Skip to main content
. 2022 Feb 17;12:2755. doi: 10.1038/s41598-022-06651-4

Table 3.

Classification performance using all measures.

Study and description Classifier(s) Parameters tuned Accuracy Sensitivity Specificity F1 AUC
6—All subcortical and cortical measures Logistic Regression Regularization parameter C, Max iterations, penalty, solver 77% 79% 74% 0.83 0.77

7—Ensemble with 3 inputs

(a) SV

(b) CV

(c) CA + CT + CMC

Ensemble—Hard Voting

(a) Support Vector Classifier

(b) Nu-Support Vector Classifier

(c) Logistic Regression

83% 90% 70% 0.83 0.80

8—Ensemble with 5 inputs

(a) SV

(b) CV

(c) CA

(d) CT

€ CMC

Ensemble—Soft Stacking

(a) Support Vector Classifier

(b) Nu-Support Vector Classifier

(c) Support Vector Classifier

(d) Support Vector Classifier

(e) Logistic Regression

Regularization parameter C, Max iterations, penalty, solver 87% 98% 65% 0.87 0.82