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Abstract

Objective: Variations in respiration patterns are a characteristic response to distress due to 

underlying neurorespiratory couplings. Yet, no work to date has quantified respiration pattern 

variability (RPV) in the context of traumatic stress and studied its functional neural correlates – 

this analysis aims to address this gap.

Methods: Fifty human subjects with prior traumatic experiences (24 with posttraumatic stress 

disorder (PTSD)) completed a ~3-hr protocol involving personalized traumatic scripts and active/

sham (double-blind) transcutaneous cervical vagus nerve stimulation (tcVNS). High-resolution 

positron emission tomography functional neuroimages, electrocardiogram (ECG), and respiratory 

effort (RSP) data were collected during the protocol. Supplementing the RSP signal with ECG-

derived respiration for quality assessment and timing extraction, RPV metrics were quantified and 

analyzed. Specifically, correlation analyses were performed using neuroactivity in selected limbic 

regions, and responses to active and sham tcVNS were compared.

Results: The single-lag unscaled autocorrelation of respiration rate correlated negatively with 

left amygdala activity and positively with right rostromedial prefrontal cortex (rmPFC) activity for 

non-PTSD; it also correlated negatively with left and right insulae activity and positively with right 

rmPFC activity for PTSD. The single-lag unscaled autocorrelation of expiration time was greater 

following active stimulation for non-PTSD.

Conclusion: Quantifying RPV is of demonstrable importance to assessing trauma-induced 

changes in neural function and tcVNS effects on respiratory physiology.

Significance: This is the first demonstration of RPV’s pertinence to traumatic stress- and 

tcVNS-induced neurorespiratory responses. The open-source processing pipeline elucidated herein 

uniquely includes both RSP and ECG-derived respiration signals for quality assessment, timing 

estimation, and RPV extraction.

Keywords

neural correlates; respiration signal processing; respiratory variability; stress; vagus nerve 
stimulation

I. Introduction

Distress generally involves engagement and withdrawal of the sympathetic (“fight or 

flight”) and parasympathetic (“rest and digest”) branches of the autonomic nervous system 
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(ANS), respectively. A multitude of effects thereby manifest throughout the body, including 

respiratory variations that often result in a characteristic response: rapid and irregular 

breathing, breathlessness, and in some individuals, more severe responses such as panic 

attacks [1]. Although these effects are observed peripherally, internal communications 

between the central and peripheral nervous systems initiate and modulate these responses.

The respiratory center, located in the brainstem and distributed across the medulla and pons, 

acts as the primary mediator of these variations [2]. The center’s positioning strategically 

facilitates integration of top-down signaling from subcortical and cortical regions of the 

brain (e.g., limbic system), and afferent signaling via the ANS (e.g., along the vagus nerve). 

The respiratory center’s three respiratory groups – dorsal, ventral, and pontine – then 

signal efferently to the respiratory muscles to phase inspiration and expiration [3]. Notably, 

internal rhythm in the pre-Botzinger complex is not the only factor driving inspiration and 

expiration; rather, current and predicted need for oxygenation – possibly mismatched with 

supply due to a stressor – also inform respiration timings and their variations [3]–[5].

Despite widespread acknowledgement of this functional coupling between the central 

nervous system and respiratory physiology, studies of respiration pattern variability (RPV) 

have yet to demonstrate correlations with underlying neural activity in the context of 

stress. It seems reasonable to expect, however, that RPV could capture information 

pertinent to functional neuroactivity during stress. Respiratory patterns will vary according 

to the demands of the central and autonomic nervous systems. Yet, the majority of 

research on RPV has bypassed this constituent step and has instead studied the direct 

relationship between stimulus presentation and these peripheral measures’ responses [6]–

[11]. Importantly, establishing such correspondence with functional neuroactivity would 

spur the development of RPV quantification methods toward neural engineering for stress 

– as has been done already for heart rate variability (HRV) [12], [13]. More diverse sets of 

markers would thereby be validated for tracking latent neurophysiological stress, which is 

especially relevant for those suffering from trauma and anxiety disorders (e.g., PTSD). The 

need for said demonstrative research thus remains.

In fact, to the best of our knowledge, the sole investigation of RPV and simultaneous 

functional neuroimaging thus far has been that of [14], where sinusoidal regularity in 

breathing demonstrated a positive association with connectivity between the cingulate 

cortex and hippocampus, as measured using functional magnetic resonance imaging. 

Although the work of [14] partially inspired this paper’s analysis, it differs in its focus 

on RPV’s relationship to default mode network connectivity and its deterioration in remitted 

depression, rather than functional neuroactivity during responses to stress-relevant stimuli in 

traumatized subjects. Respiration quality assessment was also not employed during signal 

processing. Indeed, the literature on RPV has paid inadequate attention to confounds related 

to signal deterioration, let alone leverage available electrocardiogram (ECG) signals via 

ECG-derived respiration for added robustness [15] – despite the inherent corruption of 

wearable respiration sensing by motion and tissue artifacts.

To address these limitations, 50 human subjects with prior traumatic experience (24 

with posttraumatic stress disorder (PTSD)) were studied over the span of a 2–3 
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hour-long protocol involving traumatic stress and transcutaneous cervical vagus nerve 

stimulation (tcVNS). Stimulus-induced responses were assessed using concurrent high-

resolution positron emission tomography (HR-PET) for regional cerebral blood flow (rCBF) 

measurements and electrocardiogram (ECG) and belt-based respiratory effort (RSP) sensing 

to estimate peripheral cardiorespiratory physiological parameters. Utilizing automated 

signal processing algorithms, respiratory variability was extracted and evaluated for its 

neurophysiological significance in the context of traumatic stress and tcVNS via a 1) 

correlation analysis with limbic brain activity and 2) active vs. sham tcVNS comparisons, as 

illustrated in Fig. 1.

This enabled evaluation of the following hypotheses:

H1) RPV will add value in capturing the latent ANS and limbic system variations 

induced by traumatic stressors and tcVNS – notably not already captured by 

HRV. Secondarily, we hypothesized that correlated variability in breathing would 

inversely relate to distress, as in [7]–[11].

H2) Based on the withdrawal and enhancement of vagal tone during inspiration and 

expiration, respectively [6], extracting inspiration and expiration times will better 

enable quantification of tcVNS effects on RPV than that afforded by the coarser 

measure of respiration rate.

These hypotheses guided our assessment of RPV’s potential utility as a marker for 

quantifying neurorespiratory variations and informing therapeutic interventions.

We consequently make the following contributions to the state of the art:

C1) Establish the potency of respiratory variability in quantifying the underlying 

central and autonomic nervous system responses to traumatic stress and tcVNS

C2) Demonstrate that constituent inspiration and expiration times are necessary to 

capture tcVNS effects

C3) Design and elucidate an end-to-end respiration processing and variability 

extraction pipeline that incorporates both RSP and ECG-derived respiration signals 

with validated respiration quality assessment

To enhance utility and foster reproducibility, all processing and variability extraction code 

has been made available at https://github.com/asimgazi24/RespProcessing_RPV.

II. Methods

A. Study Protocol and Population

On the first morning of a three-day protocol (ClinicalTrials.gov identifier NCT02992899) 

approved by the Institutional Review Boards of the Georgia Institute of Technology 

(#H17126), Emory University School of Medicine (#IRB00091171), SPAWAR Systems 

Center Pacific, and the Department of Navy Human Research Protection Program, 50 human 

subjects (32 females) with a mean age of 34 (SD 11) years and body mass index (BMI) of 

27 (SD 5) participated in a concurrent physiological sensing and functional neuroimaging 

study involving a series of 10 stimuli, as chronologically depicted in Fig. 2. All recording 
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considered in this work occurred at ~20° C between the hours of 9:00 and 13:00 – prior 

to the uncontrolled lunch break provided to the participants. This reduced the potential 

confounding effects of circadian rhythm- and meal intake-induced variability in peripheral 

and neuro-physiological responses [16], [17]. Participants were instructed to refrain from 

any stimulant use (e.g., caffeine) throughout the duration of the protocol and were further 

required to fast after 6:00.

To investigate traumatic stress-relevant variations in the subjects’ peripheral and neural 

physiology, audible neutral or trauma scripts of 60-s length were played to the subjects via 

headphones in the ordering illustrated in Fig. 2. Neutral scripts comprised of descriptions of 

pleasant scenery meant to induce neutral or positive affect, while traumatic stress consisted 

of personalized narrations of prior trauma. All subjects had history of psychological trauma, 

but only 24 of the subjects were clinically diagnosed with PTSD at the time; the remaining 

26 did not suffer from any severe psychiatric disorder. For further details specific to either 

modality or disease state the reader is referred to [18]–[21].

B. Double-Blind Stimulation

Adhering to a randomized double-blind clinical trial (ClinicalTrials.gov NCT02992899), 

each subject received only one of either active transcutaneous cervical vagus nerve 

stimulation (tcVNS) or sham stimulation at specified times illustrated in Fig. 2. Stimulation 

was delivered to the cervical portion of the left vagus nerve for 120 s after each of the four 

traumatic stressors, as well as twice separately to assess stimulation-specific effects. The 

active and sham devices (gammaCore, electroCore, Basking Ridge, NJ, USA) appeared and 

operated identically, differing only in stimulation parameters [19].

C. Physiological Sensing

Respiratory effort (RSP) and electrocardiogram (ECG) signals were measured at the 

locations shown in Fig. 1 using the Biopac RSPEC-R system (Biopac Systems, Goleta, 

CA, USA) from subjects lying supine inside a high-resolution positron emission tomography 

(HR-PET) scanner. RSP was transduced using a belt measuring thoracic expansion and 

contraction via a strain gauge, while ECG was measured using adhesive Ag/AgCl electrodes 

in a three-lead configuration. All data were acquired at a 2-kHz sampling rate using the 

Biopac MP150 16-bit data acquisition system.

D. Functional Neuroimaging

Brain perfusion during each protocol condition was measured using HR-PET imaging via a 

High Resolution Research Tomograph (CTI, Knoxville, TN); this enabled the quantification 

of regional voxel-wise activity at a 2-mm spatial resolution. Five seconds prior to audible 

script or electrical stimulation (scans 5 and 6), 20 mCi of radio-labeled water (H2O15) 

produced in an on-site cyclotron was intravenously administered. Subjects were then 

instructed to remain still for the duration of the scan to minimize motion artifact, and a 120-s 

HR-PET scan was initiated simultaneously with script presentation or stimulation. Each 

resultant image produced a single functional snapshot of coincident event counts localized to 

their respective voxels. As shown in Fig. 2, the inter-scan interval was ~ 500 s.
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E. Electrocardiogram Processing

Fig. 3 depicts the fully automated preprocessing, quality assessment, and timing extraction 

pipelines for ECG and respiration. Unless otherwise stated, all signal processing was 

performed in MATLAB (R2019b, Natick, MA), and all filtering was done both forward 

and backward using optimal Chebyshev finite impulse response (FIR) filters. For ECG, 

raw signals were first bandpass filtered with a passband of 0.6–40 Hz [22]. Then, an 

interim set of ECG R-peaks were detected using the Pan-Tompkins (PT) algorithm [23] 

– notably “interim” due to the infrequent, but nevertheless existent, deteriorations in ECG 

signal quality. For the sole purpose of detecting these corruptions, two additional annotation 

schemes were used to locate R peaks in parallel, [24], [25], from which two signal quality 

indices (SQI) were derived for each 10-s window of ECG data using F-scores [26]. For both 

F-scores, the PT algorithm was treated as the reference annotator, where peak times could 

differ by no more than 100 ms.

Letting the F-score computed between the algorithm of [25] and PT be SQI1(·), the F-score 

computed between the algorithm of [24] be SQI2 (·), the window index be i, where 

i ∈ 1, 2, …, T
10 , and T be the time length of data collected for the particular subject, 

windows of ECG data containing corrupted portions were removed as follows. Any window 

of index i such that SQI1(i) < 0.5 was removed, unless one of two exceptions occurred: 

(1) SQI1 < 0.5 for greater than 60 contiguous seconds within the subject’s data, or (2) 
1
T ∑i = 1

T SQI1(i) < 0.85. If either exception occurred, SQI2 was instead used on the subject’s 

data with a threshold of 0.7, i.e., any window of index i such that SQI2(i) < 0.7 was 

removed. SQI1 was hence treated as the default and SQI2 served as an alternate – this 

decision was made following inspection of SQI1, SQI2 performance on the dataset at hand. 

All thresholds were empirically tuned based on the dataset characteristics and the desired 

sensitivity / specificity in detecting corrupted windows of ECG data; thus, for alternate 

applications, the specific numerical thresholds may need modification [26].

From the remaining windows, the PT R peaks were stored, and R-R intervals were computed 

by finding the time, in ms, between all R peak pairs lying entirely within ECG windows 

of sufficient quality. Note here that the time corresponding to the second peak of each pair 

was stored alongside these R-R intervals for forthcoming reasons. Any outlier (greater than 

± 4 SD from the mean) or physiologically unlikely (> 2000 ms (30 bpm) or < 400 ms (150 

bpm)) R-R intervals were then removed, along with their corresponding second peak times. 

For subjects with evident arrhythmias, this final step was replaced with two-stage outlier 

removal to eliminate arrhythmic beats. Specifically, R-R intervals further than ± 3 median 

absolute deviations (MADs) from the overall median were removed, followed by 30-element 

moving window outlier removal with ± 2 MAD bounds away from the window-specific 

medians. These steps resulted in a final set of “clean” R-R intervals, or what will be 

referred to as normal-to-normal (NN) intervals [27]. These quality assessment steps resulted 

in the removal of 3 (SD 7) % of the ECG data; this mean and SD include subjects with 

arrhythmias. Data removal was estimated by dividing the number of datapoints within NN 

intervals by the total number of raw ECG datapoints available.
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F. Respiration Processing

For respiration processing, the belt-based signal was supplemented with two additional 

ECG-derived respiration signals: the respiration-induced intensity variation (RIIV) and the 

respiration-induced amplitude variation (RIAV) [28]. RIIV and RIAV were extracted by 

leveraging the original raw ECG signal, the NN intervals, denoted NNI = [nni1, nni2,…, 

nniN], and the corresponding second R peak times, denoted S = [s1, s2,…, sN]. In particular, 

NNI and S were first used to compute a final set of clean R peak times, C, by subtracting 

NN intervals from their corresponding second peak times and then appending the final 

second peak time, sN, to the difference, i.e., C = (S − NNI), SN ∈ ℝN + 1. R peak values 

were then determined by finding the raw ECG values corresponding to these clean R peak 

times, C. This resultant vector of R peak values forms the RIIV signal. RIAV is then 

derived by finding the ECG R peak amplitudes; each amplitude is calculated by computing 

the difference between R peak value and the minimum ECG value within 100 ms prior. 

Although respiration quality-oriented work involving ECG-derived respiration typically 

utilizes the respiration-induced frequency variation (RIFV) signal as well [15], deteriorated 

respiratory sinus arrhythmia (i.e., insufficient frequency modulation) precluded its use in this 

study [29].

To preprocess and extract an interim set of inter-breath intervals (IBIs) and breath onsets 

from these three respiration signals, RSP, RIIV, and RIAV were first linearly resampled to 

50 Hz with an antialiasing low-pass filter, followed by bandpass filtering with passband 0.1 

– 0.72 Hz (6 – 43 bpm). The filtered signals were then windowed (60-s width, 2-s overlap) 

for adaptive thresholding, where peaks were detected within each window by enforcing 

a minimum peak prominence of half of the window’s standard deviation and a minimum 

time between peaks of 1.4 s, as in [14]. Respiration onsets were then determined by first 

computing IBIs using these peaks, keeping track of time as done with R-R intervals, and 

locating the minimum value within the time window corresponding to each IBI. The result is 

thus a paired set of IBIs and onsets.

Respiration quality assessment and feature-level fusion were then performed by reverting to 

the original RSP, RIIV, and RIAV signals themselves, resampling to 4 Hz, and equivalently 

bandpass filtering (0.1 – 0.72 Hz). A respiration quality index (RQI) is then computed for 

each 16-s non-overlapping window of filtered data (indexed here by j ∈ 1, 2, …, T
16  – 

normalized to zero mean, unit variance – by taking the mean of two respiration quality 

indices (RQIs) adapted from prior literature [30]. Specifically, we employed a power spectral 

density (PSD)-based RQI, rqi1(·), where the PSD was estimated using a 64-point fast Fourier 

transform (FFT) that returned a vector of components, F (j) ∈ ℝ33, corresponding to power 

within each frequency bin of resolution 1
16 Hz (ignoring the DC component). rqi1(j) was then 

computed using (1),

rqi1(j) =
max

z ∈ 3, 4, …, 17
∑i = z − 1

i = z Fi(j)

∑i = 3
33 Fi(j)

(1)
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where z was limited according to [30]. An autocorrelation based RQI rqi2(·) was also 

employed, computed using (2),

rqi2(j) =
max

l ∈ 4, 5, …, 48
∑n = 1

64 − lyn(j)yn + l(j)

63σy2(j)
(2)

where y(j) ∈ ℝ64 represents the 16-s window of respiration data resampled to 4 Hz, and σy(j) 
represents the standard deviation of y(j). The final RQI for each window is computed as 

RQI(j) = 1
2 rqi1(j) + rqi2(j) . This windowing and respiration quality indexing is performed 

separately for each of the three signals.

With each signal’s set of 16-s window-specific RQIs stored, the previously computed IBIs 

and onsets are fused in a manner that assures both quality and the preservation of respiration 

data. In particular, the IBIs and onsets corresponding to the signal with maximum RQI were 

then selected for each window, provided that one or more of the three signals’ RQIs within 

the window remained above an empirically tuned threshold of τ = 0.45. This produced fused 

sets of IBIs and onsets, from which any implausible IBIs (> 10 s (6 bpm) or < 1.4 s (43 

bpm)), and corresponding onsets, were removed. Note that for windows with ECG data 

deemed unusable by SQI, only the belt signal was considered.

With fused IBIs and breath onset times in hand, an interim set of respiration timing features 

were extracted for further amelioration of unacceptable data, leveraging outlier detection. 

Inspiration time (Ti), expiration time (Te), and respiration rate (RR) are computed as the 

time difference (in seconds) between second peak of the IBI and corresponding onset, first 

peak of the IBI and the onset, and 60 multiplied by the reciprocal of the IBI, respectively; 

the IBI peaks were computed in a manner akin to how the NN intervals were used to find 

clean ECG R peaks earlier.

Using each of the three resultant time series, three sets of flagged IBI and onset indices 

were produced, corresponding to RR, Ti, and Te values that were deemed outliers using 

a two-stage outlier flagging approach. More specifically, if we let IBI = {ibi1, ibi2,…, 

ibiN} represent the set of fused IBIs, O = {o1, o2,…, oN} represent the set of fused onset 

times, RR = [rr1, rr2,…, rrN] represent the computed RR, Ti= ti1, ti2, …, tiN  represent Ti, 

and Te = te1, te2, …, teN  represent the resultant Te, then we flag outliers and remove IBIs 

and onsets as follows. First, for RR, Ti, and Te, all indices corresponding to values lying 

outside ± 4 MAD away from the overall median are flagged, where, for example, if rrj is 

flagged as an outlier, the index j is appended to a set of indices corresponding to RR outlier 

indices, θRR ⊂ {1, 2,…,N}. The same is done for Ti to produce θTi ⊂ {1, 2,…,N} and Te 

to produce θTe ⊂ {1, 2,…,N}. θRR, θTi, θTe are then further appended to using a second 

stage of 30-element moving window outlier flagging applied to RR, Ti, and Te, respectively, 

where indices corresponding to values lying outside ± 4 MADs from the window-specific 

medians are flagged. A single set of outlier indices, Θ, is then generated by taking the union 

of θRR, θTi, and θTe, i.e., Θ = θRR ∪ θTi ∪ θTe. The “clean” IBIs, IBI*, and onsets, O*, can 
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then be produced by keeping only the IBIs and onsets of indices corresponding to the set 

difference, i.e.,

IBI* = ibin ∣ n ∈ 1, 2, …, N \Θ (3)

O* = on ∣ n ∈ 1, 2, …, N \Θ . (4)

From IBI∗ and O∗, the final RR, Ti, and Te time series were once more computed using 

the methods aforementioned. Importantly, for both ECG and respiration processing, data 

removal takes place at the feature level, i.e., if a window of signal is deemed unsatisfactory, 

then the features extracted from the window are ignored. Thus, feature extraction is not 

affected by signal discontinuities.

These quality assessment steps resulted in the removal of 26 (SD 10) % of respiration data; 

notably, this removal increases to 41 (SD 16) % if ECG-derived respiration is ignored. This 

removal of 26 (SD 10) % aligns with prior literature [31]. Analogous to ECG, data removal 

was estimated by dividing the number of datapoints within “clean” IBIs by the total number 

of raw RSP datapoints available.

G. Respiratory and Heart Rate Variability

For each of the three respiration time series features, RR, Ti, and Te, four RPV metrics were 

computed based on prior literature to quantify various aspects of the time series’ fluctuations 

throughout the protocol [7]–[11], [14], [32]: the unscaled autocorrelation function (ACF) 

at one time lag, ACF( ⋅ )(1), the scaled ACF at one time lag ACF(·)(1), the coefficient 

of variation (CV), CV(·), and the root mean square of successive differences (RMSSD), 

RMSSD(·). This totals to 12 RPV features. Each of these RPV features is computed on a 

rolling window basis, where window length is set to 300 s and overlap is set to 299 s. Hence, 

the resultant RPV features form new time series with inter-sample intervals of 1 s, where the 

time point associated with each value is set to be the center of the window. Fig. 4 depicts the 

overall computation process for a single window of example RR data from a subject.

If we let X = [x1, x2,…, xN]T represent a 300-s window of either RR, Ti, or Te, then the 

four corresponding RPV metrics can be computed for this window as follows. For the ACF 

metrics at one time lag, we first define X−1 = [x2, x3,…, xN]T and X−N = [x1, x2,…, xN−1]T. 

Then, the unscaled ACF at one time lag can be computed as

ACFX(1) = X−1
T X−N, (5)

and the scaled ACF at one time lag can be computed as

ACFX(1) = X−1
T X−N
XTX

. (6)

RMSSD also makes use of X−1 and X−N; specifically
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RMSSD(X) = X−1 − X−N
T X−1 − X−N
N . (7)

Finally, CV is computed by taking the standard deviation of the window and dividing it by 

the window’s mean, i.e., letting

μX = 1
N ∑i = 1

N xi and σX = 1
N − 1 ∑i = 1

N xi − μX
2,

CV(X) = σX
μX

.
(8)

Heart rate variability (HRV) features were also computed on a 300-s rolling window 

basis with 299-s overlap using the NN intervals. Utilizing the PhysioNet Cardiovascular 

Signal Toolbox [33], the following HRV features were extracted due to their demonstrated 

relevance to stress [34]: RMSSD, pNN50, LF/HF, and SD1/SD2. The final HRV feature 

extracted was respiratory sinus arrhythmia (RSA), computed using the Porges-Bohrer 

method [35].

H. Neuroimage Processing and Segmentation

Using statistical parametrical mapping (SPM12; www.fil.ion.ucl.ac.uk/spm), HR-PET 

images were processed as in previous research [18]. First, a mean intensity image was 

generated using the individual scans. Then, the individual scans were spatially normalized 

to this mean intensity image, transformed into a common anatomical space (SPM PET 

Template), and smoothed using a 3-D Gaussian filter at 5-mm full width half maximum. 

To then assess relative activations and deactivations over the protocol time course, the 

individual images were total count normalized to whole brain activity.

Operating under the hypothesis that limbic brain activity would be most relevant given the 

extensive literature implicating these regions in fear, trauma, and stress-related responses 

[36], we segmented and studied 14 particular areas – seven from each hemisphere. These 

seven were the amygdala, hippocampus, anterior cingulate cortex (ACC), midcingulate 

cortex (MCC), insula, thalamus, and rostromedial prefrontal cortex (rmPFC). For all regions 

but the rmPFC, segmentation was performed on the total-count-normalized images by 

leveraging the automated anatomical labeling (AAL) atlas [37]; for the rmPFC, custom 

masks derived from the AAL atlas’s inferior half of the superior medial frontal gyrus were 

used [38]. This resulted in regional cerebral blood flow (rCBF) estimates for 14 brain areas 

during each of the 10 protocol conditions. For further details on each of the brain regions, 

please see the supplementary material.

I. Identifying Neural Correlates

For each of the RPV, HRV, and additional features that were deemed extraneous to the 

significance of this work (detailed in the supplementary material), resampling to 1 Hz, 

moving window averaging with a 5-s window, and segmentation to protocol condition first 

took place similarly to the time series preparation of prior work [39]. In this case, however, 
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segmentation corresponded to only to the first 60 s of each HR-PET scan. This was in 

accordance with prior correlation analyses utilizing O15 water-based PET imaging, where 

the tracer uptake period is of pertinence (e.g., [40], [41]). Once the features were segmented, 

the mean was computed for each of the conditions, corresponding to 10 mean values for 

each of the peripheral physiological features, corresponding to the 10 sets of brain activity 

measures previously stored (in the maximal case, i.e., no data missing).

With this correspondence established, correlations between each brain area-physiological 

feature pair were analyzed using linear mixed effects (LME) modeling in R using the 

lme4 package [42]. Unless otherwise stated, the non-PTSD and PTSD groups were 

treated separately given the notable psychophysiological deteriorations well-documented 

in the literature for those suffering from PTSD [43]. Each LME model investigated the 

relationship between one of the physiological features and one of the brain areas for each 

disease state, where brain activity was treated as the dependent variable and physiological 

measure as the independent variable and sole fixed effect. Subjects were included as 

random effects to adequately account for the repeated measures for each subject, providing 

increased statistical power over approaches such as the Fisher transform for aggregation 

[40]; both subject-specific slopes and intercepts were included [44]. The models were fit 

using maximum likelihood estimation with unstructured covariance, whereafter, residual 

plots were investigated for homoscedasticity and normality – no obvious deviations were 

observed. P-values were then obtained using likelihood ratio tests (LRTs) of the full model 

with physiological measure as a fixed effect vs. the model without this effect in question 

[45], [46]. Chi square values correspond to the LRT statistic.

Significant correlates were identified by enforcing P<1.37 × 10−4 < .05
26 × 14 . This 

conservative Bonferroni correction factor of 26 × 14 was determined using the number of 

related comparisons performed over the entirety of the feature set, including the extraneous 

features omitted from the main manuscript (supplementary material).

J. Comparing Active vs. Sham Stimulation Responses

Upon finding significant neural correlates, respiratory variability was then evaluated for 

its relevance to tcVNS-induced effects. To investigate this, the active vs. sham analysis 

steps taken in our group’s prior work were mirrored with the variability features of interest 

[19]. First, each feature time series was normalized as a relative percent difference from 

a subject-specific baseline, where the baseline was computed by finding the average value 

across the first minute of the subject’s available data within the 240 s prior to the first neutral 

script. Note that in the sole case of pNN50, normalization was done without division to 

account for the 0% baselines of certain subjects. These normalized time series were then 

segmented according to intervals of interest: the first 30 s of traumatic recall, first minute 

of stimulation, last minute of stimulation, and one minute from post-stimulation, starting 

from 3 minutes after stimulation stopped (i.e., interval of [180, 240] s after stimulation; the 

first minute was additionally included based on the results of our group’s prior state-space 

modeling work [39]. Fig. 2 illustrates the ordering of these intervals for each stimulation 

condition. Responses following traumatic stress were analyzed separately from responses 

with no prior stress, and the PTSD group was again analyzed separately from the non-PTSD 
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group. To return one value per interval for each subject, values of the same interval type 

were averaged. These sets of subject-specific percent changes were then compared between 

the active and sham groups for each of the intervals under study.

Due to the absence of normality precluding the use of multivariate analysis of variance 

(MANOVA) in comparing the groups, two-tailed Mann-Whitney U tests or independent 

t-tests were employed for variables with nonnormally and normally distributed residuals, 

respectively (tested with Shapiro-Wilk test). If equality of variance was rejected (tested with 

Levene’s test) for a variable with normally distributed residuals, Welch’s independent t-test 

was used; otherwise, Student’s t-test was used. The level of significance was set to α = .05
3

to account for three comparisons per feature. Effect sizes were computed using Cohen’s d or 

the common language effect size, f, as appropriate.

III. Results

A. Variability Correlates of Limbic Brain Activity

Fig. 5 illustrates the significant variability correlates discovered for both the non-PTSD and 

PTSD groups. The variations in respiration rate captured via the unscaled autocorrelation 

function at one time lag, ACF(RR)(1), correlated positively with the right rmPFC (P = 9.4 

× 10−5, χ2(1) = 15.2) and negatively with the left amygdala (P = 7.6 × 10−8, χ2(1) = 

28.9) for the non-PTSD group – these areas are colored in blue. The fluctuations in NN 

intervals captured by the RMSSD exhibited a significant positive correlation with the left 

hippocampus (P = 3.0 × 10−5, χ2(1) = 17.4) for the non-PTSD group – this area is colored in 

red.

For the PTSD group, the only significant neural correlate detected was the ACF(RR)(1), 
which exhibited a positive correlation with the right rmPFC (P = 5.5 × 10−7, χ2(1) = 25.1) 

and negative correlations with both the left and right insulae (P = 8.3 × 10−5, χ2(1) = 

15.5; P = 1.2 × 10−5, χ2(1) = 19.2, respectively). Also included in Fig. 5 are example time 

series plots from a single subject for both implicated variability features, as well as example 

correlation data and mixed model fits across all subjects in the non-PTSD group; subject ID 

is colored equivalently in the two spaghetti plots shown. The BrainNet Viewer was used for 

3-D brain rendering [47], where additional views are provided as supplementary material.

B. Variability Differences Between Active and Sham tcVNS

Fig. 6 displays the significant differences found between relative responses to active and 

sham tcVNS. For the non-PTSD group, only an RPV metric differed significantly after 

correction: the unscaled ACF of expiration time at one time lag, ACF(Te)(1). Both with and 

without prior traumatic stress, the relative responses for the active group were higher than 

that of the sham group during the post-stimulation period (P = .013, t = 2.8, d = 1.16 

without prior traumatic stress; P = .016, U = 42, f = .25 with prior traumatic stress). For the 

PTSD group, only HRV differed significantly, where two metrics not reported on previously 

in prior literature, RMSSD and pNN50, are shown. The RMSSD of NN intervals differed 

significantly during both the first and second minutes of stimulation (P = .0005, U = 14, f = 
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.097; P = .001, U = 18, f = .13, respectively), while the pNN50 differed significantly only 

during the first (P = .01, U = 31, f = .22) – both were higher in the active group than in the 

sham group.

IV. Discussion

A. Respiratory Variability Correlates with Limbic Regions Implicated in Both 
Subconscious and Conscious Processes

In Fig. 5, the neural correlates of ACF(RR)(1) not only include limbic regions that primarily 

operate in the subconscious realm, but also areas that are believed to additionally play 

meaningful roles in consciousness [48]. This is an intriguing point considering respiration 

differs from most other physiological processes – modulation can occur both consciously 

and subconsciously. For the non-PTSD group, activity within the left amygdala and the 

right rmPFC correlated significantly with ACF(RR)(1); in the PTSD group, this same 

metric exhibited correlations, again, with the right rmPFC, as well as two additional 

areas: the left and right insulae. The left amygdala has been implicated in numerous 

subconscious functions pertinent to autonomic regulation, emotional responses, and memory 

processing [49]. The rmPFC and insula have similarly been implicated in subconscious 

autonomic regulation and emotional responses [50], [51]. Specifically for the insula and 

rmPFC, however, prior work has also demonstrated their importance in social interaction, 

autobiographical history (critical to traumatic stress responses), and conscious awareness 

in the present [51]–[53]. Thus, respiration, autonomic regulation, and mindfulness are 

demonstrably intertwined, and the neural correlates reported herein suggest that respiratory 

variability can play an enabling role in gauging the neural basis for these mind-body 

phenomena.

B. Correlation Directions Suggest Correlated Variability in Respiration Rate Inversely 
Relates to Distress

The correlation directions shown in Fig. 5 seem to suggest that increases in ACF(RR)(1)
indicate reduced distress. For the non-PTSD group, ACF(RR)(1) correlated positively with 

right rmPFC activity and negatively with left amygdala activity. A simultaneous positive 

correlation with the right rmPFC and negative correlation with the left amygdala could 

imply that correlated variability in respiration rate is associated with increases in top-down 

regulation of amygdala fear responses via medial prefrontal cortex activity [49], [54]. For 

the PTSD group, the right rmPFC, again, positively correlated with ACF(RR)(1), while 

activity in the insula negatively correlated with ACF(RR)(1). Although the insula (and 

amygdala, for that matter) is involved in both negative and positive affective responses, 

in this study focused on traumatic stress, decreases in activity are generally considered a 

positive outcome [18]. Therefore, in line with findings from previous RPV research [1], 

[7]–[11], decreased correlated variability in breathing seems to entail undesirable distress 

during traumatic recall.
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C. tcVNS Increases Post-Stimulation Correlated Variability in Expiration Time for 
Subjects Without PTSD

The significant increase in ACF(Te)(1) shown in Fig. 6 for the non-PTSD active vs. sham 

comparison suggests that tcVNS induces a post-stimulation increase in the correlated 

variability of exhalation in subjects without PTSD time (please see the appendix for 

a quantitative interpretation of “correlated variability,” i.e., ACF( ⋅ )(1)). This aligns with 

expectation given that irregular breathing remains one of the characteristic respiratory 

responses to distress [1] – so regularity could indicate decreased distress. Moreover, PNS 

activity decreases during inspiration and increases during expiration due to respiratory sinus 

arrhythmia; thus, increased expiration time relative to inspiration time is strongly related 

to enhanced PNS activity relative to SNS activity [55]. Since tcVNS is purported to tilt 

sympathovagal balance toward heightened PNS activity relative to SNS activity, increased 

correlated variability in expiration could exist as one manifestation of the peripheral PNS-

favoring exhalation effects of tcVNS.

D. Inspiration and Expiration Times Provide Information not Captured by Respiration 
Rate

Fig. 6 presents a notable absence of respiration rate variability. Our group has consistently 

found that the constituent inspiration and expiration timings add value beyond what 

respiration rate can provide on its own. In related efforts leveraging the processing methods 

of this work, we have found that the expiration time, itself, is lengthened by active tcVNS 

in comparison to sham for non-PTSD subjects [56]. Moreover, heightened inspiration to 

expiration time ratios were associated with increased apnea-hypopnea indices in individuals 

affected by sleep apnea [57]; notably, no significant correlations were observed with 

respiration rate. Extracting inspiration and expiration times on a breath-by-breath basis thus 

enables a more granular analysis of sympathovagal balance than that afforded by solely 

using the coarser measure of respiration rate.

E. Respiratory Variability Holds Value Distinct from HRV

As seen in both Fig. 5 and Fig. 6, RPV metrics contributed separate value from that of 

which HRV put forth. Namely, the HRV metric RMSSD(NN) correlated significantly with 

left hippocampal activity in the non-PTSD group, even though no RPV metric did the same. 

On the other hand, the RPV metric ACF(RR)(1) correlated significantly with multiple areas in 

both the non-PTSD and PTSD groups, but no HRV metric exhibited similar correlations. 

Moreover for the active vs. sham tcVNS comparisons, no HRV metric was found to 

differ significantly between the active and sham non-PTSD groups in previous work [19], 

and neither in the results reported herein; ACF(Te)(1) did, however, differ significantly. 

Meanwhile, for the PTSD group, numerous HRV metrics differed between the active and 

sham groups [20], including RMSSD and pNN50 reported here, but no RPV metrics were 

found to differ. This demonstrates the importance of considering RPV as its own dimension, 

separate from HRV, especially when studying traumatic stress and VNS.
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F. Limitations and Future Work

A few limitations are to be noted for this study. Although the general quantification of RPV 

possesses strong anatomical and physiological underpinnings (supplementary material), the 

interpretation of each metric in context remains slightly ambiguous (i.e.., is it healthy for 

this specific metric to increase or decrease?) [1], [8]–[11]. This is partly due to the sparsity 

in literature relative to other commonly used metrics (e.g., HRV). Results such as the ones 

detailed herein can therefore prompt others to consider RPV in related applications and 

thereby further the field’s understanding.

Given this slight interpretation-related ambiguity, it was purposefully decided to exclude 

more complex variability metrics such as those recently explored for HRV (e.g., entropy 

[33]). Although such measures can provide additional value, the present analysis was 

restricted to measures that facilitated more straightforward quantitative interpretation. 

Further complexities could also have been included in the statistical models; however, the 

purpose of this study was to rigorously demonstrate that RPV adds significant value to ANS 

and limbic system related applications such as stress and VNS – not to identify all possible 

correlates. Future work can thus build upon these findings and explore added complexities.

A final note is the lack of any quantitative comparisons between the PTSD and non-PTSD 

groups. Due to the sample sizes of this study, more assertive inferences would amount to 

speculation, as clinical relevance is obtained with much larger samples. Nevertheless, the 

results presented herein suggest comparisons of RPV between individuals with and without 

PTSD to be a worthy investigation for future work.

V. Conclusion

This analysis demonstrates the utility of RPV in assessing underlying responses to traumatic 

stress and tcVNS. Leveraging both RSP and ECG-derived respiration signals, RPV features 

were robustly extracted and analyzed over the duration of a ~3-hr, 10-stimuli protocol 

involving personalized traumatic recall and tcVNS. By studying the limbic brain and RPV 

responses for 26 non-PTSD and 24 PTSD subjects, new correspondences were discovered. 

Specifically, the single-lag unscaled autocorrelation of respiration rate correlated negatively 

with the left amygdala and positively with the right rmPFC for the non-PTSD group; this 

same metric also correlated negatively with left and right insulae and positively with the 

right rmPFC for the PTSD group. Furthering this investigation, RPV responses to active 

and sham tcVNS were also compared, where the single-lag unscaled autocorrelation of 

expiration time was found to be significantly greater following stimulation in the active 

group compared to the sham group for non-PTSD subjects.

These findings suggest that respiratory variability underlies neurorespiratory responses to 

traumatic stress and neuromodulation. For sensing systems looking to improve estimates of 

latent physiological responses, the conventional HRV and skin conductance measurements 

should be supplemented with others including RPV to arrive at a more complete set 

of observables. For therapeutic interventions, targeting the respiratory center could serve 

well in regulating undesirable mind-body responses. Especially for those suffering from 

conditions such as PTSD and panic disorder where system state can alter drastically in a 
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short period of time, closed-loop systems that consider variations in breathing patterns could 

importantly enhance quality of life.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Analytically Dissecting the Unscaled Autocorrelation

The unscaled autocorrelation at one time lag, ACF( ⋅ )(1), contributed to both the 

correlation analysis and active vs. sham results; as seen in Fig. 5 and Fig. 

6, this was not the case for the scaled autocorrelation at one time lag, ACF(·)

(1). This suggests that a lack of scaling provides some relevant measure of 

variability; thus, an analytic comparison of the two is in order. Noting that 

ACF( ⋅ )(1) = ACF( ⋅ )(1) × ACF( ⋅ )(0), we find that ACF( ⋅ )(0) acts as the scaling factor 

that differs between the two. Decomposing ACF( ⋅ )(0), we have for a data window 

of length N, X = [x1, x2,…, xN], ACF(X)(0) = XTX = ∑i = 1
N xi2 = ∑i = 1

N xi − μX + μX
2, 

where μX = 1
N ∑i = 1

N xi is the mean of X. Therefore, 

ACF(X)(0) = ∑i = 1
N xi − μX

2 + μX
2 + 2μX xi − μX = NσX

2 + NμX
2 + 2μX∑i = 1

N xi − μX
= N σX

2 + μX
2

, 

where σX
2 = 1

N ∑i = 1
N xi − μX

2 is the population variance. Thus, 

ACF ( ⋅ )(1) = N σX
2 + μX

2 ACF( ⋅ )(1), implying that the explanatory scaling factor is the 

product of the number of datapoints in the window and the sum of the mean squared 

and the variance. Hence, this metric in the context of RPV not only quantifies regularity in 

the respiratory feature, but also depends on RR, signal quality, and the window’s first and 

second moments. Although these additional terms somewhat complicate interpretation, the 

demonstrated importance of ACF( ⋅ )(1) provides support for multivariate fusion approaches.
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Fig. 1. High-Level overview of the analysis.
Respiratory effort and the electrocardiogram (ECG) were measured at the locations shown 

from subjects lying supine inside a high-resolution positron emission tomography (PET) 

brain scanner. Functional brain images were obtained during specified time windows 

to estimate regional cerebral blood flow (rCBF); transcutaneous cervical vagus nerve 

stimulation (tcVNS) was also administered at specified times. In this study, respiration 

pattern variability (RPV) measures are found to not only 1) significantly correlate with rCBF 

in key limbic regions, but are also 2) modulated significantly by tcVNS in comparison to a 

sham control.
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Fig. 2. Protocol diagram.
Subjects participated in a protocol of two to three hours in length involving neutral audio 

scripts, personalized traumatic audio scripts, and active transcutaneous cervical vagus nerve 

stimulation or sham stimulation administered for 120 s at a time. High-resolution positron 

emission tomography (HR-PET) brain scans were measured during the first two minutes of 

each stimulus condition to estimate functional neuroactivity.
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Fig. 3. Signal processing and respiration timing extraction block diagram.
The electrocardiogram (ECG) is first bandpass filtered and assessed for signal quality. R 

peaks are then detected, and R-R intervals are computed by finding the time differences; this 

is followed by outlier removal. These quality normal to normal (NN) intervals are then used 

along with the original ECG signal to estimate two ECG-derived respiration signals; these 

signals are considered along with the belt-based respiration signal also measured. All three 

signals are bandpass filtered and used as detailed in the figure to derive robust respiration 

timing estimates. The necessary low-level details are depicted beneath the feature-level 

fusion and quality assessment components.
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Fig. 4. Respiration pattern variability metrics investigated in this work.
Example data and illustrations of the respiration pattern variability (RPV) metrics 

investigated in this work. Respiration timings in time series form are windowed using a 

rolling window of 300 s with 299 s overlap to extract four RPV metrics. The first two 

are related to the autocorrelation exhibited by the window of data at one lag, unscaled and 

scaled. The third is the coefficient of variation (CV) and the fourth is the root mean square of 

successive differences (RMSSD).
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Fig. 5. Neural correlates of respiratory and heart rate variability for both PTSD and non-PTSD.
On the furthest left, the underlying physiological processes driving changes in cardiac and 

respiratory timings are simplistically illustrated; to the right of that, example variability 

features found pertinent to neuroactivity in key limbic regions are plotted for a single subject 

during approximately the same time window. Second from the right are two examples 

of statistically significant mixed modeling-based correlation plots illustrating the subject-

specific slopes and intercepts used to fit the data, where subject ID is equivalently colored in 

the two plots shown (non-PTSD group). Furthest right are the neural correlates depicted in 

lateral views of 3-D renderings with the specific brain regions and correlation signs shown. 

Hipp. is short for hippocampus, amyg. Is short for amygdala, and rmPFC is the acronym 

for rostromedial prefrontal cortex; L. for left hemisphere and R. for right hemisphere. All 

correlations shown were statistically significant with p < .05 (corrected).
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Fig. 6. Active tcVNS vs. sham stimulation comparison for both PTSD and non-PTSD.
The non-PTSD group is shown on the left, where the unscaled autocorrelation in expiration 

time significantly differed in the post-stimulation period between the active and sham 

groups. This was both for stimulation with no immediately preceding traumatic stress (top 

left) and stimulation immediately following traumatic stress (bottom left). For the PTSD 

group on the right, heart rate variability differences were found that were not previously 

investigated during stimulation with no immediately preceding stress. * denotes p < .05 

(corrected), and ** denotes p < .01 (corrected). Data in bar plots represent mean ± SEM.
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