditions. The final genome-scale model of N. europaea ATCC19718, iGC535,

can predict growth and oxygen uptake rates with 90.52% accuracy under chemolitho-

trophic and chemolitoorganotrophic conditions. Moreover, iGC535 can predict the

simultaneous oxidation of ammonia and wastewater pollutants, such as benzene, toluene,

phenol and, chlorobenzene. iGC535 represents the most comprehensive knowledge-base

for a nitrifying organism available to date. The genome-scale model reconstructed in this

work brings us closer to understanding N. europaea’s role in a community with other

nitrifying bacteria.

1. Introduction

Ammonia (NH3) as soluble ammonium (NH4
+) is one of the main pollutants in industrial

wastewater effluents, reaching concentration values from 5 to 1,000 ppm [1].

Biological nitrification is the primary method to remove NH4
+ from wastewaters. This pro-

cess involves the oxidation of NH4
+ to nitrate (NO3

-) via nitrite (NO2
-). Nitrification is cata-

lyzed by ammonia-oxidizing and nitrite-oxidizing bacteria in a two-step autotrophic process

[2]. Several studies have used nitrifying consortia as mechanism to remove NH4
+ and toxic

pollutants (e.g., benzene, toluene, and phenol) simultaneously [3–6].

Nitrosomonas europaea (Ne) is a well-studied ammonia-oxidizing bacterium highly present

in nitrifying consortia (usually from 1% to 5%) as well as an important microorganism in the

nitrogen cycle [3,7]. Ne is typically grown with bicarbonate (HCO3
-) as the major inorganic

carbon substrate [8]. The HCO3
- assimilated is transformed to CO2 through the activity of the

anhydrase carbonic enzyme [9]. The CO2 is further fixed by the Calvin-Benson-Bassham

(CBB) cycle [10], producing energy by converting NH3 to hydroxylamine (NH2OH), and then

to NO2
- (chemolithotrophic metabolism). Reactions catalyzed by the ammonia monooxygen-

ase (AMO) and hydroxylamine oxidoreductase (HAO) [11]. AMO can metabolize various

toxic pollutants present in wastewater, such as aromatic hydrocarbons and halogenated ali-

phatic compounds [12–15]. Physiological data highlighted have shown Ne’s versatility to utilize

various substrates (pyruvate and fructose as sole organic carbon sources) under aerobic condi-

tions [16]. However, the internal metabolic processes as the simultaneous NH4
+ assimilation

and toxic compounds oxidation, or the capability of an organic carbon mineralization (chemo-

lithoorganotrophic metabolism) by Ne are not well characterized to date. Reduced modeling

approaches have been used to elucidate Ne metabolism at a pathway level, resulting in two

metabolic models: a metabolic network model with 51 reactions and a genome-scale metabolic

model (M-model) with 1,102 total reactions [17,18]. Nevertheless, there are no M-models that

enable elucidating flux distributions showing the mineralization of an organic carbon or the

pollutant oxidation process under ammonia assimilation conditions. Here, we reconstructed a

genome-scale model for N. europaea ATCC19718 using semi-automated methods [19,20]. The

resulting model was manually curated to improve the quality of the phenotypic predictions.

The model contains 1,149 reactions, and it is capable to accurately simulate growth under che-

molithoorganotrophic and chemolithotrophic conditions while oxidating pollutants and

methane.
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2. Results

2.1 Reconstruction of the Nitrosomonas europaea metabolic network

We reconstructed an M-model of N. europaea ATCC19718 through a semi-automatic

approach [19,20]. First, we reconstructed a draft model based on protein homology. We used

the genome annotation of the proteome of N. europaea ATCC19718 from NCBI (RefSeq ID:

NC_004757.1) [21] and three manually curated M-models as templates from the BiGG Data-

base [22]. We selected Escherichia coli str. K-12 substr. MG1655 model, iML1515 [23] as the

first template, because E. coli is a gram-negative bacterium as Ne. Moreover, iML1515 is the

most complete genome-scale reconstruction of E. coli K-12 MG1655 to date. Then, as the sec-

ond template, we selected the Clostridium ljungdahlii DSM 13528 model, iHN637 [24], since

C. ljungdahlii is the only chemolithotrophic bacterium (such as Ne) present in the BiGG data-

base. Finally, as the last template, the Yersinia pestis CO92 model, iPC815 [25], was chosen due

to genome similarity (649 homologous metabolic genes) with Ne and the high quality of the

model.

To generate the draft reconstruction (see Section 4.1) we used The RAVEN and COBRA

Toolboxes [26,27] and to ensure the model connectivity and functionality (capability of the

model to perform simulations) of the draft model, critical reactions were imported even

though an equivalent hit in Ne proteome was not found. Draft reactions without a hit in Ne
proteome were associated with genes from the templates, from now on referred to as exoge-

nous genes. The generated draft model consisted of 1,056 metabolic reactions, 1,050 metabo-

lites divided into three different compartments (cytoplasm, periplasm, and extracellular space)

and, 734 genes, corresponding to 376 genes of Ne (identifier ALW85) and 358 exogenous

genes.

Semi-automatic reconstruction ensures a functional model. However, during manual cura-

tion reactions are added or removed. For example, some CBB cycle reactions (1,5-biphosphate

carboxylase and phosphoribulokinase), nitrification, methane oxidation, and pollutant oxida-

tion metabolisms were added, while some reactions with exogenous genes were removed.

2.2 Refinement and gap-filling analysis

We used manual curation of the gene-protein-reaction (GPR) associations and gap-filling

methods to improve the model properties (see Section 4.3). The original draft model consisted

of 377 genes of Ne and 357 genes of the templates. After the manual curation, the number of

exogenous genes decreased to 20, while Ne genes increased to 462. For more details of manual

curation results, see S1 Text.

Gap-filling methods were carried out to find reactions specific for Ne. The nitrification and

oxidative phosphorylation chain reactions were added based on previously described metabolic

pathways [18,28,29]. Most of these reactions are not present in The BiGG Database (e.g., AMO,

HAO, and reactions involving cytochrome c554, cytochrome c552, and membrane cytochrome

c552). Moreover, none of the Ne models reconstructed so far included reactions related to

methane and pollutant oxidation. We included complete oxidation pathways of methane, ben-

zene, toluene, phenol and, chlorobenzene using the literature information [12–15,30]. A total of

82 gap-filled reactions categorized by growth condition are shown in S1 Table.

Reactions linking the CBB cycle with the pentose phosphate pathway (PPP) were also

added, including the ribulose 1,5-bisphosphate carboxylase-oxygenase (RBPC). Overall, a total

of 37 new reactions and 12 new metabolites were added. All these metabolites and reactions

are shown in S2 and S3 Tables. For more details about the manual curation and gap-filling

methods, see Section 4.3.2.
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After the manual refinement process, all the exogenous genes were eliminated, and the Ne
genes number increased to 535.

2.3 Model properties

The final Nitrosomonas europaea ATCC19718 model (iGC535) consists of 1,114 metabolites,

1,149 reactions, and 535 genes (Table 1). In total, iGC535 shares 1,092 reactions with tem-

plates, of which 960 were obtained from the model iML1515 (Fig 1A). Therefore, it was

expected that iGC535 acquire most of its reactions from iML1515. Both E. coli and Ne are

gram-negative bacteria. Moreover, iML1515 is the model with the highest genome coverage

(1,515 genes) and amount of reactions (2,712).

Model properties were compared with other genome-scale metabolic models of Ne. Fig 1B

shows the breakdown of genes across different models. iGC535 has 471 genes in common with

the other Ne models and 64 unique genes. iGC535 and iFC578 share the most amount of genes

(415) since both have the highest genome coverage and were reconstructed semi-automatically

(Fig 1B).

iGC535 was used to simulate inorganic carbon fixation (HCO3
-), nitrite production, and

organic carbon uptake (pyruvate and fructose). Moreover, iGC535 simulates the biotransfor-

mation of methane and wastewater pollutant (benzene, toluene, phenol, chlorobenzene) when

ammonium and HCO3
- are the energy and carbon sources, respectively. These reactions and

their genes were verified and curated manually through literature and information obtained

from various databases, representing around 8.8% of the model’s total reactions. Most reac-

tions (79%) are part of the transport, lipid, amino acid, nucleotide, cofactor, and vitamin bio-

synthesis (Fig 1C).

Table 1 shows a comparison among all the Ne models reconstructed to date. iGC535 shows

an improvement in the amount of mass and charge-balanced reactions. In addition, it has

been shown that iGC535 can simulate growth rates at lower ammonium uptake rates than the

other Ne models (Table 2). Moreover, iGC535 is the only model that includes the oxidation

pathways of methane and four pollutants.

2.4 Model validation

The model was simulated and validated under chemolithotrophic and chemolithoorgano-

trophic growth conditions (Table 2). Fructose was used as organic carbon source under che-

molithoorganitrophic conditions and HCO3
- under chemolithotrophic conditions. We also

validated iGC535 using ammonium and HCO3
- as the energy and carbon sources, respectively,

in the presence of methane and other pollutants. In all cases, ammonium was the inorganic

nitrogen and energy source. Table 2 shows predicted phenotypes by iFC578 and the models of

CarveMe and ModelSEED. Validation was performed using growth phenotypes

Table 1. Comparative table of the properties of the genome-scale model of Ne (iGC535) and other models.

Model provenience Reactions Metabolites Genes Mass Imbalance metabolic reactions Charge Imbalance metabolic reactions

ModelSEED 1,069 1,185 497 NA� 42

CarveMe 1,228 946 532 47 NA�

iFC578 1,102 1,014 578 NA� 129

Stoichiometric metabolic network 51 44 0 NA� NA�

iGC535 1,149 1,114 535 0 0

�Not available

https://doi.org/10.1371/journal.pcbi.1009828.t001
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experimentally observed under different uptake and secretion rates for each condition. Addi-

tionally, flux variability analysis was performed under each condition to obtain the feasible

flux range of each metabolic reaction [35] (see Methods). S4 Table shows oxygen flux

Fig 1. Features of iGC535. (A) Comparison of shared reactions among iGC535 and template models (iHN637, iPC815, iML1515). (B)

Comparison of shared genes among iGC535 and other Ne models. (C) Reactions distribution through the subsystems in the genome-

scale model. (D) Electron transport chain simulated using fructose at high concentrations or HCO3
- as the sole carbon source.

Abbreviations: NADH16pp, NADH dehydrogenase; AMO, ammonia monooxygenase; HAO, hydroxylamine oxidoreductase; CYTEX,

cytochrome exchange; Q8H2ASE, ubiquinol synthase; CYTbc1, CytCbc1 reductase using ubiquinol-8; C552oxi, cytochrome c552

oxidase; ATPS, ATP synthase; QH2, ubiquinol; Q, ubiquinone; HAM, hydroxylamine; C554red, cytochrome c554 reduced; C554ox,

cytochrome c554 oxidized; c552mox, membrane cytochrome c552 oxidized; c552mred, membrane cytochrome c552 reduced; C552ox,

cytochrome c552 oxidized; C552red, cytochrome c552 reduced; Fru, fructose.

https://doi.org/10.1371/journal.pcbi.1009828.g001
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variability results (minimum and maximum) that were validated under chemolithotrophic

conditions plus methane, toluene or benzene and the optimal value obtained while performing

flux balance analysis.

2.4.1 Chemolithoorganotrophic conditions. Under chemolithoorganotrophic condi-

tions, when the fructose uptake rate and the nitrite production rate were 0.077 and 6.75 mmol/

gDW/h, respectively, the experimentally observed growth rate of Ne was 0.011 1/h [16]. Model

simulations using as constraints the fructose uptake and nitrite production fluxes reported by

Hommes et al. [16] predicted 0.0106 1/h of growth rate, which has an absolute error of 4.0x10-

4 mmol/gDW/h. This absolute error corresponds only to the 4.36% of error with the experi-

mental data.

2.4.2 Chemolithotrophic conditions. Under chemolithotrophic conditions using HCO3
-

as carbon source and experimental nitrite production rate of 23.61 mmol/gDW/h, the experi-

mentally observed growth rate of Ne was 0.062 1/h (Table 2) [31]. When this nitrite production

rate was used as a constraint for iGC535 and iFC578 models, the predicted growth rates were

0.091 and 0.015 1/h, respectively. Furthermore, under these conditions Hyman and wood,

1983 [32] showed that Ne adjusts its ammonium uptake rate to 2.09 mmol/gDW/h and oxygen

flux uptake to 3.07±0.084 mmol/gDW/h. Modeling predictions of iGC535 using this NH4
+

uptake rate (2.09 mmol/gDW/h) as constraint, predicted an oxygen uptake rate of 2.71 mmol/

gDW/h, while iFC578 predicted no growth (Table 2). Overall, the average accuracy of iGC535

predictions was 90.52%, remarkably higher than the average iFC578 accuracy (15.18%).

2.4.3 Methane and pollutant oxidation conditions. Under chemolithotrophic condi-

tions, methane and ammonium oxidation occurs simultaneously. Methane uptake is catalyzed

by AMO, which requires oxygen to produce methanol that is eventually secreted to the

medium. Experimentally, Ne is able to achieve maximum methane uptake rates between 0.34–

1.96 mmol/gDW/h [32–34] when the ammonium uptake rate varies between 1.21 and 1.74

Table 2. Comparative table of simulations performed under different growth conditions of the Ne genome-scale model (iGC535) and other models.

Condition Constraint(s) Evaluated Flux Model Simulation Experimentally

observed

Chemolithoorganotrophy Fructose uptake rate (0.0773 mmol/gDW/h)a Growth rate (1/h) ModelSEED No growth 0.011

CarveMe No growth

iFC578 0.0113

iGC535 0.0106

Pyruvate uptake rate (0.0773mmol/gDW/h) Growth rate (1/h) ModelSEED No growth NA��

CarveMe No growth

iFC578 0.0057

iGC535 0.0053

Chemolithotrophy NO2
- production rate (23.61 mmol/gDW/h)b Growth rate (1/h) ModelSEED No growth 0.062

CarveMe No growth

iFC578 0.015

iGC535 0.091

Ammonium uptake rate (2.09mmol/gDW/h)c Oxygen uptake rate (mmol/gDW/h) ModelSEED 0 3.07±0.084

CarveMe 0

iFC578 0

iGC535 2.71

Ammonium uptake rate (1.266mmol/gDW/h)c Oxygen uptake rate (mmol/gDW/h) ModelSEED 0 2.03±0.05

CarveMe 0

iFC578 0

iGC535 1.67

(Continued)
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mmol/gDW/h [32]. Predicted flux distributions at a methane uptake rate of 1.15 mmol/gDW/

h for the ammonium uptake rate of 1.21 mmol/gDW/h showed that the oxygen uptake flux

was 2.356 mmol/gDW/h, which matches the experimentally observed oxygen uptake of 2.38

±0.065 mmol/gDW/h [32]. Simulations at ammonium uptake rate of 1.74 mmol/gDW/h pre-

dicted 3.02 mmol/gDW/h oxygen flux uptake, diverging by 4% of the experimentally observed

value of 3.14±0.086 mmol/gDW/h [30].

Ne can grow in the presence of toluene, using ammonium and HCO3
- as the energy and

carbon sources [14]. AMO catalyzes the consecutive oxidation of toluene to benzyl alcohol and

then to benzaldehyde as the final product [14]. Under these experimental conditions, the tolu-

ene uptake rate is 0.5206 mmol/gDW/h, the nitrite production rate 25.152 mmol/gDW/h and

the oxygen uptake rate was 30.45±6.71mmol/gDW/h [14]. Optimal flux balance analysis simu-

lations were highly accurate using as constraints the toluene uptake rate and the nitrite pro-

duction rate since the model predicted an oxygen consumption rate of 33.44 mmol/gDW/h

Table 2. (Continued)

Condition Constraint(s) Evaluated Flux Model Simulation Experimentally

observed

Pollutants in culturing medium Benzene uptake rate (1.258 mmol/gDW/h)d

Nitrite production rate (25.15mmol/gDW/h)d
Oxygen uptake rate (mmol/gDW/h) ModelSEED 0 33.67

CarveMe 0

iFC578 0

iGC535 33.58

Phenol uptake rate (1 mmol/gDW/h)

Ammonium Uptake Rate (6 mmol/gDW/h)

Oxygen uptake rate (mmol/gDW/h) ModelSEED 0 NA��

CarveMe 0

iFC578 0

iGC535 0.0191

Toluene uptake rate (0.5206mmol/gDW/h) d

Nitrite production rate (25.152mmol/gDW/h)d
Oxygen uptake rate (mmol/gDW/h) ModelSEED 0 30.45±6.71

CarveMe 0

iFC578 0

iGC535 33.44

Chlorobenzene uptake rate (1 mmol/gDW/h)

Ammonium uptake rate (9 mmol/gDW/h)

Oxygen uptake rate (mmol/gDW/h) ModelSEED 0 NA��

CarveMe 0

iFC578 0

iGC535 12.1

Methane uptake rate (1.15 mmol/gDW/h)e

Ammonium uptake rate (1.74 mmol/gDW/h)e
Oxygen uptake rate (mmol/gDW/h) ModelSEED 0 3.14±0.086

CarveMe 0

iFC578 0

iGC535 3.02

Methane uptake rate (1.15 mmol/gDW/h) e

Ammonium uptake rate (1.21 mmol/gDW/h) e
Oxygen uptake rate (mmol/gDW/h) ModelSEED 0 2.38±0.065

CarveMe 0

iFC578 0

iGC535 2.356

a Hommes et al., 2003[16]
b Sato et al., 1985 [31]
c Hyman and Wood, 1983 [32]
d Radniecki et al., 2008 [14]
e Average methane uptake rate reported by Bédard and Knowles, 1989; Hyman and Wood, 1983; Jones and Morita, 1983 [32–34]

�Not available

Note: None of the conditions were simulated by the stoichiometric network

https://doi.org/10.1371/journal.pcbi.1009828.t002
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(Table 2). Additional experimental evidence under chemolithotrophic conditions [15] showed

the capability of Ne to oxidize benzene to phenol by AMO activity under ammonium assimila-

tion conditions. The phenol generated by this process is transported to the external medium.

Radniecki et al. [14] observed an oxygen consumption rate of 33.67 mmol/gDW/h when the

benzene uptake rate was 1.053±0.2059 mmol/gDW/h with a nitrite production rate of 25.15

mmol/gDW/h. iGC535 predicted an optimal oxygen uptake rate of 33.58 mmol/gDW/h when

the benzene uptake rate was 1.258 mmol/gDW/h and a nitrite production rate of 25.15 mmol/

gDW/h were set as constraints (Table 2). Overall, iGC535 accurately predicts growth and

secretion phenotypes with over 90.52% accuracy.

2.5 Unraveling activation of specific metabolic capabilities using predicted

flux distributions

2.5.1 Co-activation of the pentose phosphate pathway, CBB cycle, and glycolysis.

Ne can grow using organic and inorganic carbon sources. To test changes in flux distributions,

we used experimentally observed growth rates of 0.03 1/h [33] and 0.1 1/h [29] as constraints

to determine HCO3
- uptake rates between 1.43 mmol/gDW/h and 4.35 mmol/gDW/h

(Fig 2A).

Constraints for the organic carbon source fructose were set at high concentrations (0.746

mmol/gDW/h). Calculations regarding high fructose uptake rate are explained in section 2.6.

The same consumption rate was established for pyruvate to ensure a high concentration of this

metabolite.

When HCO3
- are present in the culture media, the CBB cycle enzymes are activated. Never-

theless, the CBB cycle is incomplete because of the lack of the enzyme NADPH-dependent

glyceraldehyde 3-phosphate dehydrogenase (GAPD) [10]. This enzyme is replaced by the

reversible glycolytic isoenzyme NADH-dependent GAPD in Ne metabolism [10] (Fig 2B). In

other organisms, e.g., plants such as barley seedlings, spinach, pea leaves, etc., different genes

encode for the glycolytic/CBB cycle enzyme phosphoglycerate kinase (PGK) [36–38]. But, Ne
has only one form of PGK enzyme, which is used by the glycolytic pathway and the CCB cycle

[9,29]. PGK is encoded by the gene ALW85_RS01720. The particularities of PGK and GAPD

enzymes allow for the coupling of glycolysis and CBB cycle pathways, as shown in Fig 2.

In plants, the CBB cycle enzyme GAPD catalyzes the formation of glyceraldehyde-3-phos-

phate using NADPH as the electron donor [39]. However, Ne GAPD uses NAD/NADH as

coenzymes rather than NADP/NADPH. The preference of GAPD towards NAD/NADH can

be potentially associated with the differential activity of NAD and NADH in the respiratory

chain (Fig 1D). Under heterotrophy, the NADH is oxidized in the electron transport chain by

the NADH dehydrogenase (NADH16pp) enzyme to generate ATP. Nonetheless, when Ne is

growing chemolithotrophically, NADH16pp catalyzes the reverse reaction, as shown in Fig

1D. Thus, NAD+ is reduced to NADH using ubiquinol as the electron donor. Model simula-

tions predicted that NADH16pp and GAPD were the reactions with the highest production

and consumption fluxes of NADH. This prediction suggest that the enzyme NADH16pp to

produce the NADH needed by GAPD.

It has been shown that the CBB cycle is not activated under high fructose concentrations

(Fig 2A). Fructose is transported into the cytosol by a phosphoenolpyruvate translocation

group that forms pyruvate and fructose-6-phosphate (F6P). Then, pyruvate is used by the TCA

cycle, while F6P is metabolized by glycolysis. Model simulations suggested that GAPD and

NADH16pp fluxes are reversed when fructose is the carbon source. Thus, while GAPD is the

largest consumer of NAD+, NADH16pp is the largest producer.
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However, when pyruvate serves as the sole carbon source, GAPD produces NAD+ (Fig 2A).

NAD+ production by GAPD occurs because part of the pyruvate flux that enters the organism

goes to the gluconeogenesis pathway to produce G3P and F6P. These two metabolites are

needed to synthesize ribulose 5-phosphate (Ru5P), a nucleotide precursor. Interestingly,

Fig 2. Map of the metabolic flux distributions predicted under chemolithoorganotrophic and chemolithotrophic

conditions. The map shows the changes in the flux distributions under four different growth conditions. Ammonium

is present under all conditions but changing the carbon source (fructose, pyruvate, and HCO3
-). (A)

Chemolithoorganotrophy metabolism. The fructose uptake rate was constrained to 0.746 mmol/gDW/h, and the

ammonium uptake rate was 0.5mmol/gDW/h. (B) Chemolithotrophy metabolism. HCO3
- uptake rates were

constrained to 4.35 mmol/gDW/h for high and 1.43 mmol/gDW/h for low. Abbreviations: HCO3E, carbonic

anhydrase; PYK, pyruvate kinase; PPS, phosphoenolpyruvate synthasePGK, phosphoglycerate kinase; GAPD,

glyceraldehyde 3-phosphate dehydrogenase; PFK, phosphofructokinase; PGI, glucose 6-phosphate isomerase;

G6PDH2r, glucose 6-phosphate dehydrogenase; PGL, 6-phosphogluconolactonase; GND, phosphogluconate

dehydrogenase; RPI, ribose-5-phosphate isomerase; RPE, ribulose 5-phosphate 3-epimerase; TKT, transketolase; TPI,

triose-phosphate isomerase; PRUK, phosphoribulokinase; RBPC, ribulose 1,5-bisphosphate carboxylase-oxygenase;

PDH, pyruvate dehydrogenase; CS, citrate synthase; MDH, malate dehydrogenase; SUCDi, succinate dehydrogenase;

SUCOAS, succinyl-CoA synthetase; AKGDH, 2-oxoglutarate dehydrogenase; ICDHyr, isocitrate dehydrogenase;

ORNTAC, ornithine transacetylase; G6P, D-Glucose 6-phosphate; F6P, D-Fructose 6-phosphate; FDP, D-Fructose

1,6-bisphosphate; G3P, Glyceraldehyde 3-phosphate; 13DPG, 3-Phospho-D-glyceroyl phosphate; 3PG, 3-Phospho-D-

glycerate; 2PG, D-Glycerate 2-phosphate; PEP, Phosphoenolpyruvate; Pyr, Pyruvate; AcCoA, Acetyl-CoA; Fru,

D-Fructose; Cit, citrate; Acon, Aconitate; iCit, Isocitrate; AKG, 2-Oxoglutarate; SucCoA, Succinyl-CoA; Suc,

Succinate; Fum, Fumarate; Mal, L-Malate; OAA,Oxaloacetate; ArgSuc, L-Argininosuccinate; L-Citr, L-Citrulline; Orn,

Ornithine; AcOrn, Acetylornithine; AcGlu, Acetyl-L-glutamate; AcG5P, Acetyl-L-glutamate 5-phosphate; AcG5SA,

Acetyl-L-glutamate 5-semialdehyde; L-Glu, L-Glutamate; RuBP, D-Ribose 1,5-bisphosphate; Ru5P, D-Ribulose

5-phosphate; Xu5P, D-Xylulose 5-phosphate; DHAP, Dihydroxyacetone phosphate; E4P, Erythrose 4-phosphate

dehydrogenase; S7P, Sedoheptulose 7-phosphate; S17BP, Sedoheptulose 1,7-bisphosphate; R5P, Ribose 5-phosphate;

6PGC, 6-Phospho-D-gluconate; 6PGL, 6-phospho-D-glucono-1,5-lactone.

https://doi.org/10.1371/journal.pcbi.1009828.g002
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NADH16pp also generates NAD+ but not NADH as during chemolithotrophic growth. A con-

siderable amount of NAD+ is needed by the pyruvate dehydrogenase. This reaction connects

the pyruvate with the TCA cycle.

PPP has an oxidative and reductive phase. The oxidative pathway (oPPP) regenerates

NADPH (anabolic) that is used in the biosynthesis of the lipid. The reductive pathway (rPPP)

produces glycolytic intermediaries (catabolic). Ne shares enzymes between the CBB cycle and

the rPPP pathway, such as transketolase 1 (TKT1), ribulose 5-phosphate 3-epimerase (RPE),

ribose-5-phosphate isomerase (RPI), transketolase 2 (TKT2), and transaldolase (TALA) (Fig

2). Under chemolithotrophy metabolism, the whole CBB/Glycolysis/rPPP superpathway was

predicted to be active (except TALA) to synthesize F6P for D-ribose 1,5-biphosphate regenera-

tion (Fig 2B). The predictions determined that the regeneration of NADPH occurs through

NAD(P)+ transhydrogenase and not by oPPP. Since there is a high production rate of NADH,

Ne uses this excess to synthesize NADPH.

When fructose is the carbon source, the Glycolysis/rPPP/oPPP superpathway is activated.

The CBB cycle does not need to be activated since there is no presence of HCO3
- in the

medium. The simulation predicted that oPPP is the greatest significant generator of NADPH.

The Ru5P formed is used by rPPP to produce G3P, which is utilized by glycolysis. Nonetheless,

when pyruvate is in the medium, some CBB cycle enzymes are activated to produce Ru5P

(Fig 2A).

2.5.2 TCA cycle. During chemolithotrophy growth, model simulations predicted that not

all TCA cycle enzymes are activated (Fig 2B). Although Ne has the genes that encode for the

complete TCA cycle, the 2-oxoglutarate dehydrogenase (AKGDH) enzyme is deactivated

when HCO3
- is present. In other organisms such as aerobic heterotrophs, AKGDH catalyzes

succinyl-CoA formation from 2-oxoglutarate and produces CO2 and NADH. In Ne, the

NADH is supplied by NADH16pp. The 2-oxoglutarate is generated from the phosphoenolpyr-

uvate and pyruvate formed by CBB/Glycolysis/rPPP superpathway. These two compounds are

metabolized to oxaloacetate and acetyl-CoA, respectively, which are further condensed to cit-

rate by the citrate synthase and the rest of the TCA cycle.

Unlike the chemolithotrophic growth, under chemolithoorganotrophic conditions, the

simulations predicted the full activation of the TCA cycle (Fig 2A). By this route, some mole-

cules of NADH and NADPH are produced.

Interestingly, Ne lacks malate synthase and isocitrate lyase. These two enzymes belong to

the glyoxylate pathway. Plants and some bacteria use them to avoid the two decarboxylation

steps catalyzed by AKGDH and isocitrate dehydrogenase [40]. Ne can avoid one decarboxyl-

ation step by AKGDH deactivation under chemolithotrophic conditions. Moreover, during

chemolithoorganotrophic growth, Ne does not spare any of the decarboxylation steps. Thus,

HCO3
- is excreted by the organism.

The succinate dehydrogenase (SUCDi) activity is unclear under chemolithotrophic condi-

tions (Fig 2B). The simulation predicted a flux close to zero. The most significant amount of

fumarate comes from the arginine biosynthesis pathway as a product of the argininosuccinate

lyase reaction. Changes in this enzyme activity suggest that this pathway can potentially play

an anaplerotic role depending on the growth conditions. For example, when simulations were

performed using pyruvate or fructose as sole carbon sources, SUCDi was activated (Fig 2A).

The simulations suggest that SUCDi activity changes because, unlike chemolithotrophic con-

ditions, the succinyl-CoA synthetase is reversed, producing succinate. The only reaction that

can consume the succinate is the SUCDi and thus avoid its accumulation.

2.5.3 Electron transport chain. Ne obtains energy by ammonium assimilation. Fig 1C

shows the flux distribution through the oxidative phosphorylation chain. NH4
+ is oxidated to

NO2
- by the activity of AMO and HAO. The metabolic flux continues through the electron
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transport chain to the terminal oxidase (C552oxi). The ATP synthase uses the proton gradient

generated between the periplasm and the cytosol to produce ATP. Out of the total flux through

HAO, 50% returns to AMO, 30.8% passes to the terminal oxidase, and 19.25% goes towards

NADH16pp.

Unlike under chemolithotrophic conditions, model simulations performed at high fructose

concentrations showed that the NADH16pp reduces an oxidized ubiquinol molecule using

NADH as the electron donor (Fig 1D). The formed ubiquinol by NADH16pp and SUCDi

(Figs 1D and 2A) reduces the cytochrome c552. Thus, the nitrite production decreases at

5.8x10-4 mmol/gDW/h, almost zero (S1B Fig).

2.5.4 Methane and pollutant oxidation. iGC535 includes unique and complete pathways

to oxidize methane and pollutants such as benzene, toluene, phenol, and chlorobenzene (~30

new reactions total). The most important enzyme in pollutant transformation is AMO, which

catalyzes the oxidation of the contaminants and methane in the presence of ubiquinol. The

oxygen required for oxidation depends on the methane or pollutant uptake rate. For example,

if Ne uptakes ammonium at 1.266 mmol/gDW/h, the experimentally observed oxygen uptake

rate is 2.03±0.05 mmol/gDW/h, as reported by Hyman and Wood, 1983 [32]. For the same

ammonium uptake rate, iGC535 predicted an oxygen uptake flux of 1.67 mmol/gDW/h

(Table 2). However, when the observed uptake rates of methane and ammonium were 1.15

and 1.2133 mmol/gDW/h, respectively, the oxygen uptake rate increases to 2.38±0.06 mmol/

gDW/h [32]. Simulations predicted 2.356 mmol/gDW/h of oxygen uptake flux which matches

with the experimentally observed value. Interestingly, even if more oxygen is used, the pre-

dicted growth rate decreases from 0.0037 1/h (without methane) to 5.56x10-4 1/h (with meth-

ane). The predictions showed that during methane oxidation, more ubiquinol is needed.

Ubiquinol is necessary for the oxidation of ammonium to hydroxylamine. Hydroxylamine

participates in the electron transport through the oxidative phosphorylation chain and energy

production. Therefore, by decreasing energy production, cell growth is reduced. Some studies

have reported inhibition of ammonium oxidation by methane and aromatic compounds, trig-

gering an energy drain [12,14,41,42].

All the products formed by pollutant oxidation are excreted to the external environment

since Ne does not contain enzymes capable of mineralizing them [10,12,30,42,43]. End prod-

ucts of methane, benzene, phenol, toluene, and chlorophenol are methanol, phenol, hydroqui-

none, benzaldehyde, and chlorophenol, respectively, as it is reported by [14,15,30,41].

2.6 Flux distributions

Flux distributions were evaluated under different growth conditions (Fig 3). Fig 3A shows the

hierarchical clustering of flux distributions ordered in descending order to the growth rate.

Overall, higher fluxes are observed in simulations with higher growth rates. The increment in

fluxes is due to the amount of energy yielded by the substrate, which in M-models that are in

steady-state, the higher the energy production, the higher biomass production. Group 1 con-

sisted of reactions related to carbon fixation and energy metabolism (Fig 3A).

Media with HCO3
- shows higher fluxes, which is in sync with the nitrification and carbon

fixation processes occurring at greater rates under chemolithotroph conditions. Group 2 is the

biggest one and contains the largest amount of reactions involved in lipid, amino acid, and

vitamin metabolism. Simulations with greater growth rates show higher fluxes. 68.7% of group

3 (Fig 3A) belongs to the carbohydrate metabolism reactions. The growth under high fructose

conditions shows the maximum flux in this group. Glycolytic enzymes are activated, and fruc-

tose is mineralized. Group 4 contains all the reactions involved in pollutant and methane

oxidation.
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Fig 3. Flux distribution analysis under different growth conditions. (A) Hierarchical clustering of flux distributions

under different carbon sources and growth conditions. The HCO3
- uptake rates were established at low and high levels,

as we mentioned in Section 3.5.1. The pyruvate uptake flux (0.0773 mmol/gDW/h) used as a constraint in the

simulations, resulted from the experimentally observed growth rate of 0.034 1/h [16] when Ne is grown using pyruvate

as the organic carbon source. The methane and pollutant uptake rates were constrained to 1 mmol/gDW/h under the

low HCO3
- level condition. We used standararized Z-scores to normalize predicted fluxes. Z-scores represent negative

and positive values in a blue to red color scale. The X-axis shows the metabolic reactions, and the Y-axis shows

different growth conditions. � means low uptake rates; �� means high uptake rates. Group 1: 24 reactions; Group 2: 353

reactions; Group 3: 16 reactions; Group 4: 15 reactions. (B) Change in flux predictions of CBB cycle, glycolysis, rPPP

reactions when fructose uptake is at low or high concentration. (C) Change in flux predictions of TCA cycle reactions
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We predicted two different slopes in the growth kinetics when simulating a medium of a

continuous increase in fructose consumption at a specific ammonium uptake rate (S2 Fig).

The difference in slope suggested metabolic changes between two conditions. Interestingly the

model predicted that, when fructose was at low concentration (0.014 mmol/gDW/h), there

was no CO2 production, and CCB cycle enzymes were activated (Figs S1 and 3B). The set of

activated enzymes of TCA cycle fluxes, rPPP, and energy metabolism under low fructose was

like those active during chemolithotrophic growth of Ne (Figs S2, 3B, 3C, 3D and 2B). How-

ever, as fructose concentration increased (0.746 mmol/gDW/h), the CBB cycle enzymes were

deactivated, and CO2 production was predicted (Figs S1B and 3B). An overview of the flux dis-

tribution under high fructose uptake is shown in Fig 2A.

Furthermore, the flux balance analysis calculates a positive flux in NADH16pp (Fig 3D),

which means NAD+ production, instead of NADH, contrary to what occurs at low fructose

uptake rates. Besides, the fluxes of nitrification process enzymes (AMO, HAO, Q8H2ASE,

CYTEX) decreases (Fig 3D). As a result, the nitrite production rate drops to practically zero

(S1B Fig). We observed that when there is greater fructose availability, the model channels

fluxes to the production of energy through the breakdown of the organic carbon source. Nev-

ertheless, when the amount of organic carbon source drops, the flux balance analysis predicts

that Ne recovers energy through chemolithotrophic metabolism.

3. Discussion

3.1 Model reconstruction and refinement

The model iGC535 was highly curated and successfully validated under various growth condi-

tions, achieving the highest growth phenotype accuracy (Table 2) compared with all the Ne
available models to date. Out of all the Ne available models (5 total), only iGC535 and iFC578

can simulate growth and nitrite production under chemolithotrophic conditions. But only

iGC535 incorporates the phosphorylate oxidation chain while being fully mass and charge bal-

anced, enabling the simulation of pollutant transformation pathways and growth under both

chemolithoorganotrophic and chemolithotrophic conditions. To our knowledge, iGC535 is

the first genome-scale model of Ne able to predict flux distributions simultaneous oxidation of

pollutant and ammonium.

Predicted growth phenotypes and fluxes across the network of iGC535 were validated using

experimental data (>90% accuracy). Higher prediction accuracies were calculated for chemo-

lithoorganotrophic growth with fructose as the sole carbon source, for oxygen uptake rates

under chemolithotrophic conditions, and during methane and pollutant oxidation. The model

also provides advanced quantitative insights at the metabolic level about chlorobenzene and

phenol oxidation. The manual curation performed to iGC535 resulted in a metabolic network

of Ne with high certainty about reaction addition and cofactors usage. For example, using the

glycolytic isoenzyme NADH-dependent GAPD instead of NADPH-dependent GAPD. Chain

et al. [10] suggested that Ne saves a significant amount of energy by reducing

when fructose uptake is at low or high concentration. (D) Change in flux predictions of energy metabolism reactions

when fructose uptake is at low or high concentration. Abbreviations: FBA, Fructose-bisphosphate aldolase; PYK,

pyruvate kinase; RPE, ribulose 5-phosphate 3-epimerase; RPI, ribose-5-phosphate isomerase; TALA, transaldolase;

TKT, transketolase; TPI, triose-phosphate isomerase; PGI, glucose 6-phosphate isomerase; RBPC, ribulose

1,5-bisphosphate carboxylase-oxygenase; PRUK, phosphoribulokinase; PFK, phosphofructokinase; ACONT, aconitate

hydratase; CS, citrate synthase; FUM, fumarase; MDH, malate dehydrogenase; AKGDH, 2-oxoglutarate

dehydrogenase; ICDHyr, isocitrate dehydrogenase; SUCDi, succinate dehydrogenase; SUCOAS, succinyl-CoA

synthetase; THD2pp, NAD(P)+transhydrogenase; AMO, ammonia monooxygenase; HAO, hydroxylamine

oxidoreductase; Q8H2ASE, ubiquinol synthase; CYTEX, cytochrome exchange; NADH16pp, NADH dehydrogenase.

https://doi.org/10.1371/journal.pcbi.1009828.g003
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3-phosphoglycerate through the NADH-dependent GAPD. Our model simulations showed

that Ne carries flux through this reaction (-2.9597 mmol/gDW/h), thus optimizing energy

utilization.

3.2 Model-driven insights into Ne metabolism

Currently, the complete TCA cycle has been characterized in Ne [10]. Experimental studies

have suggested that all TCA cycle enzymes are active when Ne is growing anaerobically (nitrite

as the electron acceptor) while using organic carbon as the carbon source [44,45]. Moreover, it

has been also shown that other chemolithotrophs can oxidize organic carbon sources to sur-

vive [46]. Model simulations predicted that NADH16pp oxidizes NADH to NAD+ (2.05

mmol/gDW/h) when fructose is present at high concentrations. This flux is reversed when

HCO3
- is the carbon source (-10.19 mmol/gDW/h). Adessi and De Philippis, 2013 [47] sug-

gested that NADH production instead of NAD+ is due to the excess of reduced ubiquinol.

Model simulations showed that Ne maintains healthy levels of ubiquinol by activating the reac-

tion NADH16pp.

Flux distributions also showed that under chemolithotrophic growth, all TCA cycle

enzymes were active except for AKGDH. This prediction agrees with the study done by Beyer

et al. and Hooper et al. [44,48], who observed that all TCA cycle enzymes were active except

for AKGDH in Ne. However, SUCDi was active at a low flux (8.0939x10-5 mmol/gDW/h).

Experimental observations revealed low activity or no significant expression amount of

SUCDi under chemolithotrophy growth. Even more, some attempts to measure SUCDi activ-

ity by Deutch, 2013 [49] were unsuccessful. We believe that iGC535 will provide insights into

the experimental design to better understand SUCDi activity in Ne.
iGC535 provides high resolution at metabolic and electron transfer levels. For example,

model simulations showed that 50% of the electron flux from HAO returns to AMO under

chemolithotrophic conditions, 30.8% passes to the terminal oxidase, and 19.25% goes towards

NADH16pp. Wood 1986 [50], proposed that four electrons are removed from hydroxylamine

oxidation by HAO, and two electrons return to AMO, 1.65 passes to the terminal oxidase, and

the rest goes to NADH16pp. For this to happen, experimental evidence showed that out of all

the electron flux from HAO, 50% goes to AMO, 41% to the terminal oxidase, and 8.7% to

NADH16pp. Although the prediction of the flux proportion that returns to AMO coincided

with that reported in the literature, the other two percentages diverged. However, the simula-

tion correctly predicted a higher electron flux through AMO than C552oxi, which is subse-

quently higher than the electron flux through NADH16pp.

3.3 Metabolism change at low fructose concentrations

The model predicted the increase in RBPC activity when the fructose concentration drops.

Thus, CO2 is fixed. Other organisms, such as Pseudomonas oxalaticus OX1, have also shown a

progressive increase in RBPC activity and CO2 fixation when acetate concentration (organic

carbon source) decreases in formate-limited culture [51].

Overall, iGC535 is a reliable systems biology tool that will be the base to understand and

generate new hypothesis about Ne metabolism under a great variety of growth conditions.

4. Methods

4.1 Draft model generation

The proteome sequence of N. europaea ATCC19718 was obtained from The NCBI Reference

Sequence database (Refseq code: NC_004757.1, total proteins: 2,507) [21]. Protein sequences
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were aligned to build the first draft model using bidirectional BLAST for protein homology

(BLASTp criteria of� 40% identity, e-value� 1e-30, and query coverage� 50%). The initial

draft was reconstructed following semi-automatic reconstruction methods [19,20]. iML1515

[23] was used as the first template model, iHN637 as the second template, and iPC815 [25] as

the last template. [24]. We generated an initial version of the draft model from the protein

homology between Ne and the first template. New reactions were added to the initial draft

model using the remaining templates. The generated draft model also contained genes from

the models used as references, which were later removed during the model refinement.

4.2 Biomass objective function

The biomass objective function (BOF) includes key metabolites part of biomass composition.

The stoichiometric coefficient of each metabolite in this modeling reaction enforces an overall

growth rate at a certain energy rate, here 46.66 mmol/gDW/h. The biomass objective function

(BOF) and the growth-associate ATP maintenance value (46.66 mmolATP/gDW) of iHN637

(template) were imported to iGC535 because of the physiological similarity between both C.

ijungdahlii and Ne (e.g., chemolithotrophs, grow under diverse environments). Then, the stoi-

chiometric coefficients of amino acids in the BOF were updated using the abundance of the

amino acid in the proteome of Ne, following the standard protocol for generating genome-

scale metabolic reconstructions [52]. The breakdown of the amino acids was confirmed by Ne
proteomic data under chemolithotrophic conditions [53]. Mineral compounds in the BOF

(e.g., copper, iron, manganese) of the model were established according to N. europaea mineral

requirements [54]. The final breakdown of biomass components as protein, nucleotide, and

lipid content in the Ne biomass was 45.9, 12.8, 29.5%, respectively. This BOF generated was

used as the objective function in all simulations executed in this paper. The model was also

constrained by the non-growth-associated ATP maintenance (NGAM) (0.45 mmolATP/

gDW), which was imported from the iHN637 model too. The NGAM is represented in the

model as the reaction ATPM.

4.3 Model refinement and quality control and quality analysis (QC/QA)

Model refinement included two main stages: first, manual curation of the gene-protein-reac-

tion associations of the model, including new metabolic reactions from The BiGG Database,

and second, gap-filling that identified what metabolites were disconnected in the metabolic

network and which reactions were missing by pathway.

4.3.1 Manual curation. In the first step of manual curation, the reactions with exogenous

proteins in the GPR associations were reviewed using different bioinformatic databases

(KEGG, Biocyc, etc.). Exogenous proteins were replaced with homologous proteins of N. euro-
paea for each reaction using the Enzyme Commission (EC) number as reference to identify

the protein functionality. As the second step, these reactions without N. europaea proteins

associations were checked through BLASTp. We determined sequence similarity among the

proteins of these reactions comparing N. europaea proteome against the proteins assigned in

the GPR associations for other organisms in the same reactions of the BiGG database. We

identified proteins based on BLASTp criteria of> = 40% identity, e-value< = 1e-30, and query

coverage> = 50%. The last step of manual curation was performed in order to validate the

quality of the GPR associations [19]. The proteins for each reaction of the draft model were

manually reviewed based on the type of metabolic reaction, protein function, and cell com-

partment. All the reactions and GPR associations validated were distributed in three different

compartments (periplasm, cytoplasm, and extracellular compartment).
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Afterward, remaining reactions with exogenous genes in the GPR associations of the model

were identified and analyzed through Flux Balance Analysis (FBA) from the COBRA Tool-

box [27]. The remaining reactions with no flux according to the FBA analysis and exogenous

GPR associations were removed from the M-model.

A total of 687 false-positive GPR’s in the initial draft model were corrected. It was consid-

ered a false positive GPR if the reaction had at least one Ne missing gene or at least one errone-

ous annotated gene.

4.3.2 Gap-filling. The gap-filling process was performed in two steps: first, gap-filling of

the metabolic pathways already present in the manually curated draft model, and second, the

addition of new metabolic pathways to the model from different bioinformatics databases (S1

Table).

Gap analysis was executed to identify which metabolites were disconnected in the metabolic

network and which reactions were missing by pathway. Disconnected reactions were manually

added using different bioinformatic databases (e.g., KEGG, Biocyc). From these analyses, gap-

filling was employed to manually connect pathways through the data retrieved (pentose phos-

phate pathway, glycolysis, TCA cycle, etc.). Subsequently, the second round of gap-filling was

performed to connect the metabolites from the medium conditions retrieved using literature

information [15] through algorithms to identify the reactions involved in the wastewater pol-

lutants oxidation, carbon, and nitrogen sources assimilation. A total of four wastewater pollut-

ants (benzene, phenol, toluene, chlorobenzene), and methane were identified in ammonium

assimilation conditions. Moreover, three carbon sources were used as substrates (HCO3
-, fruc-

tose, pyruvate). The reactions added in the gap-filling process with no GPR associations were

annotated as orphan reactions. Ultimately, reaction fluxes were validated using FBA to verify

the predicted internal fluxes.

During the second step of gap-filling, new N. europaea central metabolism pathways and

gene associations were added to the refined model using semi-automatic algorithms. The

names of new reactions and metabolites were assigned according to BiGG and SimPheny data-

bases [22,55]. Reactions and metabolites with no information in both databases were added to

the model according to the EC Number information, other bioinformatics databases (KEGG,

Biocyc, etc.), reactions and metabolites detailed information (charge, formula, reversibility,

direction, etc.), and other metabolic models of N. europaea [17,18]. The connectivity of reac-

tions was confirmed while performing FBA to predict biomass production. For reactions

added in the second step of gap-filling were tested their connectivity by constraining uptake of

those metabolites in the model and performing FBA simulations.

QC/QA included balance check-ups to ensure mass and charge balance of all reactions

added to the model. Ultimately, the final model was tested for free ATP, NADH, and NADPH

production without inputs.

4.4 Constraints and growth simulations

The culture medium composition under chemolithotrophic conditions retrieved from the lit-

erature [54] was used as the M-model constraints. The uptake and secretion rates under che-

molithoorganothrophic, methane oxidation, and wastewater pollutant oxidation were

collected using experimental data about growth phenotypes [12–15,30]. The constraints

related to mineral medium composition and reactions with no flux value under both condi-

tions (chemolithotrophic and chemolithoorganothrophic conditions) are summarized in S5

Table. Growth simulations were performed in the COBRA Toolbox for MATLAB [27] using

the flux balance analysis procedure [56] and Gurobi Optimizer Version 5.6.3 solver (Gurobi

Optimization Inc., Houston, Texas). Ammonium was used as the principal nitrogen and
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energy source. Meanwhile, HCO3
- was set as the principal carbon source. The M-model meta-

bolic flux distributions were calculated under ten different growth conditions (HCO3
- at low

and high uptake rates; fructose at low and high uptake rates; pyruvate; HCO3
-+methane;

HCO3
-+chlorobenzene; HCO3

-+benzene, HCO3
-+phenol, and HCO3

-+toluene, https://

github.com/cristalzucsd/Nitrosomonaseuropaea). The predicted fluxes by reaction (or by col-

umn) were normalized by Z-score using the Statistics and Machine Learning Toolbox of

MATLAB. For more Z-score normalization details, see S1 Text. Reactions fluxes were analyzed

to determine the pathways’ participation according to the medium conditions, specifically, the

pathways involved in the core (metabolism energy production, amino acid, nucleotide and

lipid metabolism, etc.) and pollutants oxidation.

Ultimately, a robustness analysis was performed to determine the Ne metabolic capability

to use fructose (from 0 mmol/gDW/h to 1 mmol/gDW/h) under various ammonium assimila-

tion rates (from 0.5 mmol/gDW/h to 6.5 mmol/gDW/h). Predicted growth rates were com-

pared with the experimental data.

In conclusion, our model iGC535 was successfully validated under a broad variety of condi-

tions. It is a powerful tool to unravel the metabolism of Ne, and it will be a great tool to under-

stand nitrification in the context of microbial communities to optimize the wastewater

treatment and nitrogen cycle behavior. iGC535 represents the most comprehensive knowl-

edge-base for a nitrifying organism available to date.

4.5 Flux Variability Analysis

Flux Variability Analysis [35] was used to quantify the maximum and minimum fluxes of the

reactions in each evaluated condition (Section 2.4) and under low and high concentrations of

fructose. The constraints used for these analyses are shown in S5 Table. This algorithm calcu-

lates the optimal growth rate and automatically sets it as constraint for the lower and upper

bound of the biomass reaction. Then, for every reaction i, each maxvi and minvi
is solved,

where v represent fluxes. The analysis was designed to exclude the formation of the loops [57]

by applying the linear loop-law constraints described by Schellenberger, et al., 2011 [58] to a

COBRA mixed-integer linear programming (MILP) problem, which includes the fluxes of

each internal reactions of the model. All additional inputs were set to default values. For exam-

ple, the optimal percentage was 100%, enabling to achieve 100% of the biomass objective

function.

Supporting information

S1 Text. Methods and results description.

(DOCX)

S1 Fig. Flux prediction change under high and low fructose concentrations. (A) Flux pre-

diction change of CBB cycle, glycolysis, rPPP reactions when fructose uptake is 0.014 (low con-

centration) or 0.746 (high concentration) mmol/gDW/h (ammonium uptake rate setting on

0.5 mmol/gDW/h). (B) Flux prediction change of exchange reactions when fructose uptake is

0.014 or 0.746 mmol/gDW/h (ammonium uptake rate setting on 0.5 mmol/gDW/h). (C) Flux

prediction change of nucleotide metabolism reactions when fructose uptake is 0.014 or 0.746

mmol/gDW/h (ammonium uptake rate setting on 0.5 mmol/gDW/h. (D) Flux prediction

change of oPPP reactions when fructose uptake is 0.014 or 0.746 mmol/gDW/h (ammonium

uptake rate setting on 0.5 mmol/gDW/h. Abbreviations: FBA, Fructose-bisphosphate aldolase;

GAPD, glyceraldehyde 3-phosphate dehydrogenase; PGK, phosphoglycerate kinase; PYK,

pyruvate kinase; RPE, ribulose 5-phosphate 3-epimerase; RPI, ribose-5-phosphate isomerase;
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TALA, transaldolase; TKT, transketolase; TPI, triose-phosphate isomerase; PGI, glucose

6-phosphate isomerase; RBPC, ribulose 1,5-bisphosphate carboxylase-oxygenase; PRUK,

phosphoribulokinase; PFK, phosphofructokinase; EX_co2_e, exchange reaction of CO2;

EX_no2_e, exchange reaction of NO2; ADK, adenylate kinase; GND, phosphogluconate dehy-

drogenase; G6PDH2r, glucose 6-phosphate dehydrogenase; PGL, 6-phosphogluconolactonase.

(TIF)

S2 Fig. Growth rates predicted by iGC535 under different uptake fluxes of ammonium and

fructose.

(TIF)

S3 Fig. Color scale of the reaction fluxes Z-score normalized.

(TIF)

S1 Table. Gap-filled reactions by growth condition.

(XLSX)

S2 Table. New metabolites added to iGC535.

(XLSX)

S3 Table. New reactions added to iGC535.

(XLSX)

S4 Table. Maximum, minimum, and optimal solutions of iGC535 under different growth

conditions.

(XLSX)

S5 Table. iGC535 Culture medium constraints for all conditions.

(XLSX)

S6 Table. Normalized fluxes by reaction.

(XLSX)
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