Table 1.
Row | Training | Layer | Pearson, r | |
---|---|---|---|---|
Cas12a | Cas9 | |||
1 | Random weights | Encoder⇨flatten7 | 0.070 | 0.003 |
2 | Back prop-flatten7 | Encoder⇨flatten7 | 0.455 | 0.312 |
3 | Pretrained + back prop flatten7⇨fc8–10⇨mult11 | Encoder⇨flatten7 | 0.532 | 0.353 |
4 | Encoder⇨flatten7⇨fc8 | 0.534 | 0.310 | |
5 | Encoder⇨flatten7⇨fc8⇨fc9 | 0.517 | 0.291 | |
6 | Encoder⇨flatten7⇨fc8⇨fc9⇨fc10 | 0.514 | 0.305 | |
7 | Encoder⇨flatten7⇨fc8⇨fc9⇨fc10⇨mult11 | 0.514 | 0.388 | |
8 | Pretrained + back prop-all | Encoder⇨flatten7 | 0.641 | 0.409 |
9 | Encoder⇨flatten7⇨fc8 | 0.658 | 0.424 | |
10 | Encoder⇨flatten7⇨fc8⇨fc9 | 0.664 | 0.414 | |
11 | Encoder⇨flatten7⇨fc8⇨fc9⇨fc10 | 0.664 | 0.414 | |
12 | Encoder⇨flatten7⇨fc8⇨fc9⇨fc10⇨mult11 | 0.664 | 0.501 |
Row 1 shows the performance of the encoder (followed by a flatten layer) using random weights (no pre-training or back-propagation); row 2 shows the performance of the encoder (followed by a flatten layer) using random weights and then performing back-propagation only on the flatten layer; rows 3–7 show the performance after pre-training the encoder and then running back-propagation only layers downstream of the encoder; rows 8–12 show the performance after pre-training and then running back-propagation on the whole network (including the encoder); correlation coefficients in bold corresponds to the best performance.
fc fully connected layer, flatten flatten layer, mult multiplication layer (see Supplementary Table 3 for the list of layers).