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Abstract

The prevalence of infections by nontuberculous mycobacteria is increasing, having surpassed 

tuberculosis in the United States and much of the developed world. Nontuberculous mycobacteria 

occur naturally in the environment and are a significant problem for patients with underlying 

lung diseases such as bronchiectasis, chronic obstructive pulmonary disease, and cystic fibrosis. 

Current treatment regimens are lengthy, complicated, toxic and they are often unsuccessful as 

seen by disease recurrence. Mycobacterium abscessus is one of the most commonly encountered 

organisms in nontuberculous mycobacteria disease and it is the most difficult to eradicate. 

There is currently no systematically proven regimen that is effective for treating M. abscessus 
infections. Our approach to drug discovery integrates machine learning, medicinal chemistry and 

in vitro testing and has been previously applied to Mycobacterium tuberculosis. We have now 

identified several novel 1-(phenylsulfonyl)-1H-benzimidazol-2-amines that have weak activity on 

M. abscessus in vitro but may represent a starting point for future further medicinal chemistry 

optimization. We also address limitations still to be overcome with the machine learning approach 

for M. abscessus.
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1. Introduction

Tuberculosis is a well-known disease affecting the global population caused by 

Mycobacterium tuberculosis; however, nontuberculous mycobacteria (NTM) are an under-

researched area and there is currently no standard drug regimen [1]. Nontuberculous 

mycobacterial infections are of particular concern to vulnerable patients with pulmonary 

diseases like cystic fibrosis [1], where treatments can conflict with ongoing chemotherapies. 

Unlike tuberculous mycobacteria, nontuberculous mycobacteria do not need a living host 

to transmit the organism and are present in water and soil [2]. They are able to survive 

in harsh environments lacking nutrients that inhibit the growth of other bacteria [2], and 

one such organism, Mycobacterium abscessus, is therefore very difficult to treat due to its 

resistance to common antibiotics, as well as the lack of correlation between in vitro and 

in vivo efficacy [2, 3]. Thus, drug discovery for M. abscessus infections is perhaps more 

difficult than for other bacteria and is certainly in need of novel tools to assist it.

Drug discovery studies for M. abscessus frequently start with screening of a large library of 

molecules at a single concentration, either of already approved drugs [4, 5], well-known 

collections like the Pathogen Box [6, 7], or general libraries of diverse molecules [8]. 

However, most often, these high-throughput screening (HTS) methods only produce a very 

small number of ‘hit’ compounds (the definition of which varies from study to study) from 

the primary screen, and only a few of these molecules are usually confirmed to inhibit 

growth in a dose-dependent manner. These screening methods have been discussed as an 

inefficient method of drug discovery for M. abscessus in particular [8]. Confirmed lead 

compounds are then tested individually [9-11] or further optimized by a synthetic series [12] 

in vitro and in vivo to evaluate the potential for clinical treatment. Parallel studies may 

be undertaken to identify the mechanism of action and the biological target. Other studies 

have utilized a small, targeted set of compounds for specific goals, like compounds that 

had not been previously identified as antibiotics [13]. In summary, most researchers involved 

in M. abscessus drug discovery therefore tend to screen molecule libraries as part of a 

proof-of-concept followed by further experimental optimization [14-16].

Another route utilized to discover compounds for M. abscessus has been to leverage 

activities of compounds against a similar organism, such as M. tuberculosis where data 

is more plentiful, and then try to repurpose these molecules for M. abscessus treatment. 

Such efforts have tended to be more successful in identifying highly potent compounds 

with known targets [17]. Moreira et al. found that filtering a fragment library by first testing 

compounds against M. tuberculosis yielded a higher hit rate against NTM, including M. 
abscessus [18]; similar reasoning has led other studies to use the previously mentioned 

Pathogen Box, which includes >100 known M. tuberculosis active compounds [7]. The 

various approaches that have been used in M. abscessus drug discovery have been reviewed 
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recently illustrating that while there has been a heavy focus on HTS and drug repurposing, 

there has been little interest in synthesis of novel molecules [1].

An alternative approach showing some promise in drug discovery is the development and 

increased application of HTS alongside computational methods like machine learning that 

has been applied to drug discovery for M. tuberculosis [19, 20]. These machine learning 

methods have the advantage of leveraging public data to prioritize a subset of compounds 

and potentially obtain a higher hit rate than random library screening [21], limiting the cost 

and time spent on failed leads. In the current study, we have utilized our Assay Central 

software, to apply a Bayesian machine learning approach to building models for public 

and our own data for M. abscessus drug discovery, building upon previous efforts that 

culminated in promising in vitro results for M. tuberculosis [22], Neisseria gonorrhoeae [23] 

and Staphylococcus aureus [24]. This current study demonstrates how we used a machine 

learning model to assist in the selection of novel compounds for testing in vitro.

2. Methods

2.1 Chemicals and reagents

All reagents and solvents were purchased from commercial suppliers and used without 

further purification. 1H spectra were measured on Bruker AC-300 (300 MHz). Chemical 

shifts were measured in DMSO-d6, using tetramethylsilane as an internal standard, and 

reported as units (ppm) values. Mass spectra were recorded on Finnigan MAT INCO 50 

mass spectrometer (EI, 70 eV) with direct injection. The purity of the final compounds 

was analyzed on an Agilent 1290 Infinity II HPLC system coupled to Agilent 6460 triple-

quadrupole mass spectrometer equipped with an electrospray ionization source. Elemental 

analysis (% C, H, N) was carried out by an elemental analyzer EURO EA. Melting points 

were determined on Electrothermal 9001 (10 °C per min) and are uncorrected. Merck KGaA 

silica gel 60 F254 plates were used for analytical thin-layer chromatography. Yields refer to 

purified products and are not optimized. All final compounds are > 95 % pure.

Compounds were resuspended in DMSO (MilliporeSigma). Resazurin sodium salt, 

tyloxapol, phorbol 12-myristate 13-acetate (PMA), Triton X 100, and kanamycin sulfate 

salt were purchased from MilliporeSigma.

2.2 Resazurin Microtitre Assay (REMA)

Selected test compounds were prepared in DMSO and kanamycin, a positive control, was 

prepared in deionized water and sterile filtered. Using non-treated polystyrene 96-well plates 

(Corning), drugs were serially two-fold diluted in triplicate (unless specified otherwise) in 

7H9 broth (Difco) supplemented with albumin dextrose saline (ADS; 10 g/L bovine serum 

albumin fraction V, 4 g/L dextrose, 1.6 g/L NaCl), 0.5% glycerol, and 0.1% Tyloxapol 

(7AGT). Mycobacterium abscessus ATCC 19977 (smooth) was grown in 7AGT until 

mid-logarithmic growth was reached. The M. smegmatis strain used was mc2155 (ATCC 

700084) and the M. tuberculosis strain was H37Rv. Cells were passed through a 40 μM 

cell strainer and allowed to settle. Culture cell density was measured by optical density 

(OD600) and diluted to reach a final density of 1 X 105 cells/well. All wells, including test 
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compounds and kanamycin controls, contained a final concentration of 1% DMSO and 200 

μL total volume. The kanamycin control was diluted in 2-fold steps ranging from 0.2-82.5 

μM. Plates were incubated for 48hrs at 37°C, 100 rpm before adding 20 μL resazurin 

solution (125 μg/mL in phosphate buffered saline). Following the addition of resazurin, 

plates were incubated in the dark for an additional 24 hrs. Fluorescence was measured with 

an excitation at 544nm and emission at 590nm with a Molecular Devices, SpectraMax M2 

microplate reader (California, USA).

2.3 Cell cytotoxicity assay

Compound cytotoxicity was measured by using human monocytes (THP1, ATCC TIB-202) 

and the CellTiter-Glo 2.0 assay (Promega) following the manufacturers protocol. Briefly, 

test compounds were dissolved in DMSO and kanamycin was dissolved in deionized 

water at a final concentration of 100 μM. THP1 cells were cultured in RPMI 1640 [+] 

L-Glutamine with 10% fetal bovine serum (FBS) (Gibco) in a humidified 37°C, 5% CO2 

incubator. Phorbol 12-myristate 13-acetate (PMA) was added for a final concentration of 50 

ng/mL and THP1 cells were plated at 1x105 cell/well in a 96 well plate (Corning 3610). 

After 48hrs of incubation, cells were incubated with PMA free media for 24hrs before 

exposure to compounds. Cells were exposed to compounds (100 μM), 1% Triton X 100, 

1% DMSO, or kanamycin (100 μM) for 48hrs. Test compounds and kanamycin had a final 

concentration of 1% DMSO. The plate was then equilibrated to room temperature for 30 

minutes before the addition of the CellTiter-Glo 2.0 reagent. The plate was mixed for 2 

minutes on an orbital shaker then incubated for 10 minutes at room temperature before 

luminescence signal (RLU = relative light unit) was measured using a Tecan Infinite 200 Pro 

plate reader (Zurich, Switzerland).

2.4 Machine learning with Assay Central®

Assay Central® is a proprietary software used to build machine learning models from 

high-quality datasets and generate predictions. It applies extended-connectivity fingerprint 

descriptors from the Chemistry Development Kit library [25] and a Bayesian algorithm 

previously described for other drug discovery projects [24, 26-34]. Structure-activity datasets 

were collated in Molecular Notebook (Molecular Materials Informatics, Inc. in Montreal, 

Canada) and were curated through a series of scripts to detect and correct any problematic 

data (i.e. multiple components, salt removal, potentially inaccurate structure depiction). 

Performance metrics generated from internal five-fold cross-validation are included with 

each model. These include a receiver operator characteristic curve, recall, precision, 

specificity, Cohen’s kappa, Matthews Correlation Coefficient, and balanced accuracy.

Predictions are generated from resulting Bayesian model by first enumerating all 

training data fingerprints and calculating a given fingerprint’s “contribution” to an active 

classification from the ratio of its presence in active and inactive molecules; the summation 

of contributions of the fingerprints in a prospective molecule produces the probability-like 

prediction score [35]. Scores greater than 0.5 are considered an active prediction.

Data was curated from the literature [5-7, 9, 14, 15, 18, 36-44] the NIAID ChemDB HIV, 

Opportunistic Infection and Tuberculosis Therapeutics Database [45] (downloaded in 2017), 
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and 19 other compounds tested as a proof-of-concept. The data consisted of MIC/MIC50/

MIC90 values, set to a threshold of 500 μM. Models were also generated solely from 

the specific chemical series tested herein and from ChEMBLv 27 MIC data. Batches of 

compounds were sent and periodically predicted with all Assay Central models to prioritize 

in vitro testing and the model was updated over time.

2.5 Statistical analysis

GraphPad Prism version 8.2 was used for data analysis. The log(inhibitor) vs. response, 

variable slope (four parameters) equation was used to determine the best fit curve. For the 

cell cytotoxicity experiment one-way ANOVA and Dunnet's multiple comparison test were 

used to determine statistical significance.Percent inhibition was calculated as previously 

described with the following modifications [15].

Percent inℎibition = (100) X
signalsample − signalDMSO only

signalℎigℎ kanamycin − signalDMSO only

3. Results

3.1 Machine learning

Two machine learning models for M. abscessus inhibitors were generated with Assay 

Central in this study and five-fold cross-validation was performed to generate metrics in 

order to assess the model performance. Each binary model was generated from different 

curated datasets. A model was generated with public data available in ChEMBL [46] 

however this dataset provides an example of the issues in M. abscessus drug discovery. 

Out of the over 800 MIC values present in the database, 313 have mixture of activities 

that cannot be properly merged (i.e. combinations of “>” and “=” measurements). The 

remaining values were consolidated into 180 compounds total (Figure 1a) and this model 

has a five-fold cross validation Receiver Operator Characteristic (ROC) of 0.92 and a 

balanced accuracy of 0.86 (other statistics were also excellent, Figure 1). The second M. 
abscessus Bayesian model used literature data and other compounds from our initial in vitro 
screens, in which we set the threshold as 500 μM (Figure 1b) which resulted in a model 

with a five-fold cross validation ROC of 0.93 and balanced accuracy of 0.86. A model that 

was generated just from our data generated in this study had poor metrics (data not shown) 

and was very specific to the chemical series being explored herein. We did not find any 

improvement when combining models (data not shown). Also, as both models have different 

optimal cut-offs we could not use one dataset as a test set for the other. After an initial 

screen of several compounds from our library of over 4000 molecules (synthesis described 

for several compounds relevant to this study in section 3.1), these Bayesian models were 

then used to assist in selecting additional compounds by scoring them to prioritize for in 
vitro testing over several rounds. We therefore used the models to prioritize compounds 

throughout the project as our in vitro testing capabilities were limited.
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3.2 Synthetic route for 1-(phenylsulfonyl)-1H-benzimidazol-2-amine and 1-benzoyl-1H-
benzimidazol-2-amine derivatives

Most of all the studied 2-aminobenzimidazole derivatives were obtained by the reaction 

of 2-aminobenzimidazole with substituted sulfonyl chlorides or acid chloranhydrides 

in pyridine with formation aim phenylsulfonyl- and benzoylbenzimidazoles (Scheme 1, 

step c, d). 2-aminobenzimidazoles with substituents in the benzene ring were obtained 

by successive transformation including the reduction of a 2-nitroaniline derivative by 

catalytic hydrogenation of Pd/C (10 mol%) in EtOH (Scheme 1, step a), and in the 

case of 5-chloro-3-nitropyridine-2- amine, iron was used as a reducing agent in the 

presence of hydrochloric acid (Scheme 3, step a). For annulation of the imidazole ring, 

a condensation reaction of o-phenylenediamine derivatives with cyanogen bromide was 

carried out (Scheme 1, step b). 2-aminobenzimidazole substituted at the amino group was 

obtained by condensation of 2-aminobenzimidazole with benzaldehyde to form a Schiff base 

and subsequent reduction at the double bond with sodium borohydride (Scheme 2). All 

synthesized and tested compounds were > 97% pure and stable in working solutions, their 

analytical and spectra data presented in Supplementary information.

Scheme 1.

Step a).: Solution of 2-nitro-4-trifluoromethylaniline (4.85 mmol) in EtOH (100 ml) was 

treated by 0.1g Pd/C (10% mol), hydrogen is passed for 2 hours until the absorption stops. 

The reaction mass was filtered off from coal through a layer of silica gel, washed with 

alcohol (3 * 20 ml) and evaporated, the oily residue is cooled, triturated with hexane and 

filtered off. Diamino compound was obtained with yield 0.77 g (90%), which was used for 

the next step without further purification.

Step b).: Solution of 3,4-diaminobenzotrifluoride (2 mmol) in MeOH (8 ml) and H2O (8 

ml) was treated by BrCN (6 mmol) and heated at 50 °C for 1 hour. Then the reaction mass 

was evaporated by half, the evaporation residue was cooled and neutralized with aqueous 

ammonia to pH=8, extracted with EtOAc, the organic layers were combined and washed 

with water, dried with Na2SO4, evaporated and the oily residue is triturated with hexane. 

Aim product was isolated with yeald 0.33 g (82%) and used for the next step without further 

purification.

Solution of 4,5-dimethyl-o-phenylenediamine (2.6 mmol) in MeOH (14 ml) and H2O (14 

ml) was treated by BrCN (7.8 mmol) and reaction mixture was heated at 50 °C for 1 hour. 

Then the reaction mass is evaporated by half, the residue after evaporation is cooled and 

made alkaline with aqueous ammonia to pH=8, almost immediately a thick beige precipitate 

is formed. It is cooled, the precipitate is filtered off, washed with water and recrystallized 

from H2O (yield 69%).

Step c).: 2-Aminobenzimidazole (3.8 mmol) is dissolved in a minimum amount of pyridine 

and 4-fluorobenzenesulfonyl chloride (3.8 mmol) is added dropwise, the reaction mixture is 

stirred at room temperature for 3 hours. It is diluted with cold water, cooled, the precipitate 

formed is filtered off and washed with water. Compound 11426122 was recrystallized from 

EtOH (yield 70%).
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Step d).: 2-Aminobenzimidazole (1.13 mmol) is dissolved in a minimum amount of 

pyridine and 2,4-difluorobenzoyl chloride (1.13 mmol) is added dropwise, the reaction 

mixture is stirred at room temperature for 3 hours. It is diluted with cold water, cooled, the 

precipitate formed is filtered off and washed with water. Compound 11926223 was purified 

by recrystallization from MeOH (23%).

Scheme 2

Step a).: Suspension of 2-aminobenzimidazole (1.5 mmol) in toluene (6 ml) was treated 

by benzaldehyde (2.25 mmol) dropwise and a catalytic amount of p-toluenesulfonic acid is 

added. The reaction mass is boiled with stirring for 1 hour, cooled, the precipitate formed is 

filtered off. Recrystallized from CH3CN (57%).

Step b).: Sodium borohydride (6.8 mmol) was added portionwise to a suspension of the 

compound from step a) (1.7 mmol) in EtOH (5 ml), then was heated at 70 °C for 1 hour. 

The reaction mixture brightens noticeably and flakes of precipitate appear, then it is cooled 

to room temperature and diluted with cold water. The formed precipitate is cooled and 

filtered off, washed with water. The final amino compound was recrystallized from mixture 

hexane/acetone with yield 78%.

Then synthesis follow according to (Step c) described for the scheme of synthesis Scheme 1.

Scheme 3

Step a).: Suspension of 2-amino-6-chloro-3-nitropyridine (11.5 mmol) in 8 ml of EtOH and 

2 ml of H2O was treated by 36% hydrochloric acid (0.092 ml) and iron (120 mmol). The 

reaction mixture was boiled for 1 hour, then the iron was filtered off and washed several 

times with hot EtOH. The filtrate was evaporated, the evaporation residue was dissolved in 

ethyl acetate and washed with water (4 * 50 ml). The organic layer was separated, dried 

with Na2SO4, activated carbon is added and the mixture is left stirring overnight at room 

temperature. The charcoal was filtered off through a layer of silica gel, the filtrate was 

evaporated. Diaminopyridine was obtained with yield 1.05 g (64%) and used for the next 

step without further purification. Then synthesis follow according to (Step b, c) described for 

the scheme of synthesis Scheme 1.

3.3 REMA

A resazurin microtiter assay (REMA) was used to determine the in vitro efficacy of 

compounds tested against M. abscessus, M. tuberculosis, and M. smegmatis. M. smegmatis 
is a nonpathogenic NTM that is often used as a model-mycobacteria in the laboratory. 

Firstly, we screened a small selection of compounds from an in-house chemical library 

with many biological active heterocycles and found the benzimidazole derivative 11426093 

which showed activity on M. abscessus. Guided by our machine learning models we then 

synthesized and tested 110 new derivatives (described previously in section 3.1) and six 

novel 1-(phenylsulfonyl)-1H-benzimidazol-2-amine compounds were identified with 50% 

inhibition of M. abscessus growth at concentrations <500 μM (Table 1, Figure 2). The best 

performing compounds identified were 11826433 and 11926210, which inhibited 50% of 

M. abscessus growth at 267 μM and 262 μM, respectively. Both these compounds have 
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several methyl groups and the phenylsulfonyl moiety what increases their lipophilicity. 

However, the six hit compounds required a much higher concentration than kanamycin to 

prevent growth, and in all cases 100% inhibition was not achieved even with the highest 

concentrations tested at 1 mM. In future to be of further utility, these compounds will 

likely require hit-to-lead modification to increase in vitro efficacy. Additionally, the two best 

performing compounds 11826433, 11926210 were shown to only have slight cytotoxicity 

against human monocytes (THP-1 cell) at 100 μM (Figure 3). Triton X-100 was used as a 

cytotoxicity positive control.

For M. smegmatis and M. tuberculosis, compounds 10726016 and 10726028 were selected 

by our Bayesian models and showed some activity against these bacteria, inhibiting 50% of 

M. smegmatis growth at 14 μM and 109 μM, respectively (Table 1, Figure 4). 10726016 and 

10726028 also inhibited 50% of M. tuberculosis growth at 216 μM and 315 μM, respectively 

(Table 1, Figure 5). The species-specific nature of these two compounds was evident as 

neither exhibited 50% inhibition on the highly resistant M. abscessus.

4. Discussion

In the current study we have used a combination of machine learning and medicinal 

chemistry approaches (as we have done previously for M. tuberculosis) to select compounds 

for in vitro testing against M. abscessus. In the process of this project, we identified a new 

class of compounds 1-(phenylsulfonyl)-1H-benzimidazol-2-amines that showed relatively 

weak in vitro activity compared with kanamycin as our positive control. Compared with 

work by others assessing compounds against this bacterium and reviewed recently [1], we 

can conclude that drug discovery for this bacterium is indeed very difficult. However, 

previous studies have also predominantly focused on testing existing drugs rather than 

identifying novel chemical series as we have done herein. This compound class does 

however provide an accessible starting point for future optimization as the chemistry 

involved is straightforward and the molecule does not have any obvious liabilities. Target 

identification would be important in order to further develop this series.

We previously applied machine learning approaches to identify new leads for M. 
tuberculosis using the naïve Bayesian approach [47, 48], but we are not aware of any similar 

efforts to apply machine learning methods to M. abscessus drug discovery outside of this 

work. In this study we used two models generated with both literature data alone or a 

combination of literature and our own data from the current study to assist in selection of 

compounds for testing. These models were used at various stages to prioritize due to the 

limited in vitro testing resources and could also be further applied to score other commercial 

libraries for selection of compounds for testing in future. Our previous applications of 

Bayesian models to M. tuberculosis was more successful in selecting more active molecules. 

For example, machine learning models that included bioactivity and cytotoxicity data ranked 

compounds for testing [49] and identified actives [22]. Several examples of M. tuberculosis 
machine learning models that were used to score vendor libraries to find actives in vitro 
[50], or screened available libraries of compounds with promising hit rates of 15-71% 

which exceeded the 0.6 – 1.5% usually seen with HTS screening [20, 50, 51]. We have also 

combined different M. tuberculosis models [52] and tested with 1,924 molecules leading to 
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enrichments in finding actives of 11.8 fold [53]. We also previously generated massive M. 
tuberculosis models with 345,011 molecules in them but found we did not see improved 

predictivity over smaller data sets consisting of thousands of molecules [54]. Our application 

of Bayesian and other machine learning approaches was also extended to model data from 

treatment studies of M. tuberculosis infected mice with promising external validation with 

additional compounds not in the model [55, 56]. Our most recent efforts combined in vivo 
and in vitro M. tuberculosis data and evaluated different machine learning methods with 

external test sets, where we concluded that the Bayesian algorithm was comparable to 

deep learning methods [30]. In this current study we have used published literature data 

alone or in combination with our own data in order to generate models which possess 

good 5-fold cross validation statistics (5-fold ROC > 0.92). These models did not however 

perform particularly well in predicting very active compounds for M. abscessus as the 

datasets were much smaller, representing hundreds of compounds (and likely less diverse) 

and consisted of fewer likely high-quality actives when compared with those models used 

previously for M. tuberculosis which consisted of thousands of molecules and many actives. 

These M. abscessus models would certainly gain from the addition of further in vitro data 

and in particular additional actives from larger screens. Such machine learning models 

may likely assist with future hit-lead optimization although as we have shown there are 

certainly considerable challenges still to overcome with developing antibacterials against M. 
abscessus.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: M. abscessus Bayesian models 5-fold cross validation
(a), ChEMBLv27 MIC values (b) and the literature model used for predictions at a threshold 

of 500 μM with preliminary in vitro tested compounds.
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Figure 2: Dose dependent inhibition of M. abscessus as measured by REMA.
Results shown are means ± SDs from a representative plot with assays performed in 

triplicate. Compounds tested were compared to a kanamycin control to determine percent 

inhibition.
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Figure 3: Cytotoxicity of compounds against human monocytes (THP-1) as measured by 
CellTiter-Glo 2.0.
Results shown are means ± SDs from a single independent experiment with assays 

performed in triplicate. One-way ANOVA and Dunnet's multiple comparison test were used 

to determine statistical significance. *** = P <0.001, **** = P <0.0001 compared to a RPMI 

only condition. RLU = Relative light unit.

Schmalstig et al. Page 16

Tuberculosis (Edinb). Author manuscript; available in PMC 2023 January 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: Dose dependent inhibition of M. smegmatis as measured by REMA.
Results shown are means ± SDs from a single independent experiment performed in 

triplicate. Compounds tested were compared to a kanamycin control to determine percent 

inhibition.
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Figure 5: Dose dependent inhibition of M. tuberculosis as measured by REMA.
Results shown are means ± SDs from a single independent experiment performed in 

triplicate. Compounds tested were compared to a kanamycin control to determine percent 

inhibition.
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Scheme 1. 
Reagents: (a) Pd/C, EtOH; (b) CNBr, MeOH, H2O; (c) ClSO2R4, Py; (d) ClCOR5, Py
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Scheme 2. 
Reagents: (a) PhCOH, p-TSA, toluene; (b) NaBH4, EtOH; (c) ClSO2R4, Py
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Scheme 3. 
Reagents: (a) Fe,HCl, EtOH, H2O; (b) CNBr, MeOH, H2O; (c) ClSO2(C6H4)F-p, Py
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Table 1.

Concentration (μM) required to inhibit Mycobacteria 50% compared to a kanamycin control.

IC50 (μM)

Compound
a M. abs M. tb M. smeg

Kanamycin (control) 29 ± 6 14 ± 2 5 ± 2

11426093 342 ± 116 NT NT

11826433 267 ± 79 NT NT

11426122 452 ± 2 NT NT

11926210 262 ± 42 NT NT

11926211
315

b NT NT

11926223
478

b NT NT

10726016 NI
216

b
14

b
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IC50 (μM)

Compound
a M. abs M. tb M. smeg

10726028 NI
315

b
109

b

a
Results shown are the means ± SDs from 1 to 11 independent experiments with each independent assay always being performed with technical 

triplicate wells.

b
Experiments were only performed once. NI, no inhibitory activity; NT, not tested.
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